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ABSTRACT
Motivation: Metabolite profiling aims at an unbiased
identification and quantification of all the metabolites
present in a biological sample. Based on their pair-wise
correlations, the data obtained from metabolomic experi-
ments are organized into metabolic correlation networks
and the key challenge is to deduce unknown pathways
based on the observed correlations. However, the data
generated is fundamentally different from traditional
biological measurements and thus the analysis is often
restricted to rather pragmatic approaches, such as data
mining tools, to discriminate between different metabolic
phenotypes.
Methods and results: We investigate to what extent
the data generated networks reflect the structure of the
underlying biochemical pathways. The purpose of this
work is 2-fold: Based on the theory of stochastic systems,
we first introduce a framework which shows that the
emergent correlations can be interpreted as a ‘fingerprint’
of the underlying biophysical system. This result leads to
a systematic relationship between observed correlation
networks and the underlying biochemical pathways. In
a second step, we investigate to what extent our result
is applicable to the problem of reverse engineering, i.e.
to recover the underlying enzymatic reaction network
from data. The implications of our findings for other
bioinformatics approaches are discussed.
Contact: steuer@agnld.uni-potsdam.de

INTRODUCTION
Metabolomics has the ultimate goal of providing a com-
prehensive and unbiased identification and quantification
of all metabolites present in a biological sample (Sauter
et al., 1991; Tweeddale et al., 1998; Oliver et al., 1998;
Fiehn, 2002). Recent advances in laboratory technology
allowed to automatically quantify more than 1000 distinct
compounds from a single leaf extract and more than 500

∗To whom correspondence should be addressed.

compounds from potato tubers. With these capabilities
at hand, the use of metabolomic methods to significantly
extend and enhance the power of existing functional
genomics approaches has already been demonstrated
(Fiehn et al., 2000). Based on the pair-wise correlation
between their respective concentrations in a given sample,
metabolites are integrated into metabolic correlation
networks (Weckwerth and Fiehn, 2002). The resulting
networks show a remarkable degree of complexity, but
their relationship to biological function and biochem-
ical pathways is as yet poorly understood (Marcotte,
2001). Consequently, the analysis is mostly restricted
to rather pragmatic approaches (Roessner et al., 2000;
Kose et al., 2001; Taylor et al., 2002), which are of
major biotechnological interest, but require no recourse
to the actual biological or biochemical ‘meaning’ of the
data.

In this work, we will focus on the interpretation of
these data-generated networks in terms of the underlying
biochemical pathways. The paper is organized as fol-
lows: After a brief description of data acquisition and
pre-processing, we elucidate a possible mechanism for
generating correlations within metabolic networks. As a
first step, we show how unclearly related the observed
pattern of correlations and the underlying metabolic path-
ways are. Based on the theory of stochastic systems, we
propose a link and argue that the emergent pattern of cor-
relations in a metabolic network is a direct consequence of
the underlying enzymatic system. Using a linear approxi-
mation, it is possible to give this relationship explicitly in
terms of the Jacobian of the system. This result provides a
conceptual basis for traditional data mining tools to treat
the observed pattern of correlations as a ‘fingerprint’ of
the state of the metabolic system. In the second part of this
work, we focus on smaller (sub-)systems and investigate
to what extent our result enables us to reconstruct the
underlying system from the measured data. In the last
section, we will give the conclusions and summarize our
results.
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DATA ACQUISITION AND ANALYSIS
Numerous techniques exist for metabolite detection
and feasibility studies for applying profiling techniques
to plant metabolism have been reported in the litera-
ture (Fiehn et al., 2000). Since these provide the starting
point of our considerations, we will give a brief outline
of metabolomic data acquisition and the current status of
data analysis in the following. The experimental setup to
follow the relative amounts of hundreds of compounds
in potato plant extracts (Solanum tuberosum) has already
been presented elsewhere and we encourage the reader to
consult the experimental literature for details (Roessner
et al., 2000; Fiehn et al., 2000). In the present study,
we premise that our semi-automated data acquisition ap-
proach allows an accurate identification and quantitation
of plant metabolites. This implies that the intensity of any
metabolite can be directly compared to the intensity of
this metabolite in another sample.

The starting point of a metabolomic analysis is thus a
M × N matrix of metabolite concentrations where M de-
notes the number of metabolites and N the number of sam-
ples. Figure 1 shows a visualization of the acquired data in
metabolite:metabolite scatter-plots. As already visible, the
concentration of a given metabolite does not vary inde-
pendently, but may correlate with other metabolites. The
observed correlations between two metabolite concentra-
tions can be quantified by the correlation coefficient Ci j
(sometimes referred to as Pearson Correlation)

Ci j = �i j√
�i i � j j

(1)

where �i j denotes the co-variance of two metabolite
concentrations Si and S j .

�i j = 〈Si S j 〉 − 〈Si 〉 〈S j 〉 i, j = 1, . . . , M (2)

The correlation coefficient implicitly defines a ‘distance’
between metabolites and usually serves as a starting point
for many data mining tools, such as various types of
clustering algorithms (D’haeseleer et al., 2000).

A different approach to visualize the correlation matrix
is to organize the metabolites into metabolic correlation
networks (Weckwerth et al., 2001; Kose et al., 2001).
Depending on, whether their correlation

∣∣Ci j
∣∣ exceeds

a given threshold C t, two metabolites Si and S j are
connected with a ‘link’. The resulting network may then
be interpreted as a graph whose vertices are given by
the metabolites and whose edges depend on whether
two metabolites are correlated or not. The only free
parameter in this procedure is the threshold C t, which is
usually chosen in such a way that the correlations with
Ci j > C t may be treated as significant with respect
to a certain probability. A graphical representation of
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Fig. 1. Examples of metabolite:metabolite scatter-plots. Each dot
corresponds to a simultaneous measurement of two metabolite
concentrations (in arbitrary units) within a single sample. All
samples were obtained simultaneously from tuber tissue of identical
genotypes. The examples are drawn from a large data set of 657
measured metabolites with up to 43 measurements available for each
metabolite. As can be easily observed, the metabolite concentrations
show different degrees of correlation with each other.

the network is obtained by assigning each metabolite to
coordinates in a two-dimensional plane, such that the pair-
wise distances approximately reflect the ‘similarity’ given
by the correlation matrix (Weckwerth et al., 2001; Arkin
and Ross, 1995). Note that in the following the essential
input of our method is always the observed co-variance
matrix Equation (2), from which both, the correlation
matrix and the correlation network, may be deduced.

In this work, we focus on the interpretation of these
data-generated networks in terms of the biochemical
pathways and will study the following questions: Is
there a straightforward connection between the underlying
enzymatic system and the observed correlations? Can we
deduce novel pathways, based on the observed co-variance
matrix?

THE INTERPRETATION OF CORRELATIONS
To answer the above described questions even partially,
we start by pointing out some facts that are crucial for
our further analysis: All samples were obtained simulta-
neously from an ensemble of identical genotypes. Nei-
ther of the experiments included the application of par-
ticular stress factors (such as water deficiency). Still, the
metabolite concentrations varied considerably. We argue
that this variability must have biological causes, reflecting
the (intrinsic) flexibility of metabolic networks in the stud-
ied populations (Weckwerth and Fiehn, 2002). This view
is supported by the observation that metabolite concentra-
tions do not vary independently, but show strong correla-
tions with the concentrations of other metabolites. Thus,
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our starting assumptions are: (i) the observation of corre-
lations implies biological variability. If all metabolites re-
main at their steady state level and the variability is just
given by measurement errors†, no correlations could be
observed. (ii) the observation of correlations shows that
the metabolite concentrations are dependent on each other,
this dependence must be strongly connected to the under-
lying biophysical system.

In the subsequent sections, we will adopt the following
view as a working hypothesis: Cell metabolism constitutes
a complex dynamical system, which is continuously
subject to fluctuations. These fluctuations arise from a
continuously changing environment, as well as from
complex patterns of regulation, generated by the network
itself. These fluctuations induce variability in certain
metabolites, propagate through the network and generate
an emergent pattern of correlations.

An example
To illustrate these ideas more clearly, we will now
consider a numerical example. We assume that a reaction
mechanism relies on the supply of certain metabolites.
Further, we assume that this supply is not constant but
a fluctuating quantity. These variations will affect the
concentration of other metabolites and finally create an
observable pattern of correlations.

To simulate this numerically, we use a rather detailed
model of glycolysis, as described by Hynne et al. (2001).
This example will also serve to demonstrate that there is
no straightforward connection between observed correla-
tions and the underlying reaction network. A schematic
view of the model is given in Figure 2, for further details,
in particular the rate mechanisms and constants, we refer
the reader to the original publication (Hynne et al., 2001).

We shall emphasize that the choice of this particular
model is not a quest for realism, but is owed to the fact that
it contains non-linear rate laws based on the biochemical
literature, and considers explicitly the production and
consumption of co-factors, such as ATP. The parameters
of the model were optimized to describe the behaviour
near the Hopf-bifurcation. In our simulations, however,
the external glucose concentration was shifted below the
bifurcation point, to ensure the existence of a single steady
state. Also, it should be emphasized that this model does
not necessarily give a realistic representation of glycolysis
in potato tubers, but merely stands for an arbitrary, but
reasonably complex, reaction mechanism.

In order to introduce variability in the network, the
external glucose is considered to be a time-dependent
(stochastic) variable GlcX (t). The time evolution of
GlcX (t) can thus be modeled by a stochastic differential

† For a discussion of the typical precision of the measurement tools and other
experimental aspects, see (Roessner et al., 2000; Fiehn et al., 2000).
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Fig. 2. A scheme of the glycolysis pathway corresponding to the
model of Hynne et al. (2001). The model consists of 24 reactions,
whose parameters have been fitted to experimental data. The model
was optimized to describe glycolyic oscillations in yeast. In our
simulation, we shift the parameters to [GlcX0] = 30 a.u. and
[C N X0] = 25 a.u. (arbitrary units) to ensure the existence of a
non-oscillating steady state.

equation,

d[GlcX]
dt

= f [. . .] + √
2Dξ(t) (3)

where f [. . . ] denotes the original deterministic equation
and ξ(t) Gaussian white‡ noise with zero mean and unit
variance.

〈ξ(t)〉 = 0 〈ξ(t)ξ(t ′)〉 = δ(t − t ′) (4)

At this point, we have to clarify our use of the term
‘fluctuation’. Recently, there has been much interest in
fluctuations and stochastic mechanisms within molecular
networks (Rao et al., 2002; Thattai and van Oudenaarden,
2001; Morton-Firth and Bray, 1998; McAdams and Arkin,
1997). Therein, the term fluctuation refers to the internal
or intrinsic noise caused by the fact that the system
consists of (a low number of) discrete particles. These

‡ With respect to relevant timescales.
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Fig. 3. A metabolic correlation network based on the simulated
output of the glycolysis model. The position of the vertices were
determined with the Kamada–Kawai algorithm, as implemented
in the software package Pajek (Batagelj and Mrvar, 1998), using
the full correlation matrix. Edges indicate a correlation coefficient
‖Ci j ‖ > 0.5. Can we relate this network to the underlying
pathways, depicted in Figure 2?

molecular fluctuations are inherent in the mechanism by
which the system evolves (van Kampen, 1992). In contrast
to that, our measurements consist of an average over tens
of thousands of cells. Fluctuations on the molecular level
are therefore averaged out.

In this work, the term ‘fluctuations’ thus refers to
macroscopic fluctuations, affecting a large number of
cells simultaneously. These may be generated by a (con-
tinuously) changing environment, as well as by complex
regulation in (other parts of) the metabolic network. It
should be noted that the formulation of irregular functions
of time as stochastic processes is widely utilized in
physics, also when the fluctuations are of unspecified or
unknown provenance (van Kampen, 1992).

In our example, the fluctuations in the external glucose
concentration propagate down the pathway. To obtain a
hypothetical ‘measurement’, the system is integrated nu-
merically§ and (after excluding transients) the concentra-
tions of all metabolites are recorded simultaneously at a
given point in time. Further ‘measurements’ are obtained
by repeating this procedure with different realizations of
the fluctuations¶. Figure 3 shows a visualization of the re-
sulting correlation matrix as a metabolic correlation net-
work. Examples of metabolite:metabolite scatterplots are
shown in Figure 4.

§ We used a modified Runge–Kutta 2nd order algorithm. Note that the numer-
ical simulation of stochastic differential equations involves some additional
difficulties, compared to the deterministic case. See e.g. (Mannella, 2000)
for more details and a short overview over various algorithms.
¶ This is equivalent to simultaneously recording the concentrations of all
metabolites at successive timepoints, provided that the time interval between
two ‘measurements’ is sufficiently long.
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Fig. 4. Examples of simulated metabolite concentrations, obtained
numerically from the model depicted in Figure 2. Shown are
metabolite:metabolite scatterplots of G6P with other metabolites
further down the glycolytic chain. In the simulation, the amplitude
of the fluctuations was set to D = 0.5.

We observe a strong correlation between glucose-
6P (G6P) and fructose-6P (F6P). Between G6P and
FBP, a negative correlation is observed. Next, there
seems to be almost no correlation between G6P and
pyruvate (Pyr), but, surprisingly, again a very strong
correlation between G6P and acetaldehyde (ACA). The
numerical values are given in Table 1. Obviously, at a first
glance, the observed pattern of correlations has no clear
connection to the underlying pathway and an intuitive
interpretation of the observed correlations must almost
unavoidably fail. Moreover, even with detailed knowledge
about the reaction mechanism, the prediction of expected
correlations does not seem a trivial task. In the next
section, we will therefore develop a systematic approach,
which allows to deduce the correlation matrix from a given
reaction scheme.

A SYSTEMATIC APPROACH
Not only metabolomic network analysis, but also many
other bioinformatics algorithms, rely on the interpretation
of observed correlations. Thus a prediction of the expected
correlation matrix, given a certain reaction system, is po-
tentially of importance for further improvements of vari-
ous algorithms. Here, we consider an arbitrary metabolic
reaction network, in which certain metabolites are subject
to fluctuations. The system is given by a set of non-linear
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Table 1. The values of the correlation coefficient CXY obtained numerically
from the model. The correlation coefficient was estimated using 100
datapoints and averaged over 50 realizations with σC denoting the standard
deviation

Metabolite X Metabolite Y Average CXY Standard deviation σC

G6P F6P 0.982 0.003
G6P FBP −0.86 0.03
G6P Pyr −0.02 0.08
G6P ACA 0.97 0.03

differential equations,

d

dt
S = Nν(S) = f(S) (5)

where S denotes the vector of metabolite concentrations, N
the stoichiometric matrix and ν(S) the (non-linear) vector
of fluxes (Heinrich and Schuster, 1996). For simplicity, we
focus on fluctuations near the (stable) steady state S0

X(t) = S(t) − S0 (6)

and use a local linear approximation of Equation (5).

d

dt
X ≈ J X with J := N

∂ν

∂S

∣∣∣∣
S0

(7)

Note that the entries in the Jacobian J are related to the
elasticity coefficients, as used within Metabolic Control
Analysis (MCA; Heinrich and Schuster, 1996). Some
of the metabolites are subject to external fluctuations,
modeled by a Langevin-type equation

dXi

dt
=

∑
j

Ji j X j + √
2 Diξi (t) (8)

with ξi being Gaussian white noise, with zero mean
and unit variance. The (stationary) solution P(x) of
Equation (8) is known to be a multivariate Gaussian
distribution (van Kampen, 1992), thus fully characterized
by its first and second moments. To obtain the covariance
matrix �, we use the corresponding (stationary) Fokker–
Planck equation for P(x).

0 = −
∑

i j

Ji j
∂

∂xi
x j P +

∑
i j

Di j
∂2 P

∂xi∂x j
(9)

where Di j = δi j Di is diagonal. We are interested in the
quantities

〈Xk Xl〉 =
∫

xk xl P(x) dx (10)

Multiplying Equation (9) with xk xl and integrating yields
(van Kampen, 1992; Honerkamp, 1990)

0 =
∑

j

Jk j 〈Xl X j 〉 +
∑

j

Jl j 〈Xk X j 〉 + 2Dkl (11)

Equation (11) may be rewritten in terms of the co-variance
matrix �, as defined in Equation (2) (van Kampen, 1992)

J � + �JT = −2D (12)

where JT denotes the transpose of J. Equation (12) es-
tablishes a fundamental relationship between the observed
co-variance (and hence the correlations) and the underly-
ing reaction network. Given an arbitrary Jacobian J and
the fluctuation matrix D, the elements of � are given as
the solution of a linear equation.

We may now apply Equation (12) to our earlier de-
scribed example of glycolysis. The construction of the
Jacobian from the rate laws is straightforward‖. By insert-
ing it into Equation (12), we obtain an expression for the
co-variance matrix �, which then results in the correlation
matrix C (Equation 1)∗∗. Between G6P and F6P, we
obtain CG6P,F6P ≈ 0.98, between G6P and FBP the cor-
relation is CG6P,FBP ≈ −0.88, further CG6P,Pyr ≈ −0.08
and CG6P,ACA ≈ 0.99. This is in good correspondence
with the pattern of correlations given in Table 1. Note that
the values in Table 1 were found numerically using the
full non-linear model. Small deviations must therefore be
attributed to the linear approximation.

In a situation where the linear approximation does
not apply (e.g. oscillations), it is sometimes possible
to solve Equation (10) using a numerical solution of
the (non-linear) Fokker–Planck equation. While this is
computationally demanding, it emphasizes that even in
a more general setting, the observed correlations can be
interpreted as a direct consequence of the underlying
system. However, we expect the linear approximation to
hold in many cases. This is supported by the fact that
MCA, which is a genuinely linear theory, was found
to yield reasonable results for many metabolic systems
(Heinrich and Schuster, 1996). We note that in our
interpretation, even within the linear approximation, the
observed correlation networks must not necessarily be
static, but can also describe dynamic entities. This can be
included by considering a time dependent Jacobian J(t)††.

REVERSE ENGINEERING
Having established a relationship between the observed
co-variance and the underlying dynamical system, the

‖ For the model, depicted in Figure 2, the Jacobian has 82 nonzero entries.
We estimate it numerically, using the MATLAB routine numjac.
∗∗ To solve Eq (12) for an (moderately large) Jacobian, we use the software
package MATHEMATICA.
††In this case, one obtains a differential equation for the co-variance matrix:
d�/dt = J(t) � + �JT(t) + 2D.
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crucial question is: Are we able to deduce properties of
the underlying system from the observed co-variance
matrix? Is it possible to reconstruct the Jacobian given a
measured co-variance matrix �?
In order to address the above-mentioned questions, we
shift the focus towards smaller (sub-)system. In particular,
we refer to the work of Arkin et al. (1997). Therein the
response of a reaction pathway to random changes (fluctu-
ations) in the concentration of a subset of ‘input’ species
was recorded experimentally. The resulting correlations
were shown to yield an informative non-causal diagram
representing the regulatory structure of the system. Within
this setup, the fluctuations are now introduced deliber-
ately. Thus, in the following, we assume the fluctuation
matrix D to be known.

To make the calculation more transparent, we consider
a very simple example, as shown in Figure 5. All
reactions are modeled as irreversible first-order mass-
action. We start with constructing the correlation matrix.
The Jacobian is given as

J =

−(k12 + k13) 0 0

+k12 −k23 0
+k13 +k23 −kout


 (13)

The fluctuations shall affect only the metabolite S1, thus
D11 = D, while all other entries in D are zero. The matrix
� is symmetric.

D =

D 0 0

0 0 0
0 0 0


 � =


�11 �12 �13

�12 �22 �23
�13 �23 �33




Inserting this into Equation (12) yields a linear system of
equations, specifying the M(M +1)/2 independent entries
of �. We choose k12 = k13 = kout = 1, k23 = 2 and, after
a simple calculation, obtain

� =




D
2

D
8

D
4

D
16

D
6

7D
12


 (14)

The resulting correlation coefficients are C12 = √
1/2 ≈

0.71, C13 = √
3/14 ≈ 0.46 and C23 = √

16/21 ≈ 0.87.
Figure 6 shows a comparison with a numerical estimation,
which is in good agreement with the theoretical prediction.
Note that within a linear approximation, the correlation
coefficients do not depend on the amplitude D of the
fluctuations.

We may now address, whether or not we are able to
reconstruct the Jacobian from the observed covariance
matrix. In general, this is, of course, not the case. The
matrix � is symmetric, for a system of M metabolites

S1

V in

S2

S3

V 12

V 13 V out

V 23

Fig. 5. A simple reaction mechanism. All reactions are modeled as
irreversible first-order mass-action kinetics: νi j = ki j Si , νout =
kout S3 and νin = const. The steady state is S0

1 = νin/(k12 + k13),

S0
2 = k12S0

1/k23 and S0
3 = νin/kout. For the simulation the

parameters were νin = 5, k12 = k13 = kout = 1 and k23 = 2.
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Fig. 6. A numerical analysis of the reaction scheme shown in
Figure 5. The metabolite S1 is subject to fluctuations, which then
propagate through the network. The concentrations fluctuate around
the steady-state S0

1 = 2.5, S0
2 = 1.25 and S0

3 = 5.0. Also
shown is the observed correlation coefficient Ci j , averaged over 100
realizations of N = 100 data points with σ denoting the standard
deviation.

it contains only M(M + 1)/2 independent entries. In
contrast to that the Jacobian J has M2 entries, leaving
M(M − 1)/2 entries unspecified. Still, as we shall see
below, an observed co-variance matrix does hold some
information about the underlying system.

For simplicity, we assume that the covariance matrix
� is known exactly. If we insert the expression for �

(Equation (14)) into Equation (12) and take the fluctuation
matrix D as known, we get a linear system of equations
for the entries of the Jacobian J. However, there are only
six (since M = 3) independent equations for the nine
unknowns Ji j . Consequently, it is only possible to give a
parametric solution Ĵ = Ĵ[λ1, λ2, λ3].

Table 2 shows the reconstructed Jacobian as a function
of the parameters λi . By inserting the true values λ1 = −2,
λ2 = 0 and λ3 = −2, we might easily verify, that Table 2
is indeed a correct parameterization of the true Jacobian,
as given in Equation (13).

Ĵ =

J11 J12 J13

J21 J22 J23
J31 J32 J33


 =


−2 0 0

1 −2 0
1 2 −1




As shown, knowledge about the co-variance matrix
puts M(M + 1)/2 linear constraints on the M2 elements
of the Jacobian. Thus, our method does not lead to a
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Table 2. The reconstructed Jacobian {Ji j } parameterized by the unknown
values λ1, λ2 and λ3. Note that if the amplitude D of the fluctuations in
Equation (14) is not known, this would give an additional free parameter

J11 = λ1 J13 = − 1
2 (8 + 4λ1 + λ2)

J12 = λ2 J21 = 1
30 (64 + 20λ1 + 2λ2 − 3λ3)

J22 = λ3 J23 = − 1
20 (32 + 10λ1 − λ2 − 6λ3)

J31 = 1
15 (67 + 35λ1 + 6λ2 − 9λ3)

J32 = 1
5 (54 − 3λ2 + 22λ3)

J33 = −5 − λ1 − λ3

complete reconstruction of the system, even when the
co-variance matrix is known exactly. However, there are
some improvements possible, which shall be discussed
shortly: The number of independent entries in J is usually
considerably smaller than M2: For methods that exploit
redundancy in J see (Díaz-Sierra et al., 1999; Klamt et
al., 2002). Also, in a realistic setting, most of the entries
might already be known, the task being thus to specify
the remaining entries. Even, if we have no particular
information about the underlying system, we know that
metabolic networks are, in general, sparse (Jeong et al.,
2000). Thus, similar to the approach developed by Yeung
et al. (2002), one may optimize the solution to provide a
Jacobian with a maximal number of ‘zero’ elements.

Still, the strongest limitation in a realistic example
would be that the estimation of the co-variance matrix
is usually affected by considerable errors. As could be
observed in Figure 6, this holds in particular for the case
of weak correlations. Here again, some improvements
are possible: If we follow the work of Arkin et al.
(1997), the (now deliberately) introduced fluctuations can
be very slow, corresponding to a (slowly varying) constant
input. In this case, the system is always at a steady
state and the metabolite:metabolite scatterplots reduce to
a straight line (linear relationship). Within this setting, our
method resembles a co-response analysis, as introduced in
Cornish-Bowden and Hofmeyr (1994) and Giersch (1995)
and a more detailed analysis of this approach is left for
future work.

DISCUSSION AND CONCLUSIONS
In this work, we have discussed the analysis and in-
terpretation of metabolomic data sets acquired by
high-throughput measurements. All samples were taken
from plants with identical genotypes and grown under
uniform conditions. Still, the concentrations of metabo-
lites showed a remarkable degree of variability. More
important, metabolite concentrations do not vary inde-
pendently, but are highly interconnected via metabolic
correlation networks. We argued that the observed corre-
lations between metabolite concentrations are a result of

the underlying enzymatic reaction network. According to
our hypothesis, plant metabolism is a highly dynamical
process which is, even under stationary and uniform
conditions, continuously changing under the influence
of fluctuations. These fluctuations propagate through the
network and induce a specific pattern of correlations,
which is then observed experimentally.

To investigate this, we have presented a systematic ap-
proach, which connects the underlying dynamical system
to the observed correlation matrix for arbitrary external
fluctuations. Using a linear approximation it is possible to
give this relationship explicitly in terms of the Jacobian of
the system. Based on this view, the pair-wise correlation
network represents a snapshot of the physiological state of
the plant at a given point in time.

This provides a fundamental conceptual basis for previ-
ous and future analysis of metabolomic data sets. Even if
it is not possible to specify the precise origin of the fluctu-
ations in large-scale experiments, our analysis enables to
treat the observed correlations as a ‘fingerprint’ of the un-
derlying biophysical system. In this way, the organization
of metabolites in complex correlation networks exploits
the intrinsic flexibility of metabolism to gain additional
information about the state of a molecular system. Also,
we can draw two important consequences from our anal-
ysis: (i) The relationship between the observed pattern of
correlations and the underlying pathways is complex and
cannot be given in terms of simple heuristic principles; and
(ii) more importantly, a mutant plant would manifest itself
by having a (slightly) altered enzymatic reaction network,
thus a slightly different Jacobian. Consequently, we must
expect mutants not only to show different steady state con-
centrations, but also a different co-variance, hence corre-
lation matrix. And this is indeed what is observed experi-
mentally (Weckwerth et al., 2001).

As a second step, we have discussed the applicability of
our results to the problem of reverse engineering. It was
shown that the covariance matrix does not hold enough
information to fully specify a system. However, this may
be remedied if additional knowledge about the system
is available. Since our present experimental setup does
not allow the recording of time-series, we have restricted
the analysis to instantaneous correlations. However, as a
further step, one may also obtain an expression for the full
time-lagged co-variance matrix �(τ). This would provide
further information about the dynamical system and would
also supplement the method introduced by Arkin et al.
(1997) with a sound theoretical foundation.

Finally, we like to note that there are a vast number
of possible further developments and applications of
our approach. First of all, there is an increasing interest
in the large-scale organization of metabolic networks,
which are believed to have some, evolutionary favorable,
characteristic properties (Jeong et al., 2000). The large-

1025



R.Steuer et al.

scale metabolomic measurements might thus enable us to
study these characteristics experimentally, by connecting
the network structure with the structure of the observed
correlation networks. Further, the traditional analysis of
metabolism is almost exclusively restricted to determin-
istic rate functions. The response of metabolic networks
to fluctuating inputs might thus reveal new, previously
unknown, schemes of regulation. In addition, it should be
emphasized that the study of fluctuations is not restricted
to metabolic networks. Many bioinformatics algorithms
rely on the correlations matrix as their essential input.
In particular, the clustering of gene-expression implicitly
assumes that ‘co-regulated’ (correlated) genes have
something in common in their regulator mechanism. Our
approach might facilitate further understanding of this
assumption and put such principles on firmer ground.
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