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Noise-enhanced synchronization of homoclinic chaos in a CO2 laser
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Many chaotic oscillators have rather coherent phase dynamics but strong fluctuation in the amplitudes.
Conversely, homoclinic chaos is characterized by quite regular spikes but strong fluctuation in their time
intervals. We study the effects of noise on the synchronization of homoclinic chaos to a weak periodic signal
and demonstrate numerically and experimentally in a CO2 laser system that noise enhances synchronization of
homoclinic chaos. The system exhibits both conventional resonance versus driving frequency and stochastic
resonance with respect to noise intensity.
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Resonant response of a nonlinear system to a weak d
ing signal has been investigated in various contexts. I
self-sustained periodic oscillator, the system adjusts its t
scale, achieving frequency and phase locking to the driv
signal. This phenomenon of conventional resonance, cha
terized by an Arnold tongue synchronization region is
fundamental importance@1#. Recently, the study of phas
synchronization~PS! has been extended to chaotic mod
oscillators@2,3# and to several experiments, such as las
@4#. For example, in the chaotic Ro¨ssler oscillator, a phas
variable can be defined which is associated with the t
scales of the oscillations, e.g., the return timeT between two
successive crossing of a Poincare´ section @2#. This system
displays very coherent phase dynamics due to a small fl
tuation ofT, although the amplitudes fluctuate strongly. Th
property is quite general in chaotic oscillations resulti
from a period-doubling bifurcation@5#, and PS and conven
tional resonance occur similar to coupled periodic oscillat
@2,3#.

Noise usually has a destructive effect on PS by induc
phase slips and shrinking the synchronization region@6,7#.
On the other hand, noise may play a constructive role
enhancing the response through stochastic resonance~SR!
@8#. Stochastic resonance has also been studied from
viewpoint of noise-enhanced synchronization of the swit
ing events to the external signal, because noise controls
average switching rate of the system and the respons
optimal when it is close to that of the external signal@9–11#.
This resonance behavior, however, is not the same as
ventional resonance in coupled self-sustained oscillat
while the synchronization exhibits a resonancelike beha
with the change of noise intensity at a fixed driving fr
quency, it does not display resonancelike behavior as a fu
tion of the driving frequency@11#. When the driving signal
fluctuations are much slower than all system time scales,
is independent of signal frequencies; while it shows a se
tivity to higher signal frequencies in excitable system
@12,13#. In phase-coherent chaotic oscillators, noise may a
play a constructive role to induce@14# or enhance PS in the
weak coupling regime@15#.

Homoclinic chaos@16# represents a class of chaotic osc
lations that exhibit quite different behavior as compared
1063-651X/2003/67~1!/015205~4!/$20.00 67 0152
iv-
a
e
g
c-

f

l
rs

e

c-

s

g

n

he
-
he
is

n-
s:
r

c-

R
i-

o

o

phase-coherent chaotic oscillations. Typically, these cha
oscillators possess a saddle pointS embedded in the chaoti
attractor, with an unstable manifold weaker than the sta
one ~the Shilnikov condition for homoclinic chaos@16#: the
eigenvaluesuluu,ulsu). The chaotic trajectories leaving
neighborhood ofS along its unstable manifold have ver
close recurrence toS along its stable manifold. Typical dy
namics is characterized by rather regular orbits in the ph
space and widely fluctuating time intervalsT between suc-
cessive returns~Fig. 1!, because the trajectory slows dow
considerably andT depends on how close the orbit a
proachesS. Such a structure underlies spiking behavior
many neuron@17#, chemical@18#, laser @19#, and El Niño
@20# systems. Noise acts in homoclinic chaotic systems i
quite different way@20#. The motion is sensitive to nois
along the weaker unstable manifold, which on avera
makes the trajectory leave the neighborhood ofS earlier and
reduces the average intervalT. So far, such effects of nois
on PS of homoclinic chaos have not been addressed.

Here we show that a small noise changes not only
average valueT05^T& t , but also reduces the fluctuations
T. As a result, noiseenhancesPS and the system display
both conventional and stochastic resonances.

We demonstrate these nontrivial effects of noise in
single-mode CO2 laser, both numerically and experimentall
The experimental setup consists of a CO2 laser with an
intracavity loss modulator, driven by a feedback signal wh
is proportional to the laser output intensity. The system
operating in a homoclinic chaos regime where the laser o
put consists of a chaotic sequence of spikes@19,21# ~Fig. 1!.
The pump parameterp0 is modulated by an external period
signal with amplitudeA and frequencyf e ,

FIG. 1. Time series of the laser output intensity in the expe
mental CO2 system without external signal and noise.
©2003 The American Physical Society05-1
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p~ t !5p0@11A sin~2p f et !#. ~1!

To investigate the role of external noise, a Gaussian n
generator is inserted into the feedback loop. The noise g
erator has a high frequency cutoff at 50 kHz, which can
regarded as a white noise source.

We first carry out numerical simulations on the model,

ẋ15k0x1~x2212k1sin2x6!, ~2!

ẋ252g1x222k0x1x21gx31x41p~ t !, ~3!

ẋ352g1x31gx21x51p~ t !, ~4!

ẋ452g2x41zx21gx51zp~ t !, ~5!

ẋ552g2x51zx31gx41zp~ t !, ~6!

ẋ652bS x62b01
rx1

11ax1
D1Dj~ t !, ~7!

which describes accurately the experimental system@21#.
Here,x1 represents the laser output intensity,x2 the popula-
tion inversion between the two resonant levels,x6 the feed-
back voltage signal which controls the cavity losses, wh
x3 , x4, andx5 account for molecular exchanges between
two levels resonant with the radiation field and the oth
rotational levels of the same vibrational band. Furthermo
k0 is the unperturbed cavity loss parameter,k1 determines
the modulation strength,g is a coupling constant,g1 ,g2 are
population relaxation rates,p0 is the pump parameter,z ac-
counts for an effective number of rotational levels, a
b,b0 ,r ,a are, respectively, the bandwidth, the bias volta
the amplification, and the saturation factors of the feedb
loop. With the following parametersk0528.5714, k1
54.5556, g1510.0643, g251.0643, g50.05, p050.016,
z510, b50.4286, a532.8767, r 5160, andb050.1032,
the model reproduces the regime of homoclinic chaos
served experimentally@21#. The previous study@21# did not
take into account the intrinsic noise present in the exp
mental system. We have measured the noise in the feed
variable (x6) in the case when the laser is off. This enab
us to estimate an intrinsic noise intensityD'7 mV, which is
about 0.14% of the feedback signalx6 in the experimental
system. In the model,D50.0005 is equivalent to the intrin
sic noise intensity inx6.

Without noise and driving signal, the orbit approacheS
via a few quickly decaying oscillations~stable manifold! and
leavesSvia a series of slowly growing ones~unstable mani-
fold!. It may have different number of oscillations befo
generating a large spike, depending on the distance fromSat
the previous reinjection. As a result, the model display
broad range of time scales, and there are many peaks in
distribution P(T) of the interspike intervalT @Fig. 2~a!#.
With a small noise (D50.0005), the orbits can no longe
perform some oscillations very close toS, resulting in a clear
change in the time scales:P(T) is now characterized by a
dominant peak followed by a few exponentially decayi
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ones@Fig. 2~c!#. This distribution ofT is typical for smallD
in the rangeD50.000 05–0.002. The experimental syste
with only intrinsic noise~equivalent toD50.0005 in the
model! has a very similar distributionP(T) ~not shown!. At
larger intensityD50.01, noise eliminates most of the osc
lations aroundS; the fine structure of the peaks is smear
out andP(T) becomes a unimodal peak with a lower heig
@Fig. 2~e!#. Note that the average valueT0(D) of T decreases
with increasingD. The measure of the coherence@22# of the
spike trains byR5T0(D)/sT , wheresT is the standard de
viation of P(T), shows a maximal value atD'0.013. Thus
the spiking sequence displays a coherence resonance fe
similar to excitable systems@22#.

As a result of noise-induced changes in time scales,
model displays quite different response to a weak signalA
50.01) with a frequencyf e5 f 0(D)51/T0(D), i.e., equal to
the average spiking rate of the unforced model. AtD50,
P(T) of the forced model still has many peaks@Fig. 2~b!#,
while at D50.0005,T is sharply distributed around the sig
nal periodTe5T0(D) @Fig. 2~d!#. However, at larger inten-
sity D50.01, P(T) becomes lower and broader again@Fig.
2~f!#. To examine phase synchronization due to the driv
signal, we compute the phase differenceu(t)5f(t)
22p f et. Here the phasef(t) of the laser spike sequenc
is simply defined as @2# f(t)52p@k1(t2tk)/(tk11
2tk)#,(tk,t<tk11), wheretk is the spiking time of the
kth spike. As seen in Fig. 3, atD50, the phase of the lase
model is not locked by the external forcing. On the contra
with a small noiseD50.0005, phase slips occur very rare
and phase locking becomes almost perfect when noise
erates a characteristic time scale in the system. At stron
intensity D50.01, noise becomes dominant over the sig

FIG. 2. Probability density of interspike intervals of noise-fr
@D50, ~a!,~b!# and noisy@D50.0005, ~c!,~d!; D50.01, ~e!,~f!#
laser model. Upper panel, without external forcing:A50; lower
panel, with forcingA50.01. The signal periodTe in ~b!, ~d!, and~f!
corresponds to the average interspike intervalT0(D) ~vertical dot-
ted lines! of the unforced model in~a!, ~c!, and~e!, respectively.

FIG. 3. Phase difference between the laser model and the d
ing signal~as in Fig. 2! at various noise intensities.
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around the saddleS, and it induces many randomlike pha
slips. The behavior is similar for driving frequencies close
f 0(D).

We have investigated the synchronization region~1:1 re-
sponse! of the laser model in the parameter space of
driving amplitudeA and the relative initial frequency differ
enceDv5@ f e2 f 0(D)#/ f 0(D), where the average frequenc
f 0(D) of the unforced laser model is an increasing funct
of D. The actual relative frequency difference in the prese
of the signal is calculated asDV5( f 2 f e)/ f 0(D), where f
51/̂ T& t is the average spiking frequency of the forced la
model. The synchronization behavior of the noise-free mo
is quite complicated and featureless@Fig. 4~a!#: at weak am-
plitudes~aboutA,0.012), there does not exist a tongueli
region similar to the Arnold tongue in phase-coherent os
lators; for a fixedA, DV is not a monotonous function ofDv
and it vanishes only at some specific signal frequencies@also
see Fig. 5~a!, D50]; at stronger driving amplitudes~about
A.0.012), the system becomes periodic at a large freque
range. The addition of a small noise,D50.0005, drastically
changes the response: a tonguelike region@Fig. 4~b!#, where
effective frequency locking (uDVu<0.003) occurs, can be
observed similar to that in usual noisy phase-coherent o
lators. The synchronization region shrinks at a stronger n
intensityD50.005@Fig. 3~c!#.

The very complicated and unusual response to a w
driving signal in the noise-free model has not been obser
in the experimental system due to the intrinsic noise wh
intensity is equivalent toD50.0005 in the model. As ha
been reported recently@23#, the experimental system withou
an additional external noise displays similar tonguelike s
chronization region as in Fig. 4~b!. The experimental obser

FIG. 4. Synchronization region of the laser model at vario
noise intensities. A dot is plotted whenuDVu<0.003.~a! D50, ~b!
D50.0005, and~c! D50.005.

FIG. 5. Noise-enhanced PS: a comparison between model
experimental systems.~a! Model, A50.01. ~b! Experiment: signal
amplitude 10 mV (A50.01); the noise intensity denotes total noi
measured in the feedback loop, andD57 mV corresponds to the
intrinsic noise. In both cases, the noise intensities are also indic
in percent of the feedback signalx6.
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vations of the noise-induced changes in the time scales
response to an external driving signal are consistent with
model. A comparison of numerical and experimental resu
for a similar noise range is shown in Fig. 5. Very important
synchronization in the experimental system has been
hanced further by adding some external noise, especially
Dv.0; an external noise too strong degrades synchron
tion again, as seen in Fig. 5~b!.

Thus, noise can play a constructive role to enhance
quency locking and PS of homoclinic chaos to a weak dr
ing signal. Without noise, the model system exhibits a v
complicated response to the signal due to a broad distribu
of time scales; whereas a small noise eliminates some of
small oscillations close toS and generates a dominant tim
scale, and the system displays a locking with respect to
signal frequency, as conventional resonance in pha
coherent oscillators.

Furthermore, the PS behavior is optimized at a cert
noise intensity, similar to SR@8–11#. We study how this SR
behavior is affected by noise intensity. In bistable or exc
able systems, SR occurs when the noise-controlled ave
time scale is close to that of the driving signal@9–12#. Here,
in the unforced homoclinic chaotic lasers the average in
spike intervalT0(D) decreases with increasing noise inte
sity. SR can be observed for a fixed signal periodTe . We
have employed the following measure of coherence as i
cator of stochastic resonance@13#

R5
Te

sT
E

(12a)Te

(11a)Te
P~T!dT, ~8!

where 0,a,0.25 is a free parameter. As pointed out in R
@13#, this indicator takes into account both the fraction
spikes with an interval roughly equal to the forcing periodTe
and the jitter between spikes. SR of the 1:1 response to
driving signal with a fixed period has been demonstra
both in the model and in the experimental system by the r
^T& t /Te and R ~Fig. 6!. For Te,T0(0), there exists a syn-
chronization region wherêT& t /Te'1. The noise intensity
optimizing the coherenceR is smaller than that inducing co
incidence ofT0(D) andTe @dashed lines in Fig. 6~a!,~c!#. It

s

nd

ed

FIG. 6. Stochastic resonance for a fixed driving period. L
panel: model,A50.01,Te50.3 ms. Right panel, experiments: forc
ing amplitude 10 mV (A50.01) and periodTe51.12 ms; here the
noise intensityD is of the added external noise. Upper panel: noi
induced coincidence of average time scales~dashed line,A50) and
synchronization region. Lower panel: coherence of the laser out
a50.1 in Eq.~8!.
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turns out that maximal coherence occurs when the domin
peak of P(T) is located atTe . For Te.T0(0), noise may
induce ann:1 response where the laser producesn spikes per
signal period. For example, atTe50.6, a 2:1 response can b
observed in the laser model which generates two spikes
alternately small and large intervalsT1 and T2 satisfying
T11T25Te , as seen in Fig. 7. Then:1 response also exhib
its a locking and resonance with the change of both the
nal frequency and noise intensity. This different nois
induced synchronization has not been reported in usual
systems. Conversely, in usual SR systems, at largeTe numer-
ous randomlike firings per period cause an exponential ba
ground ofP(T), and at smallTe a 1:n response may occur

FIG. 7. Noise-enhanced 2:1 response of the laser modeA
50.01,Te50.6. ~a! Laser outputx1 at D50, ~b! external signal,
and ~c! x1 at D50.004.
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which means an aperiodic firing sequence with one spike
n driving periods on average@8,12,13#; in both cases, the
sequences are irregular.

Note that the response of the homoclinic chaos to no
i.e., more regular spike intervals with a smaller mean val
is similar to excitable systems where resonances with res
to both signal frequency and noise intensity can also be
served@12,24#. However, a noise-induced phase locking w
respect to the signal frequency, especially for then:1 ratios,
to our knowledge, has not been demonstrated in excita
systems for rather weak signal.

In summary, we have shown that in homoclinic chao
systems which are characterized by a strong fluctuation
the interspike interval, the time scales become more reg
in the presence of a small noise. Consequently, the PS o
system to a weak driving signal can be enhanced sign
cantly, and the noisy system exhibits locking and resona
with the change of both the signal frequency and noise
tensity. Both conventional and stochastic resonances h
been demonstrated experimentally. A wide class of sens
neurons demonstrates homoclinic chaotic spiking activ
@17,25#. Coexistence of conventional and stochastic re
nances may be significant for information processing in b
logical systems, since noise enhances both sensitivitie
amplitude and frequency of the external signals.

This work was supported by Grant No. SFB55
Humboldt-Foundation, and EC Network HPRN under Gra
No. CT 2000 00158.
tt.

D

@1# Y. Kuramoto, Chemical Oscillations, Waves and Turbulen
~Springer, Berlin, 1984!.

@2# E.F. Stone, Phys. Lett. A163, 367~1992!; A.S. Pikovskyet al.,
Physica D104, 219 ~1997!.

@3# M.G. Rosenblum, A.S. Pikovsky, and J. Kurths, Phys. R
Lett. 76, 1804~1996!.

@4# D.Y. Tang et al., Chaos8, 697 ~1998!; D.J. Deshazeret al.,
Phys. Rev. Lett.87, 044101~2001!.

@5# B. Blasius, A. Huppert, and L. Stone, Nature~London! 399,
354 ~1999!.

@6# R.L. Stratonovich,Topics in the Theory of Random Nois
~Gordon and Breach, New York, 1967!, Vol 2.

@7# P. Tasset al., Phys. Rev. Lett.81, 3291 ~1998!; L.Q. Zhu, A.
Raghu, and Y.C. Lai,ibid. 86, 4017~2001!.

@8# R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A14, L453
~1981!; L. Gammaitoniet al., Rev. Mod. Phys.70, 223~1998!.

@9# L. Gammaitoniet al., Phys. Rev. Lett.74, 1052~1995!.
@10# B. Shulgin, A. Neiman, and V. Anishchenko, Phys. Rev. Le

75, 4157~1995!.
@11# A. Neimanet al., Phys. Rev. E58, 7118~1998!.
@12# A. Longtin and D. Chialvo, Phys. Rev. Lett.81, 4012~1998!.
@13# F. Marinoet al., Phys. Rev. Lett.88, 040601~2002!.
.

.

@14# C.S. Zhou and J. Kurths, Phys. Rev. Lett.88, 230602~2002!.
@15# C.S. Zhouet al., Phys. Rev. Lett.89, 014101 ~2002!; C.S.

Zhou and J. Kurths, Phys. Rev. E65, 040101R~2002!.
@16# L.P. Shilnikov, Math. USSR Sb.10, 91 ~1970!.
@17# A.L. Hodgkin and A.F. Huxley, J. Physiol.117, 500 ~1952!;

E.M. Izhikevich, Int. J. Bifurcation Chaos Appl. Sci. Eng.10,
1171 ~2000!.
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