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The effect of noise on phase synchronization in small sets and larger populations of weakly coupled
chaotic oscillators is explored. Both independent and correlated noise are found to enhance phase
synchronization of two coupled chaotic oscillators below the synchronization threshold; this is in
contrast to the behavior of two coupled periodic oscillators. This constructive effect of noise results
from the interplay between noise and the locking features of unstable periodic orbits. We show that
in a population of nonidentical chaotic oscillators, correlated noise enhances synchronization in the
weak coupling region. The interplay between noise and weak coupling induces a collective motion
in which the coherence is maximal at an optimal noise intensity. Both the noise-enhanced phase
synchronization and the coherence resonance numerically observed in coupled chast& Ro
oscillators are verified experimentally with an array of chaotic electrochemical oscillato200®
American Institute of Physics[DOI: 10.1063/1.1513081

The subject of this paper is the interplay of two phenom- is of significance in biology’ and engineering(e.g.,

ena of importance in nonlinear dynamics: synchroniza- communication§, high power lasers, and microwave
tion and noise-induced effects. In classical studies of sets system&’). In coupled periodic oscillators, the systems ad-
of periodic oscillators with a frequency distribution, the  just their time scales to achieve locking of frequencies and
addition of weak global coupling can lead to a transition  phases due to weak interactibh!! The notation of synchro-

to synchronization in which many of the elements obtain  nization has been extended to include a variety of phenom-
the same frequency and the phases become locked; the ena in the context of interacting chaotic systems, such as
addition of noise has a degrading effect on the synchro- complete synchronizatiofCS) (Refs. 12—1#and phase syn-
nous motion. A phase variable may also be defined in chronization(P9.**'®PS is a weak form of synchronization
chaotic systems. Weak coupling can then produce phase in which there is a bounded phase difference of two signals.
synchronization in which the phases are locked although PS occurs at a much weaker coupling strength than CS; in
the amplitudes are uncorrelated. Noise can degrade the the latter both the phases and amplitudes are identical.
phase synchronization as it does in the periodic systems: Noise and heterogeneity are unavoidable in experimental
noise induces phase slips of locked oscillators. On the and natural systems. Therefore, it is of interest to explore the
other hand, noise can play a constructive role in enhanc- effects of noise on the robustness of the synchronization pro-
ing the synchronization of chaotic systems. Two un- cess. Noise influences synchronization in different ways. In
coupled identical chaotic systems can achieve complete CS of coupled chaotic systems noise may amplify the syn-
synchronization under the influence of a common noise. chronization error to generate intermittent loss of
Noise can also produce amplification of a weak signal synchronizatiort/=2° On the other hand, identical systems
(stochastic resonanckeor induce coherent oscillations in  which are not coupled but subjected to a common noise may
excitable and damped oscillatory systems(coherence achieve CS at a large noise intensity; this has been demon-
resonance. In this paper we explore the effects of noise strated both in periodf¢-?2and chaotit®~2’ systems. Internal

on phase synchronization with numerical simulations on  noise induced bursts in non-coupled sensories may achieve
small sets and larger populations of coupled nonidentical stochastic PS under a common external néise PS of
chaotic Rssler oscillators. Both noise induced phase syn- coupled phase locked perioéficand chaotit® oscillators
chronization and coherent mean field oscillations are seen noise can induce phase slips, i.e., it has a degrading effect.

in large populations. These effects are confirmed in labo- The constructive role of noise has been studied exten-
ratory experiments with arrays of chaotic electrochemi-  sively in the context of stochastic resonafs®) (Refs. 31—
cal oscillators. 34) and coherence resonan@@R).>>~3"With SR, noise can

optimize the response of a nonlinear system to a weak exter-
nal signal. SR has also been studied from the viewpoint of
I. INTRODUCTION noise-enhanced phase synchronization of the switching
The study of coupled oscillators is of importance in events to the external signal, because noise controls the av-
many disciplines of science? Synchronization of oscillators erage switching rate of the system and the response is opti-
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mal when it is close to that of the external sigifai®=*°By ~ Both e(t) and #;(t) are assumed to be Gaussian noise, i.e.,
CR, noise alone can produce coherent behavior in dynamicge(t)e(t—7))=46(7) and(7;(t) ;(t—7))=;5(7). A glo-
systems. CR has been studied mainly in excitablebal random forcing is relevant in neuroscietic® and in
system®~" and recently, in systems with coexisting ecological systems, where different populations may be ex-
attractors'™*2 In distributed (subexcitable media spatially posed to a similar environmental fluctuations. This descrip-
independent noise can induce traveling w&vemd global tion in Eq. (1) allows independent variations of the correla-
oscillations** Noise induced coherence can be significantlytion R betweené; and &; and the noise intensit.

enhanced when the elements are coupled, known as array

enhanced CR>~#’

In this paper we study effects of noise on synchroniza- .
tion and coherence of coupled chaotic oscillators with diﬁer-A' Two coupled oscillators
ent natural frequencies. Although noise induces phase slips For comparison with chaotic oscillators, we start with
and degrades coherence in the phase locked region, it mdyo coupled noisy periodic oscillators: the van der Pol oscil-
significantly enhance PS outside this region. Numericalators,
simulations are carried out with two coupled nonidentical 2 1. P . .

Rassler oscillators and PS of the chaotic systems is analyzed X127 (=X )Xy o 07 X1 5= €(Xp 1~ X1 9) +D&1p. (2)
through phase locking of unstable periodic orl§its?O9. A The natural frequencies ake,=0.99 andw,=0.97. Intro-
brief account of results on the two-oscillator system has beeducing phasep and amplitudeA as

published in a recent letté&t.In the present contribution, we 2 o o
expand the discussion of phase synchronization of two cha- A =X T¥i. tanéi=yi/xi, )

otic oscillators and we extend the studies to populations ofvith y;=%;, PS of the noise-free oscillators is described by
chaotic oscillators with both S|mulgt|ons and experiments, dynamics of the phase differendgh=Aw— e sinAg.

The effects of local and global noise on PS and coherenbefect phase-locking is achieved for €,5= Aw, where the
collective behavior of populations of oscillators are St“d'edsystem is stable at a local minimum of a tilted periodic po-
The numerical results are confirmed in laboratory experizgntial U(A¢)=—AdAw—ecosAé. Noise may kick the
ments using a chemical system; the electrodissolution of aBystem over the energy barrier and induce phase slips. Typi-
array of nickel electrodes in sulfuric acid solution is studied.| ps pehavior of coupled noisy van der Pol oscillators is

under chaotic conditions. The same system has been useddf,un in Figs. (a) and Ib) by the average frequency dif-
explore phase synchronizatiéhdynamical clustering, and ferenceAQ:|<A¢>|. It is seen that both common and inde-

; ; i i 5052
identical synch_romzatloﬁo. Here we apply the system as a pendent noise degrade the phase synchronization. This has
testbed to verify the effects of noise on weakly coupled . " g -
. : ; been previously shown fdR=0."" As seen in Figs. (&) and
populations of chaotic oscillators. . o L
1(b), noise smears out the transition into the synchronization
region. The degrading effect of the noise is slightly less for
larger noise correlatiolR but the difference between inde-
lIl. NUMERICAL RESULTS pendent noisdR=0 and common nois®=1 is small and
Numerical simulations have been carried out with©Only becomes detectable for rather strong noise. In Ref. 23 it
coupled chaotic Rssler oscillators which display coherent iS Shown that common noise generates an effective coupling

phase dynamics. We consider systems of two coupled and diftween the phases; therefore it degrades PS slightly less
ensemble of a large number of globally coupled oscillatordhan uncorrelated noise.

with different natural frequencies. We demonstrate quite different PS behavior in two
To take correlation of noise into account, we considercoupled noisy chaotic Risler oscillators,

that the added noise &(t) to theith oscillator is compo_sed X1 2= — 01 Y10~ Z1 o+ €(Xp1— X1 ), (4)

of a common parg(t) and an independent pawf(t), satis- .

fying Y1,2= w1,X1 5+ 0.15/; o+ D A1), (5
&(1)=VRe(t) +V1-Ra(1). (D) 215=0.4+ (X1~ 8.521 5, (6)
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FIG. 2. Noise enhanced PS in two weakly coupled
T :'q Rossler chaotic oscillatorseE= 0.0205). (a) Phase dif-
infrivivinic ference versus time for different noise intendly (b)
MW&:MZOS - { Average duration of phase synchronization epochs ver-
=—a £=0.0200 sus noise intensitp for different coupling strengtle.
L +e=00195 4 The standard deviation is shown with error bars éor
-150 e e LU =0.0205.
25000 50000 00 01 02 03 04
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with ©;=0.99 andw,=0.97. For the chaotic Rsler oscil- closely for long time. Noise may also speed up or delay the
lators, it is convenient to introduce amplitude and phaseeturn of the orbits, thus generates both small and large re-
variables?® Ai2=xi2+yi2 and tang,=y,/x. Chaotic fluctua- turn times not presented in the noise-free systems.
tion of A, introduces a noiselike perturbation to the dynamics  Noise-enhanced PS in the two coupledsBler oscilla-
of phase differencé\¢, and it has been shown that PS in tors can be explained through a consideration of the effect of
chaotic oscillators resembles that in noisy periodic dig8. noise on the UPOs. As in the case of periodically driven
In fact, atD=0, the transition point,s=0.0208 is some- chaotic oscillators®~*°PS of two coupled chaotic oscillators
what higher than that of the periodic oscillators, as seen irtan be viewed as phase-locking of a number of pairs of
Fig. 1. UPOs. Those pairs with larger difference in time scales gen-

In contrast to periodic oscillators, adding some noise tcerally achieve locking at a larger coupling strength. All pairs
the chaotic oscillators caanhancePS significantly. FoD of UPOs are mutually locked in the phase synchronization
=0.1[Fig. 1(c)], AQ is considerably smaller than that for region. When the coupling strength is decreased pgst
D=0 indicating enhanced PS belagy; abovee,sthereisa some pairs of UPOs become unlocked while others remain
small nonvanishing\() as a result of noise-induced intermit- locked. In a pair of unlocked periodic orbits, the character-
tent phase slip¥’ For D=0.3[Fig. 1(d)], AQ is larger than istic time for developing a phase slips has a dependegce
that for D=0 aroundeys, however, it is clearly smaller in ~|e—epsj‘l/2 as at typical type-l intermittency close to a
weaker coupling strength, indicating enhanced PS. Similar tsaddle-node bifurcatioty °° Phase slips of a chaotic oscil-
periodic oscillators, PS has only a rather weak dependendation now become possible, but only when the system
on the noise correlatioR. The difference betweeR=0 and  comes to follow one of the unlocked pairs for at least a time
R=1 is effectively invisible forD=0.1 and is small foD of 75 long enough for a phase slip to occur. As illustrated in
=0.3. Fig. 3, the connection between phase slips and UPOs can be

Figure 2a) shows noise-enhanced PS for 0.0205. At  seen clearly fore close toe,s where only a few pairs of
D=0, there are many epochs of phase synchronization b&JPOs become unlocked and it takes a rather long tignt®
tween phase slips, and typically the epochs last for about 30€omplete a phase slip. Periodic orbits are manifested by al-
oscillation cycles. Adding a proper amount of noise to themost vanishingAX,=|X,.—X,| which is the difference
two oscillators(e.g.,D=0.1, R=1) prolongates remarkably between thex variable at everyk returns to the Poincare
the duration of the synchronization epochs: the two oscillasectiony=0, x<0, with a return timeT,. It is seen that
tors maintain PS for a period of about 3000 oscillationphase slips occur between a period-4 UPO in oscillator 1 and
cycles. However, for stronger noide.g., D=0.3, R=1) a period-2 UPO in oscillator 2 which are followed closely by
phase slips again occur more frequently. To better charactethe systems for a fairly long time~<30 cycles. While most
ize noise-enhanced PS, we focus on the mean durétiaf  orbits are locked with return times fluctuating around a com-
the PS epochs. We find that) increases with the noise in- mon value T=6.24), these UPOs have clearly much
tensityD, reaches a maximal value and decreases for largesmaller and larger return tim¢Bigs. 3e), 3(f)], thus remain
D for all coupling strengths analyz¢#ig. 2(b)]. The results unlocked by the coupling. With a noise 8=0.1, such a
are almost the same for independent ndtse0, but at large long time staying close to UPOs is rarely observed, and
D, () takes slightly smaller values. meanwhile most of the phase slips are elimindted. 2). At

PS is essentially a phenomenon of adjusting time scalestronger noise, e.g.D=0.4 phase slips develop quickly
by weak interaction. To understand the constructive effect ofvhen the oscillators come to some orbits with quite large
noise on PS, we examine how noise changes time scales differences in the return times, which cannot follow UPOs
chaotic oscillations. We calculate the return tifidoetween  closely.
two successive returns of the chaotic trajectory to a Poincare Thus we can explain the role of noise in PS of two
section. There are many repetitive configurationsTadis a  coupled chaotic Resler oscillators by two effectsi) it pre-
result of the fact that there are many unstable periodic orbitsents the system from staying close to the unlocked UPOs
(UPO9 embedded in the chaotic attractrand chaotic tra-  for long enough times to allow a phase slip to occur éind
jectories can stay close to a certain UPO for some timeit generates fluctuations in the return times and may induce
When adding a small amount of noise to the system, e.gphase slips of locked orbits as it does in coupled periodic
D=0.1, the repetition has been reduced considerably, besrbits. The degree of PS is enhanced witigris dominant
cause noise prevents the system from following the UPOsver (ii) at weak noise level, while it is degraded again when
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(i) becomes dominant at large noise. There thus exists an We characterize the synchronization behavior of the en-
optimal noise intensity yielding the maximal enhancement asemble by various quantities. The degree of PS can be char-
a result of the competition between these two factors. At acterized by the fluctuation amplitude of the mean fi¢Iét
smaller coupling strengtls, more orbits become unlocked, We calculate the varianag=(X?),—(X)?Z of X. Transition
and phase slips may develop already during a shortertine to PS can also be measured by frequency disasgewhich
when the oscillators approach some unlocked orbits. Wheis defined by the standard deviation of the average frequency
noise prevents a phase slip, the trajectories may approagh, = (¢,) of the oscillators in the ensemble. In the absence of
other unlocked orbits quickly; therefore, the enhancement ofoise, all the oscillators are locked to a common frequency
PS becomes less pronoundédg. 2(b)]. For e well below  and o, becomes zero at large enough couplindiowever,
€ps, Phase slips occur frequently and are not always clearlg smallero, may not always indicate a stronger degree of
associated to UPOs. Beyorgk, only (i) is active, and per-  synchronization, especially in the clustering region where
fect PS is interrupted by noise-induced phase S”pS. Increas,-Q may not be small but the degree of Synchronization is
ing correlationR of noise can slightly enhance PS further.  actually high. In the globally coupled ensemble, a transition
to PS can also be quantitatively described by the mean order
parameter (r (t)) wherer (t)=|=;P;(t)|/Z;|P;(1)].
P;(t)=(x;,y;) are the state vectors in phase space at
time t. The order parametefr(t)) is zero for an infinite
number of uncoupled oscillators and is one for strong cou-

B. N globally coupled Ro “ssler oscillators

In the following we consider an ensemble dfglobally
coupled nonidentical Resler oscillators;

Xi=—wyi—z+e(X—X)), (7)  pling that yields complete or identical synchronization.

) These quantitiesdoy, oq, (r(t))), however, are not
Vi=wX;+0.15/,+D§;, 8 always suitable measures of the transition to PS, e.g., in lo-
2.=0.4+7,(x;—8.5), (9) cally coupled oscillators where phase locking of the oscilla-

\ . _ tors and vanishingr, do not lead to clustering of the states
whereX=1/NZ,%; is the mean field. The parameteass

are randomly and uniformly distributed [rwg— 8, wq+ 8]

with wg=1.0 ands=0.025. 1.06 (o |

For a small ensemble, e.dN=5, we can see clearly a 105 |
cascade of clustering of frequencies with the increase of cou A .
pling strength until global PS is achieved where all the os- 104 | 1
cillators are locked to a common frequerjéyg. 4@)]. Close & 1.03 ‘ '
to the transition point of global synchronization, we can also 102 ‘ ! }
observe a connection between phase slips and unlocke |
UPOQOs[Figs. 4b) and 4c)]. Although independent noise pre- 1.01 M’\ l\‘\ﬂ%a\ W\ 1
vents the system from staying close to unlocked UPOs, it 4. IRV L \&

: — 0
005 010 2000 8000 4000 5000

€ time

00 L
also induces phase slips among clustered oscillators. As . 0.00

whole, we have not observed appreciable enhancement of P>
of the ensemble by independent noise. A global noise canRIG. 4. (a) Transition to PS in the ensemble dfi=5 globally coupled
enhance PS, as will be seen also in a large ensemble belogiaotic Resler oscillators. A cascade of clustering of frequencies can be
In a Iarger ensemble the transition to PS is much mor&een clearly(b) Phasg slips between osml_lator .1 and 5 are generated by
. . . . period-1 UPOs of oscillator 1, as seenb), in (c); e=0.08 is close to the
comphcateq. The behavpr of a setMf=1000 noisy chaotic threshold of global phase synchronization where the oscillators 2, 3, 4, and
oscillators is shown in Fig. 5. 5 have formed a cluster.
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50 F o Do | eceseeoend in the distribution show that there are preferred phase differ-
40 _ = D=0.7, _' ences between the oscillators. The sharpness of the distribu-
.30 | = D=07, . tion characterizes the degree of phase synchronization, and is
© 20 . quantified by the entropg= —=}p(k)In p(k).>® In the en-
10 —H.“.m““‘ 7] semble, we randomly choose an oscillator as a reference os-
0 — cillator and compute the entrop§(i) of the ith oscillator
0.02 ] with respect to the reference one. By averaging over the
1 ensemble and normalizing with the entropy of the uniform
g 0.01 (b) ] distribution S,,=In(M), we get the PS index,
; p=(Sm—(S))/Sn. (10
0.00 —————l— thetl p shows no sensitive dependence on the reference oscillator.

The PS degree is higher for larger Note that in coupled
chaotic oscillators, the phase difference fluctuates around a
constant value even in the perfect phase locking region. As a
result,p<1.

As seen in Fig. 5, in the noise-free ensemble, all the
measures vary slowly untie=0.043 where they start to
change quickly and finally global PS is achieved et
~0.093. In the crossover region 0.048<<0.093, many o0s-
cillators are locked into a single cluster with a common fre-
quency while the others still have distributed frequencies. A
macroscopic oscillation emerges and its amplitude increases
with € as more oscillators become phase locked. One can see
00 0.05 0.10 0.15 that the dependence df(t)) on the coupling strength is

coupling strength & closely related to that of% .
FIG. 5. Transition to PS in the ensemble Kf=1000 globally coupled PS is degraded when independent noRe-Q) is added
chaotic Resler oscillators without or with noise. to the ensemble as seen by smalir and p. (This is in
contrast to the behavior of the two oscillator systerirsthe
crossover regiong is smaller than that of the noise-free
in phase space due to the existence of waves, so thavioth ensemble; however, this does not lead to increasedpPS.
and(r(t)) are almost vanishing. We thus therefore for com-becomes smaller than that Bt=0. In contrast, a global
parison purposes also measure the degree of PS based moise (R=1) can enhance PS in the weak coupling regime:
temporal phase locking between the pairs of oscillators in ther, is considerably smaller, andy and p are clearly larger
ensemble, which can be applied to systems with locathan those in the absence of noise.
coupling® The distribution of the cyclic relative phase dif- Typical behavior of the ensemble in the weak coupling
ference A ¢ mod 277) between an oscillator and a referenceregion is shown in Fig. 6 for different intensities of global
oscillator is constructed with a histogram Mf bins?® Peaks noise R=1) at e=0.045. Without noise, there is no clear
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FIG. 6. Synchronization behavior of an ensemble of
N=1000 globally coupled =0.045) chaotic Rssler
oscillators with a global noise of various intensities.
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synchronization behavior over the whole ensemble; however, 30 \ ‘ \
clustering of some of the oscillators can be observed from (a) P AR,
the space—time plot of the states, as well as in the distribu- o 20 i L aaaessatanetas 41
tion of the average frequendy; of the oscillators. The mean © 0L et R T
field X displays oscillations with rather small amplitudes due caatt aeriileseneentttt
to the clustering of some oscillators. Adding a global noise 0béosnannlon? ‘
with D=0.7 makes the whole ensemble achieve pronounced b 1.0 ‘
synchronization and generate a coherent collective oscilla- (b) s raeeeaen
tion, although perfect phase locking of those clustered oscil- A os AR aaaaanans paniaed
lators is spoiled. The frequency of more oscillators shifts to v Laasrtt * T e eescesnseld
distribute around the clustering frequency. At a stronger NI L 18e°
noise intensityD = 1.5, the phase dynamics of individual os- 0.0 peee ‘
cillators becomes quite incoherent and synchronization is 0.6 ;
. . . ® =0

lost frequently. The mean field still has large amplitudes (c) ., . 0,02
but its temporal behavior is rather noisy. The distribution of 04  Tai. 420045 |
frequency also becomes broad and moves to smaller values < o0 i et :j*=°~°6 |
because the trajectories of oscillators in the presence of large - Lasatasssaaaiaiag, 969
noise can approach quite closely to the unstable fixed point 0 enssedbs sayasIPRRITRREZIRNNNG
around &,y)=(0,0) where the oscillations slow down. 10° & ‘ : .

Now we have seen clearly that global noise plays a sig-  (d) 1g° £+=+*svsru, .., . X B
nificant role in phase synchronization of weakly coupled 102 Laastt it LITI fitge 5
chaotic oscillators. The ensemble establishes the most coher- = 44 _ TR L S  F E . fj
ent collective oscillation at a certain intermediate noise in- 10° " Lee*t" ** E
tensity. To characterize the coherence of the ensemble, we 10" «° ! ! 3

0.0 0.5 1.0 1.5

focus on the time series of the mean fid Its amplitude

and temporal coherence reflect the degree of synchronization
a”O_' temporal coherence m_the lattice, respectlvely. A ComblI':IG. 7. Coherence resonance features of the ensemble in the weak coupling
nation measure of the spatio-temporal coherence bas&d onregime.(a) The varianceo of the mean fieldX; (b) order parametetr);

can be defined 5 (c) phase synchronization indgx and (d) the coherence factgs of X.

noise intensity D

Q
B=H-—%, (12) . o .

AQ A more detailed examination of the peak heightand
the quality factorQ),/AQ in Eq. (11) for e=0.045 shows
that at weak noise intensitidd increases quickly and the

quality factor varies slightly, as seen in Fig. 8. Thus weak

where(}, is the frequency of the main peak in the spectrum
of X, H is the peak height mainly depending on the ampli-
tude of X, and AQ is the half-width of the peak reflecting
temporal randomness .

In Fig. 7 computed values g8 obtained from simula-

6 . . ;
tions are shown along with the variance of the mean field L .* ceree . I (a) 1
and the phase synchronization indgxas a function of the . * 1
intensity D of global noise for various coupling strengths in T3 * Seee,, . -
the weak coupling region. We find that when the oscillators . *teed
are not coupled €=0), the global noise alone leads to a 0 e | |
slight enhancement of PS as seen by increasip@nd(r);

; . ) 100 . | ,

however, the degree of PS is rather Igwincreases slightly besoeee, (b)
but remains small. Fairly strong noise can induce a visible *. ]
macroscopic mean field, but the cohereyiickas only small % 50 ‘., . ]
values. Phase synchronization between uncoupled oscillators a‘* I ‘eeire .
induced by a common noise has also been investigfated, [ Preetaey
where it is shown that the systematic contribution from the 0 ' ' : '
common noise is equivalent to an effective coupling between 500 - , | | ]
the phases. If a weak coupling is introdudedg., e=0.045 r 0, (C) ]
which is belowe,g the interplay between the global noise PV e . h
and weak coupling is able to achieve some PS. The combi- Foa .,
nation of rather weak coupling and noise generates a coher- 3. *eece,, ]
ent collective motion in the ensemble. The system clearly oo'0 ) 0'5 : 1'0 ik '1"5

displays a resonant behavior; with an increase of noise inten-
sity the coherencg of the collective oscillation increases,
re_aChe_S a maximum, and decreases at large noise intensigyg. . Dependence on noise intensitytof ,/AQ, and the coherence
displaying the typical feature of the CRR;374142 factor B [see Eq(11)]; e=0.045.

noise intensity D
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global noise enhances synchronization clearly, while the os{——————
cillations of individual oscillators remain coherent. At large | SEeTe e L
noise intensities, the trajectories can come rather closetothy——————————
fixed point aroundX,y)=(0,0), and the oscillations become |~ = eference Electrode
more incoherent. Bothl andQ,/AQ) decrease, resultingin |t/
a quick decrease gb. The coherence resonance feature inf————————
the weak coupling regime thus is a consequence of a comf—————————————
petition between noise-enhanced PS and noise-induced incq———————
herence in the oscillations. The optimal noise intensity of the|-
maximal coherence moves to smaller values with increasing-
e until the region of pronounced phase synchronization|-
where noise acts to degrade PS and coheréaap, ate
=0.06). Unlike the case of two coupled chaotic oscillators,
enhanced PS in populations is mainly due to interplay be-
tween actual global coupling and the effective coupling re-
sulting from the common component of noise. For fixed R
noise intensityD, the degree of PS and coherence decrease: coll
with the noise correlatioiR.

i S

Potentiostat

Il. EXPERIMENTAL RESULTS FIG. 9. Schematic of the experimental setup.

We have also carried out experiments on noise enhanced
PS with two and sixty-four weakly coupled chaotic electro-Nnal resistance furnishes no additional global coupling,efor
chemical oscillators. The reaction used is the electrodissolu=1 maximum external global coupling is achieved.
tion of nickel in sulfuric acid solution. The oscillations in
this and many other electrochemical syst&mesult from  B. Results
the interaction of ghidden negative differential resistance 1. pynamics of a single element

of the faradaic process with potential drops in the electrolyte We start with a description of the dynamics of the reac-

and/or in external resistances and witformally slowey re- . . ) . .
W y y tion of a single reaction site, i.e., on a single electrode; de-

action and transport steps. By changing parameters such fils can be found in a previous publicatidhA chaotic time

applied potential, external resistance, electrolyte concentras—eries of a single oscillator is shown in Fig.(a0 the chaos
tion, and cell geometry steady, periodic, and chaotic behavior :

. . Is reached vi riod- ling bifurcation n h
can be found. The reaction takes place on individual reactin > reached via a period-doubling bifurcation sequence as the

sites(electrodesand the current, proportional to the rates of%pplled potential is changed. The chaotic attraqig. .

. . . 0(b), reconstructed from the current by the use of the time
dissolution, can be independently measured. Such systerr(ljs . o . ) . . . .
constitute a good platform for the study of coupled chaotic elayd |s_I0w dimensional; the information dlmensmn of the
oscillators attractor isD;=2.3+0.1.%° The power spectrurfFig. 10a),

' insef is broad with a dominant peak &t=1.270 Hz. The
A. Experimental setup instantaneous phase and amplitude are obtained with the Hil-
rPert transfornt® the dc component of the current is elimi-
nated[ I (t)=i(t) —imead [phase portrait, Fig. X0)]. To in-
crease the robustness of the phase analysis the origin is
gnoved to the square shown in Fig.(&D The phase ¢(t))
and the amplitudeA(t)) are obtained from the angle and the
?ength of the phase point, respectively, in Fig(dt timet.
(Lﬂ Fig. 10d) the phase is shown as a function of time; some
small deviations from the straight line arises because of the

chaotic nature of the signal. The frequency is calculated from

A schematic of the experimental apparatus is shown i
Fig. 9. A standard electrochemical cell consisting of nickel
working electrode array64 1 mm diam electrodes in>88
geometry with 2 mm spacing; the two electrode experiment
are done with only two elements in the array with a distanc
of 18 mm), a Hg/HgSO,/cc.K,SO, reference electrode,
and a platinum mesh counter electrode is used. The potenti
of all electrodes is held at the same valMe=Vy+D¢,
whereV, is an offset potential) is the noise intensity ané
is a Gaussian noise with zero mean and a standard deviati(%ne slope,
of 1. Thus in the experiments the applied noise is common; 1 /do
R=1 in Eq. (1). The currents of electrodes are measured Q:§<E> (12)
independently at a sampling rate of 100 Hz. The experiments )
are carried out in 4.5 M sulfuric acid electrolyte at a tem- "€ frequency of a single element has been found t@be
perature of 11 °C. =1.275 Hz, which is close to the dominant peak in the

The electrodes are connected to the potentiostat througPPWer spectrum.
individual parallel resistorsR;,q, and through one collective )
series resistorsR..; (see Fig. 9. The collective resistor 2- The dynamics of two elements
couples the electrodes globally; the coupling strength is char-  In the experiments described here the inherent coupling
acterized by the fraction of collective resistance, (through the electrolyteis very weak. In a two electrode
= Reoil/ Riot» WhereR.=R.o+ Ring/N. For e=0, the exter- setup without added coupling a small frequency mismatch
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5 o 15 FIG. 10. Chaotic dynamics of a single elemeNf,
tis =1.310 V, R=908(). (a) Time series of current and
c the power spectruniinsed. (b) Reconstructed attractor
0.2 using time delay coordinategc) Phase portrait ob-
’ tained with Hilbert transform(d) Phase versus time.
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(about Aw=14 mHz) can be obtained because of surfacdial of the electrodes we get a qualitatively different synchro-
heterogeneities. With added weak coupling phase synchronﬂiza'[ion behavior. With this small noise, the deterministic
zation occurs at about,s=0.08; the frequencies of the os- nature of the electrodissolution process is still dominant; the
cillators become equal and the distribution of the phase diffeconstructed attractofsot shown resemble those without
ferences has a large maximum arouadsb=0. We first noise. However, the phase slips are eliminated and the phase
analyze the dynamics just belosys and then show the con- difference fluctuates around zgfeig. 12d)]. The oscillators
structive effect of common noise on phase synchronizéfion. do not have as long time of residence close to UFSgs.

At €=0.06, i.e., just belove,, the observed frequency 12(€) and 12f)] as in the noise-free case. The absence of
mismatch AQ =5 mHz) is smaller than that seen without phase slips during the 200 oscillations of the experiment is
coupling, however, the coupling is not strong enough forconsistent with the model calculations which predict lengths
phase synchronization. During the time of the experimen®f the phase synchronized epochs on the order of a thousand
one phase slip was observed as seen in Fig)1The analy-  oscillations.
sis of the time series of the two oscillators shows that the ~ EXxperiments have also been carried out with weaker
phase slip occurs when both oscillators approach the neigi#dded couplinge=0.02 and 0. No phase synchronization
borhood of an unlocked period-3 UPO. In Fig(ijitheAX; ~ Wwas obtained with noise up to an intensity at which the os-
values are shown as a function of time for the two oscillatorscillators exhibited(noisy) periodic dynamics. With smaller
The coincidence of the approach of unlocked UPOs and thelectrode spacing and thus greater inherent coughngim
phase slip confirms the numerical predictions about the dytather than 18 mm as abgvéhe added noise is able to
namics close to but below,.

We investigate noise enhanced PS at a somewhat lower
coupling strengthe=0.04. [In general the enhancement is
seen at values o& not close toe; this was seen in the
simulations, e.g., Fig. (#).] During the time of the experi-
ment (about 200 oscillationsthere are two phase slips be- &
tween the oscillatorfsee Fig. 12a)] corresponding to a fre-
guency differenceAQ)=12 mHz. As can be seen in Figs. -6 ) : ; ;
12(a)-12(c) the first phase slip can be attributed to the un- g AT (b) 1
locked period-4 UPOs. The synchronization timgduring £ : i : :
the phase slip is much shorter than that é6r0.06. We see %
that the phase slips occur more frequently and develop mor¢  0.00
quickly than at the stronger coupling strengths. Moreover,
the second phase slip cannot be clearly linked to UPOs.
These observations are also in agreement with the numericBIG: 11. Two coupled ¢=0.06) chaotic elements just belowps=0.08.
calculations obtained furher from,, By adding a small s %01 %0 Ve Phse e bevien e et el
amount of zero-mean Gaussian noftee standard deviation c;rent maxima £X5=|X,~ X, _s|, whereX, is thenth maximun of the
is 3X 10”4 V measured at 200 Hzo the (common poten-  two oscillators(solid: oscillator 1; dashed: oscillato &s a function of time.

005 [}

50 100 150
t/s
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10 L L
15 | (d)
< 10
s o i
5 L
0 L — FIG. 12. Two coupled §=0.04) chaotic oscillators
010 ’(b) T T T 0.10 (e) L Wit]hout[left panel,(a)—(c)] and with[right panel,(d)—
< : r ] (f)] small amounts of common, zero-mean Gaussian
g [ } [ '{ noise (standard deviation of 810°* V measured at
sa' 0.05 |- ' } }} | 0.05 r ' ‘ h 200 H2. Top row: phase difference between the oscil-
< r AJ'( j } ” | . ' ‘ / ) J lators versus time. Middle and bottom rows: the differ-
0.00 be—eat U R 0,00 R A oL e ence between the next return values of the maxima of
0.10 BN L the oscillatorsAX,=|X,,— X,,_4|, (middle: oscillator 1,
é B (c) | 0.10 ) b bottom: oscillator 2 versus time.R,=500Q, V,
[ =1.350 V.
S N T e
< r / i )
0.00 ‘Ww ‘M \‘h“ ‘\'W U ﬂ. ! WN 0.00 IRy | M” I ‘\ . N
0 50 100 150 0 50 100 150
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achieve phase synchronization of the oscillators with les§he elements in the array exhibit some variation again, there

added couplinge=0.02. is a distribution of frequencigd=ig. 13d)] and phasefFig.
13(e)]. The variations of the mean field time serige.,
3. Sixty four electrodes mean current,h(t) =1/NZ,i(t)] are small [Fig. 13b)].

Consider now a population of chaotic oscillators. To ex-Thus, there is only very small coherence; the coupling is not
plore the effect of noise on the dynamics we have carried ou#trong enough for phase synchronization.
experiments without {=0) and with very weak § Next we show the effect of added noise. If the noise
=0.014) global coupling and changed the noise interBity  intensity is small D=4 mV, Fig. 14 there is only a slight
The detailed results are shown only fe=0.014. In Fig. change in the dynamics of the individual elements, however,
13(a), the typical time series of one element in the array isthe collective behavior changes dramatically. The space—
shown with the power spectrum. They are similar to those ofime plot shows more ordered behavior and the frequency of
a single elemeritsee Fig. 1(®)]. The space—time plot of the 50 oscillators become equal, and many oscillators have simi-
elements does not show any obvious sign of synchronizatiodar phase. There is a larger variation of the mean field and the

a b
Ay 2 Ay 2
0.8 §0 0.8 éﬂ
-1 -1
<06 0 jMHz 5 <06 0 jMHz 5
£ £
o~ <
04 O MM APAAAAAA
0.2 02 FIG. 13. Dynamics of sixty four electrodes at
10 15 20 25 30 70 75 80 85 90 =0.014 without noiseD=0mV. (a) Representative
t/s t/s time series of a current of individual elemdittset: the
c J/mA d corresponding power spectriinib) Mean field time se-
0.7 64 ries and its power spectrufimse). (c) Space—time plot
of individual currents.(d) Frequency distribution(e)
0.6 Histogram of phases &t=50 s.
Z 32
0.5 I
0 13 132 134 136
oA ' o /Hz '
e
0.3 1
R
~ 02 a5
0 ._-_-_.J_._-_-_L
Electrode # 0 (¢ mod 2m)/n 2
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FIG. 14. Dynamics with optimal noise intensiti)
=4mV, €=0.014. (a) Representative time series of a
current of individual elementinset: the corresponding
power spectrum (b) Mean field time series and its
power spectrum(insed. (c) Space—time plot of indi-
vidual currents.(d) Frequency distribution(e) Histo-
gram of phases @t=50 s.

power spectrum of the mean field exhibits a strong peak abreaks down, the frequency distribution becomes larger, and
the dominant frequency. Thus, this small noise intensity inthe phases become more scattered.

duced coherent behavior. With increasing the noise intensity We have calculated five measures to characterize the col-
(D=10 mV, Fig. 15 the coherent motion of the mean field lective behavior of the oscillators: the variance of the mean

a b
~y 2 M\Mﬁ M ~ 2
0.8 'g) 038 §°
-1 -1
<06 0 JMz 5 | <06 ¥ e S
£ £
P =
04 oA et
0.2
70 75 80 85 90
t/s
d
64
= 32
¢ 1.3 132 134 136
’ "o Mz ’
c
1
A 0.5
0 __—_-J_l_.___——_
Electrode # 0 (6 mod 2m)/m 2

FIG. 15. Dynamics with excessive noide=10 mV,
€=0.014. (a) Representative time series of a current of
individual element(inset: the corresponding power
spectrum. (b) Mean field time series and its power
spectrum(inse). (c) Space—time plot of individual cur-
rents. (d) Frequency distribution.(e) Histogram of
phases at=50 s.
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field var (h), the order paramete(r), the temporal phase Weakly coupled chaotic oscillators. In a system of two
synchronization index, the coherence factoB, and the Wweakly coupled chaotic oscillators, phase slips are associated
standard deviation of the frequencies of the elementswith unlocked UPOs close to the threshold of synchroniza-
o, /wmean These are shown as a function of the noise intention and noise enhances PS because it prevents the system
sity in Fig. 16 fore=0 and 0.014. It is seen that the coher- from staying close to the unlocked UPOs. The interplay be-
ence resonance is strongereat 0.014 than at 0. The vari- tween noise and UPOs plays a constructive role in PS. This
ance of mean field and the order parameter increase in ia in contrast to the behavior close to the threshold of CS in
monotone way fore=0, but shows a maximum foe  coupled identical chaotic systems. In the latter case there are
=0.014. The resonance behavior can also be observed inmany transversely unstable UPQRefs. 18,20 and the syn-
and g—there is small variation foe=0 and a resonance chronization error can be amplified from the noise level to
curve for e=0.014. However, the frequency distribution generate bursts of desynchronization by these UPOs even in
[Fig. 16c)] does not clearly show the trend above; althoughthe presence of extremely weak independent noise compo-
for e=0.014 there is a minimum at optimal noise intensity, nents ».1"1°
for =0 there are larger variations. Enhanced phase synchronization has also been seen in a
The experiments on sets of globally coupled chaotic ospopulation of globally coupled oscillators with common
cillators confirm the noise induced effects predicted by nungise. At intermediate noise strengths coherent macroscopic
merical calculations. At an optimal common noise intensitypscillations of the mean field are observed; excessive noise
ipcre_ased measure of phase synchronization and co_herent @teaks up the coherent behavior. The system displays coher-
cillations are observed; the effects are stronger with wealgnce resonance as a result of the competition between noise-

inherent coupling. enhanced PS and noise-induced incoherence of phase dy-
namics.
The mechanism of CR of coupled oscillatory elements is
We have demonstrated both in numerical simulationdifferent from that in excitable systeis®’ or in switching
and in laboratory experiments that noise can play a construbetween coexisting attractots*? The noise-enhanced phase
tive role in the enhancement of phase synchronization ofynchronization described in this paper is caused by a differ-

IV. DISCUSSION
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ent mechanism from that occurring in excitable media subZA. B. Neiman and D. F. Russel, Phys. Rev. L&8, 138103(2002.

jected to spatially uncorrelated noi&e®:5¢

Our finding is of significance for understanding the co-,,
operative effects of noise and weak coupling in differents
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