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An increase of the coupling strength in the system of two couplessRposcillators leads from a
nonsynchronized state through phase synchronization to the regime of lag synchronization. The role
of unstable periodic orbits in these transitions is investigated. Changes in the structure of attracting
sets are discussed. We demonstrate that the onset of phase synchronization is related to
phase-lockings on the surfaces of unstable tori, whereas transition from phase to lag synchronization

is preceded by a decrease in the number of unstable periodic orbiB00® American Institute of

Physics. [DOI: 10.1063/1.1518430

An interaction between chaotic oscillators leads to adjust-
ment of their characteristics. Depending on the strength
of the coupling, interacting subsystems can share differ-
ent dynamical features. Under relatively weak coupling,
only the time scales of chaotic motions get adjusted; this
is known as “phase synchronization.” A stronger cou-

pling can enforce a convergence between phase portraits:
a subsystem imitates the sequence of states of the other

one, either immediately(“complete synchronization”), or
after a time shift (“lag synchronization” ). With the help
of unstable periodic orbits embedded into the chaotic at-
tractor, we investigate transition from nonsynchronized
behavior to phase synchronizaton and further to lag syn-
chronization. We demonstrate that the onset of phase
synchronization requires locking on the surfaces of un-
stable tori, and relate intermittent phase jumps to local
violations of this requirement. Further, we argue that on-
set of lag synchronization is preceded by the disappear-
ance of many unstable periodic orbits whose geometry is
incompatible with the lag configuration. We identify or-
bits which are responsible for intermittent deviations
from the state of lag synchronization.

I. INTRODUCTION

ideas of synchronization to the realm of chaotic dynarics.
Since chaotic oscillations are more complicated than periodic
ones, such expansion is neither obvious nor straightforward.
The instantaneous state of a periodic process is adequately
characterized by the current value of its phase; on the con-
trary, complete information about the state of a chaotic vari-
able includes, in general, more characteristics. Different de-
grees of adjustment between these characteristics correspond
to different kinds of synchrony: from complete synchroniza-
tion where the difference between two chaotic signals virtu-
ally disappear$;® through the “generalized” synchroniza-
tion where the instantaneous states of subsystems are
interrelated by a functional dependeriéep phase synchro-
nization. In the latter case coupled chaotic oscillators remain
largely uncorrelated, but the mean time scales of their oscil-
lations coincide or become commensurate.

Phase synchronization appears to be the weakest form of
synchrony between chaotic systems; it does not require the
coupling to be strong. In certain situations, the increase of
coupling leads through the further, more ordered stage of
synchronized motion: the lag synchronizatidnn this state,
which precedes the complete synchronization, phase portraits
of subsystems ar@early the same, and the pldg;(t) for a
variable X; from the first subsystem can be obtained from
the plot of its counterparX, from the second subsystem by

Synchronization is a universal phenomenon that ofter® mere time shiftX; (t) = X(t+ 7).

occurs when two or more nonlinear oscillators are coupled.

Its discovery dates back to Huygehsho observed and ex-

Different aspects of phase and lag synchronization have
been investigated mostly from the point of view of global

plained the effect of mutual adjustment between two penducharacteristic§Lyapunov exponents, distributions of phase
lum clocks hanging from a common support. For coupledumps, statistics of violations of lag configuration, gtdt
periodic oscillators the effect of entrainment of frequencies idas been found that onsets of both these kinds of synchroni-

well understood and widely used in applicatiGnghe last

zation are preceded by intermittent behavior; close to the

years have witnessed the successful expansion of the baghreshold parameter values, the coupled subsystems remain
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synchronized most of the time, but these epochs of synchro-
nization are interrupted by time intervals during which syn-
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chronization is missing. Descriptions of pretransitional inter-

mittencies have been given in Refs. 11-13 for the case o

phase synchronization and, respectively, in Refs. 10,14,1* >

for lag synchronization. Below, we intend to have a closer

look at the local changes which occur in the phase space o

mathematical models. We concentrate on invariant sets an

their restructurings which simplify dynamics by gradually X

transforming the nonsynchronized chaotic attractor into the . . . . . .

coherent attractor of the phase-synchronized state and, ful / 15t \

ther, into a set which corresponds to the state of lag synchro 0.015 t (b) ] © /

nization. \
To follow the evolution of the attracting set under the 0.01 | 1 5t/ \

increase of the coupling, we trace the fate of unstable peri- - : ' ' ' :

odic orbits(UPO9 embedded into the attractor. A universal 15 -0 -5 5 10 15

and powerful tool for the exploration of chaotic dynamits, X *n

unstable periodic orbits proved to be especially efficient ir‘FIG. 1. Resler oscillator ato=w,=0.99. (a) Projection of the phase por-

the context of synchronizatiorf. Interpretation in terms of trait; solid line: location of the Poincargiane; (b) trace of the attractor on

UPOs helped to understand the onset of phase synchronizte Poincarelane;(c) one-dimensional return mapping.

tion in the case of a chaotic system perturbed by an external

periodic forcet'? je., in the case of unidirectionally

coupled periodic and chaotic oscillators. Below, we extenthese oscillations look like rotations around the origin; this

this approach to a system of two bidirectionally coupled nonjiows us to introduce phase geometrically, as a lift of the
identical chaotic oscillators. This situation is more compli- angular coordinate in this plane,

cated, since now each of the participating subsystems pos-
sesses an infinite set of UPOs. In the following section we
briefly characterize the properties of unstable periodic orbits

which exist in both subsystems in the absence of coupling. In 1he mean frequency of the chaotic oscillations is then
Sec. Il we describe changes in the structure of the attractQfiefined as the mean angular veloci@‘1'2)=(d¢1 Ldt).

of the coupled syste_m which occur in.the course of the iNpne difference in the values of the parameiegs makes the
crease of the coupling strength. We interpret the onset of,ean frequencies of uncoupled oscillators slightly different:
phase synchronization in terms of phase locking on unstablg; . _ they areQ=1.01926... and)(®=0.97081..

tori, and argue that transition to lag synchronization shouldggpectively. As a result, the phases of the oscillators drift

be preceded by extinction of most of the unstable periodicyart- in order to enforce phase synchronization, the coupling

orbits. In Secs. IV and V, respectively, these qualitative argpqid be able to suppress this drift by adjusting the rotation
guments are supported by numerical results which illustrate,iaq
the role of UPOs in the intermittent bursts close to thresholds

of both phase and lag synchronization.
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In order to understand the role of unstable phase orbits in
the phase space of the coupled system, it is helpful to start
with the classification of such orbits in the absence of cou-
pling. In its partial subspace, each of the three-dimensional
Il. PERIODIC ORBITS IN THE ABSENCE OF flows induces the return mapping on an appropriate Poincare
COUPLING surface(it is convenient to use for this purpose the trajecto-

) ries which in theith system intersect “from above” the sur-
As an example, we consider the system of two coupledace y.=0). This two-dimensional mapping is, of course,

Rassler oscillators under the same set of parameter values f@4yertible; however, due to the strong transversal contraction,
which lag synchronization was reported for the first tifie, the trace of the attractor on the Poincaeface is graphi-

X1 0= — @1 Y1 9~ 21 2+ (X0 1— X1 2), cally almost indistinguishable from a one-dimensional curve
o o ’ ' ' [Fig. 1(b)]. Parameterizing this curvee.g., by the value of
Y1,0= @1 X1 2~ @Y1 2, (1)  the coordinatex), we arrive at the noninvertible one-

dimensional map shown in Fig(d. Since the latter turns
out to be unimodal, its dynamics is completely determined
Below, only the coupling strength is treated as an ac- by the symbolic “itinerary:"*® the sequenceRLL... in
tive parameter; other parameters have fixed valaes which thejth symbol isR if the jth iteration of the extre-
=0.165,f=0.2,¢c=10, w; ,= wp*A (0p=0.97A=0.02), mum lies to the right from this extremum, ahdotherwise.
respectively. Besides the original pap&scenarios of onset According to numerical estimates, far= w,=0.99 the itin-
of lag synchronization in Eqs$1l) under these parameter val- erary isSRLLLLRLLL.., and foro=w,=0.95 it becomes
ues were discussed in subsequent publicafibirs!® RLLLLLRLL... The starting segments of the two symbolic
In each of the subsystems, taken alone, this combinatiostrings coincide, the first discrepancy occurs in the sixth
of parameters ensures chaotic oscillatigfsy. 1(a)]. Pro-  symbol; therefore, the number of unstable periodic orbits
jected onto thexy plane of the corresponding subsystem,which makel turns around origin, is the same in both sub-

2y = f+23 (X1, C).
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1.04 F T ' T T ™ scenario. To unify notation, we refer to this fixed point as the
“length-0 orhit.”

. . lll. ATTRACTOR OF THE COUPLED SYSTEM: ROLE
' * OF UNSTABLE TORI IN SYNCHRONIZATION
TRANSITIONS

Formally, ate =0 (absence of couplinghe attractor in
§ the joint phase space of two systems contains a countable set
_ of degenerate invariant 2-tori; direct products of each peri-
odic orbit from the first subsystem with each periodic orbit
% from the second one. Again, for the purpose of comparison
096 - x 1 of phase evolution in both subsystems, it is convenient to
. 4 p s 10 redefine the usual notion of the rotation number on such tori;
symbolic length let the mean times of one revolution around the torus for the
projections onto two subsystems be, respectivglyand 7, .
FIG. 2. _I_:requencies_ ofunsFabIe periodic orbits embedded into the attractorfhen the rotation number is introduced as the ratio
of the Ressler equations. Circlegy=0.99; crossesp=0.95. =r,/7,. If the equalityp=1 holds, within a sufficiently
long time projections of trajectories make an equal number
of rotations in the subspaces of subsystems: the torus is
systems il does not exceed 5. The number of orbits with the“phase locked.” Generalization of this interpretation for
lengthl =6 is larger in the second subsystem. Comparison obther rational values op is straightforward. Obviously, at
the initial 25 symbols with the symbolic itinerary of the lo- £=0, the rotation number i&;/w,, wherew; and w, are
gistic mappingx;,1=Ax(1—x;) shows that flows withw  the individual frequenciegper one rotation, as discussed
=w,;=0.99 andw=w,=0.95 correspond to maps with  above of the two periodic orbits which form the torus.
=3.9904857... andh=3.9977031.., respectively. As soon as the infinitesimal coupling between the sub-
For our purpose we need to modify some conventionabystems is introduced, the degeneracy of tori is removed. The
characteristics. When we consider the flow near a long peridPOs shown in Fig. 2 produce 184.96=32144 tori whose
odic orbit, the duration of each single revoluti@arn) in the  rotation numbers (in the above sengelie between
phase space appears to be of little importance: what matte®) /0% =0.92737... and22 /0 =0.97904... . In gen-
for phase dynamics, is the mean duration of the turn, i.e., theral, each torus persists in a certain range,cnd its rota-
overall period of the orbit divided by the number of turns in tion numberp is the devil’s staircase-like function ef in-
this orbit. Below we refer to the number of turns as to thetervals of values ot correspond to rational values pf
(symbolig length of the orbit? Since the time between con- Since the periodic orbits in subsystems are unstable, the
secutive returns onto the Poincasiane depends on the po- tori are also unstable; for small values gfa trajectory on
sition on this plane, the periods of all periodic solutions arethe toroidal surface has at least two positive Lyapunov expo-
in general, different. It is convenient to characterize periodiments.
orbits in terms of “individual frequencies(); ; these are not The boundaries of “locking intervals” ofe for each
the usual inverse values of the corresponding overall periodsorus are marked by tangent bifurcations of periodic orbits.
but mean frequencies per one turn in the phase space: for tiich a bifurcation creates/destroys on the surface of the
orbit with period T which consists of turns, Q;=2«l/T. torus two closed trajectories, one stabhdth respect to dis-
Figure 2 presents the distributions of individual frequenciegurbances within the surfagethe other one unstable. Since
for periodic solutions for both subsystems in the absence ahe motion along the torus is parameterized by the phases of
coupling. Since commonly the orbits with relatively short subsystems, below we refer to these orbits as, respectively,
periods are sufficient for an adequate description of théphase stable” and “phase unstable:?

X
XXX XX
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R XK RRKREIOWN X

0B AR X

x
X

whole picturé?® we restrict ourselves to orbits with lengith The following argument demonstrates that on each torus
=<10; this yields 164 UPOs at=0.99 and 196 UPOs at  the phase-stable and phase-unstable orbits are not necessarily
=0.95. unique. Let the torus originate from the direct product of two

As shown in Fig. 2, two frequency bands are separategeriodic orbits: an UPO from the first subsystem with the
by a gap. Forw=0.99 the individual frequencies belong to length| and an UPO from the second subsystem with the
the interval betwee){}) =1.035519.. (orbit with length 3 lengthm. Then the main locking1:1 in our notatioh as-
and Q) =1.014042.. (one of the orbits with length)5For  sumes that the phase curve is closed aitéurns,n being

0=0.95 the values are distributed betweeﬁ(z)X the least common multiple dfandm. Let us take the pro-
=0.9927899...(the same orbit with length )land Q?,:,Z?n jection of the periodic orbit onto the subspace of the first
=0.9790416.. (one of the orbits with length)6 subsystem, and select some particular point ofe.ig., the

Besides periodic orbits, the Rsler equations possess a highest of then main maxima for one of the variablesBy
saddle-focus fixed point located close to the origin. Althoughtranslating forwards and backwards the partial projection
this point does not belong to the chaotic attractor, it is notonto the other subsystem, we getonfigurations in which
irrelevant; under coupling, it interacts with periodic orbits of one of then maxima of the second variable is close to the
the complementary subsystem and contributes to the genersglected point. Figure 3 shows such “appropriate for the
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' ' of the orbits. This induces labeling among the tori of the
coupled system: the torus; originates from the interaction
of the orbitU(" from the first subsystem and the orhif?
from the second one.
, , As discussed above, for the values ©fbeyond the
0 5 10 threshold of phase synchronization all the tori inside the at-
t tractor should have the same rotation number 1, hence they
should possess periodic orbits. In fact, at finite values of
neither smoothness nor even the very existence of a two-
dimensional toroidal surface can be guaranteed, but this cir-
cumstance appears to be of little importance; in the synchro-
. nized state the decisive role is played not by the entire torus
—— : or its global remnants, but by relatively small segments near
0 5 10 closed phase-stable and phase-unstable orbits. The torus may
break up, but periodic orbits persist. Therefore, in our dis-
FIG. 3. Configurations favorable for the locking on the torus originated cussion below the symbdl;; denotes not so much the actual
from the direct product of the UPOs of length @) “in-phase;” (b) "out-  tyo-dimensional torus, but rather the setpbssibly several
of-phase.” Solid curvesy (t); dashed curvesi(t). periodic orbits corresponding to the locking 1:1 on this torus.
If UM andU{? have symbolic lengths andm, then their
locking” configurations for the torus generated by two orbits Symbolic labelsAM=RL... and A@=RL... consist, re-
of length 2; in this casd,=m=n=2. In general, this implies spectively, ofl and m letters. Letn be the least common
that we should expect to observe on the surface of a singlgultiple of | andm. Symbolic labelsB(*) andB? for pro-
torus up ton coexisting pairs of phase stable and phase unjections of T;; , respectively, onto the first and second sub-
stable periodic orbitsNaturally, the argument is not rigor- System consist afl symbols:B™) is n/| times repeated®),
ous; in principle, not all ofh possible configurations should andB® is n/m times repeated\®). It can be shown, that,
necessarily be exhausted; on the other hand, the existence wilessA®)=A®), the labelsB(*) andB® can neither coin-
additional lockings cannot be totally excluded as WeN. cide, nor be obtained from each other by cyclic permutation
locking interval in the parameter space ranges from the birtlof symbols. The symbolic label determines the topology of
of the first couple of curves with the prescribed locking ratio,the periodic orbit; in particular, it prescribes the order in
to the death of the last such couple. Uniqueness of the rotawhich the smaller and larger turns alternate. Therefore, if
tion number forbids the coexistence on the same torus a$ymbolic labels for projections are different, there is no way
periodic orbits with different locking ratios. to bring one of these projections very close to the other by

In the course of time a chaotic trajectory repeatedly vistime shift; for all values of such shift the averagéaith
its the neighborhoods of unstable tori; in each of them itrespect to timg difference between these projections will
spends some time winding along the surface, until being reneither vanish nor become very small. According to this ar-
pelled to some other unstable torus. During the tiimgpent  gument, onlyT;; for which two generating UPOs have the
in the vicinity of the torus with rotation number the incre- same length and topology can persist in the attractor of lag-
ment of the phase difference,— ¢, between the sub- synchronized state. The presence of the “nondiagofglts
systems iSA¢p~2nw(T/my—T/1)=2mw(1—p)/7. Hence, incompatible with lag synchronization. Therefore all such
unlessp=1, the passage close to a torus results in a phas®ri and associated closed orbits should, in the course of
drift. On the other hand, if the torus is locked in the ratio 1:1,increase of, either disappear, or leave the attractor.

a passage of a chaotic trajectory along one of the phase- Further,T;; with identical symbolic labels may contain
stable UPOs on the toroidal surface leads neither to a phaseveral phase-stable periodic orbits. However, only the pas-
gain nor to a phase loss. Therefore we can expect that in theage close to the “in-phase” orbit would allow for lag syn-
phase synchronized state all of the tori embedded into thehronization with smallcompared to the mean duration of
chaotic attractor are locked and have the same frequenane turr) value of lag. For “out-of-phase” configurations,
ratio. From this point of view, in the course of transition to which are obtained from the “in-phase” by cyclic permuta-
phase synchronization each of the tori presert=a0 should tion of maxima, the appropriate time shift would be close to
either reach the main locking state or disappear, from theeveral(length of the shift durations of the turn. Apparently,
attractor or from the whole phase space. Note that, even if anly the “in-phase” orbits contribute to the motion in the
single torus within the attractor remains not locked, the erdag-synchronized state. For example, the UPO in Fi@ 3
godic nature of chaotic dynamics will ensure that from timecan participate in the lag-synchronized dynamics, whereas
to time the trajectory will approach this torus close enough tahe UPO in Fig. 8) is obviously unsuitable for this purpose
make the system exhibit a phase jump. and, hence, should not be contained in the attractor.

Now we proceed to lag synchronization. Let us start with  Thus we expect that the onset of lag synchronization
ordering the UPOs in uncoupled subsystems into two seshould be preceded by extinction of most of unstable peri-
quencegUM} k=1,2;i=1,2,.... The ordering can be done odic orbits which populate the attractor at the onset of phase
by means of criteria which take into account the symbolicsynchronization. In fact, a set of two oscillators in the state
length and topologyexpressed, e.g., by symbolic itinerary of lag synchronization behaves almost the same way as one

X1,2

X2
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FIG. 4. Phase slips near the synchronization threskialdnean timg(T;) between slips versus coupling strength(b) scaling of frequency of phase slips
neare ;.

of them taken separately; in this sense, the complexity of lagegment, phase slips are fast; as seen in Fig. 4, whegm

synchronization is relatively low. proachese, such duration grows from hundreds of turns
If the above interpretation is correct, intermittency of through tens of thousands to millions and further on. The

respective characteristics, observed below the threshold valalue 0.0416 is the highest value oft which we were able

ues of the coupling strength both for ph&send lag o observe a phase junipnly one event within~1° turns
synchronizatiol{"*°should be caused by the passage of chapf the chaotic orbit

ofic trajectories close to the last obstructing invariant sets. In | the case of chaotic oscillators driven by external pe-

the first case these sets are the last nonlocked tori, and in thg jic force. the transition to phase synchronization mani-
second case they are either the last remaining UPOs frofgs jtself in the phase space as a kind of repeller—attractor

“nondiagonal” T; or the “out-of-phase” UPOs. collision;**1??2the local bifurcation(tangent bifurcation in

For completeness, it should be mentioned that there arg, . 1 o phase-stable and a phase-unstable UPOs ark isorn
certain UPOs which do not emerge from tori, but, instead

. . . . Simultaneously the global event: disappearance of the last
exist already at zero coupling. At=0 they are just direct y g PP

products of steady statixed poin) on one side, and an channel for phase diffusion. Seldom violations of synchroni-

UPO on the other side. Obviously, such orbits are also in_zanon b_elow the threshold were named "eyelet intermit-
since escapes from the phase-locked state were due

compatible with lag synchronization, and should disappear ifency. " S

the course of increase of to the very accurate hitting of a vicinity of the last nonlocked
In the following sections we test these qualitative con-Orus: o _ _

jectures about the mechanisms of onset of phase and lag The Same mechanism is at work in our case just below

synchronization against the numerical data obtained by inteZps: Of infinitely many tori T;; embedded into the chaotic

gration of Eq.(1); UPOs have been computed by combina-2attractor, almost all are locked in the ratio 1:1. Only the

tion of the Schmelcher—Diakonsand Newton—Raphson Passages near several remaining nonloctadlocked in

methods. other ratio$ tori can contribute to gains/losses of phase dif-
ference. Since the tori are unstable, mostly the chaotic tra-
IV. PHASE SYNCHRONIZATION jectories are kicked out from their neighborhoods before pro-

ducing a noticeable phase difference. Only the trajectories

threshold values = &,5. Fore> g, the difference of phases which come very close to the nonlocked tori, stay long

between two oscillators remains confined within a narrow£"°UgN in their vicinities in order to gain a phase slip. The
interval fort—oo; below this threshold it grows unbound- frequ_encyf of such events depends on the _dlstrlbutlgn of t_he
edly. According to our computations,s~0.0416; (this is mvanapt measure on t_he attractor. Assumlng, for S|mpl|0|ty,
somewhat higher than the value 0.036 reported in Ref. 10that this measure is uniform, the same scaling lawffes in

In fact, already at =0.036 the phases of two oscillators stay Réf- 11 can be obtainedt(s)~exp(-1/Veps—¢). This
synchronized for most of the time; the plot of phase differ-qualitative dependence is well corroborated by our numerical
ence as a function of time reminds a staircase in which longlata[cf. Fig. 4b)].

nearly horizontal segments are interrupted by relatively short ~ Figure 5 presents the “tree” of the periodic orbits of
transitions. Such transitionghase slips are not instanta- length 1 and 2 as a function of the coupling strengtiThe
neous; usually it takes several dozens of turns in the phaseertical “amplitude” coordinate on this plot is fictitious; it
space, in order to increase the phase differencedoyHdw-  plays the role of appropriately rescaled and shifted coordi-
ever, compared to the average duration of the synchronizedgiate valuegif actual values of coordinates were used, most

Phase synchronization in E€) is observed beyond the
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of the branches would overlap, strongly hampering underSince every orbit possesses three maximg,gf on each of
standing of the bifurcation sequentes the 4 emerging tori there can be up to three pairs of UPOs;

Tangent bifurcations are marked with asteriéks and  along with in-phase orbits, there are two out-of-phase con-
period-doublings are denoted by small circl€¥). The no- figurations, with phase lags 27 and ~4, respectively.
tationm—m’ stands for the locking on the torus which is the Now, besides tangent and period-doubling bifurcations, Hopf
direct product of the lengtha and the lengthm’ orbits of the  bifurcations(denoted by f are also identified. In fact, it ap-
first and second oscillators, respectively. Thus, the 2-2 torupears that Hopf bifurcations substitute some expected lock-
undergoes two lockings: at the moment of birth of corre-ings. It should be noted that in this case all tangent bifurca-
sponding UPOs, phase lags between both oscillators, are ré@ens which create UPQOs, occur & 0.04.
spectively,~ /2 and~ 27+ 7/2; ase grows, the values of A remarkable feature here are the isolas in Figb) é&nd
these lags decrease. In accordance with the above classifid(€); each family of out-of-phase lockings is not connected
tion, we call these orbits in- and out-of-phase lockings. Itto families of periodic solutions and exists only in the rela-
may be seen in Fig. 5 that the tangent bifurcations whichively small interval of values oé. As seen in Fig. @), for
create orbits of length 1 and 2, occur in a small intervalsufficiently high values of of all the UPOs of length 3, only
arounde=0.04, i.e., close to the approximate threshold oftwo in-phase orbits survive.
phase synchronization. At slightly higher values>0.05) Several further families of UPOs are not shown on these
we detect period-doubling bifurcations. The presence oplots. Whene is increased, the orbits of the type 0-&is-
period-doublings, as well as of Hopf bifurcations on otherappear one-by-one in the inverse period-doubling cascade,
branches(see below indicates that the smoothness of the and finally the last of them, the UPO 0-1, shrinks and merges
corresponding toroidal surfaces is already lost. with the fixed point of the systeifin our notation, 0-Din the

Recall that label 0 denotes orbits which are born frominverse Hopf bifurcation. The orbits 3a-0 and 3b-0 coalesce
the direct products of the steady solution with periodic solu-in a saddle-node bifurcation, as well as the orbits 0-3a and
tions. The plot shows that, as expected, such orbits disappe@r3b. The tori 3a-1 and 3b-1 annihilate each other in the
relatively early; the branch 2-0 joins the branch 1-0 in thesame way as the72out-of-phase lockings, 3a-3b and 3a-3a
course of the inverse period-doubling bifurcation. Thein Fig. 6b). On the other hand, we failed to locate numeri-
branch 1-0, in its turn, annihilates @& 0.076 736 1 with one cally the 1-3a and 1-3b lockings; it seems that both tori also
of the branches born on the torus 1-1. collide and disappear in a saddle-node bifurcationthey

As a further illustration, in Fig. 6 we show solution get locked but their UPOs survive in a very narrow range of
curves and bifurcation points for orbits of length 3. This cases).
is richer, insofar as each isolated oscillator contains two Calculations for UPOs of other lengths have shown
UPOs of this lengthcf. Fig. 2); they are labeled 3a and 3b. qualitatively similar pictures, with tangent bifurcations

Downloaded 02 Mar 2006 to 141.89.176.72. Redistribution subject to AIP license or copyright, see http:/chaos.aip.org/chaos/copyright.jsp



Chaos, Vol. 13, No. 1, 2003

(a) in—phase
_____ " 3a
3a-3bé _
-------- . 3b
3Bb-3ba.___________.
0 — 9004 008 012 o018 02
€
(b) 2n-out-of-phase
3b-3b ¢~~~ _
._- \\
e A Y
*
1
I
3b-3a
0.034 0.036 0.038 004 0042
€
(c) 4m-out-of-phase
3a-3be~---"TTTTTTT T T T . L
- - ™ 5\
4
4
3a-3a o
0.03 0.04 0.05 0.06 0.07

FIG. 6. Bifurcation diagram for UPOs of length 3. Notation: °, Hopf bifur-
cations; others as in Fig. 5.

arounde~0.04 and short-lived out-of-phase lockings.
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FIG. 7. A snapshot of the system at the beginning of the phase jamp.
=0.0409. Dotted lines, chaotic orbit; solid lines, last six turns of the chaotic
orbit.

assign the jump to the passage near a particular torus. Nev-
ertheless, in certain cases it was possible to identify a con-
figuration which provoked a phase jump. In such situations,
in the beginning of the jump the segments of trajectories of
the first and the second oscillators resemble closed orbits. An
example is shown in Fig. 7, where the passage of the system
close to the 1-3 torus can be recognized. In general, the
further from 1 is the rotation number on the degenerate
torus ate =0, the higher should be the magnitude of cou-
pling required for the locking. In the frequency distribution
from Fig. 2, the highest individual frequency belongs to the
orbit of length 1; the tori, built with the participation of this
UPO, require relatively strong coupling in order to get
locked. In accordance with this, many of the phase jumps
close to the threshold of phase synchronization are preceded
by an approach of the first oscillator to the orbit of length 1.

Notably, the locking on the torus 1-1 occurs at the rela-
tively high valuee =0.042 458 5, which is above the empiri-
cally determined thresholé,=0.0416. This means that ei-
ther this torus does not belong to the attractor, or the close
passages happen so seldom, that one should observe the sys-
tem for times higher than £0mean rotation periodgour
longest rungin order to experience such jumps. We cannot
point out which torus is the last one to be locked. Among the
relatively short orbits, the closest ég locking appears to be
the tangent bifurcation, which creates orbits of length 4 at
£5s=0.0414302.

V. LAG SYNCHRONIZATION

The lag synchronized state in Ed.) was found to exist
above the critical value of the coupling strenggg~0.14°
In this state, the dynamics of both oscillators is very similar
to the one that they exhibit being isolated, but now they are
related by a time lagx,(t) =X (t+ 7).

The transition from phase synchronization to lag syn-
chronization was shown to be preceded by a intermittent
region where lag synchronization was interrupted by
burstsi® Since the Rssler oscillator is approximately iso-

We have also performed numerical experiments in ordechronous, the time lag is practically equivalent to the phase
to verify the conjecture that phase jumps occur when thdag. In Fig. 8a) the value of the mean phase differeqdeb)
trajectory approaches a nonlocked torus. Since we are prebetween both oscillators is shown, as well as the corridor
ently unable to locate numerically in the phase space th&rmed by this differencet its standard deviatiow. For e
two-dimensional unstable tori, sometimes it is difficult to >0.14 this corridor is rather narro@lbeit nonzery whene
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is decreased below 0.14, the deviation rapidly grows. How-  As ¢ is increased, the initially diffuse cloud becomes
ever, the minimal and maximal values for deviations ofmore structured, with more and more points settling onto the
phase difference from its mean value remain nonsmall alstone-dimensional” backbone. Foe~¢;, the mapping is
beyonde =0.14[Fig. 8b)]. This is a typical feature of inter- reminiscent of Fig. (c) (however, there remains a small pro-
mittency. By increasing computing time, we were able toportion of points which lie at a distance from the parabola-
detect larger deviations frodi\¢) at higher values of; the  like curve. Such behavior implies that the system must pos-
plot shows dependencies estimated from chaotic orbits afess a set of UPOs similar to that of an isolatecssRer
different length. oscillator; according to Fig. 2, far> ¢ there should be one
What is the role played by UPOs in this intermittent UPO of length 1, one UPO of length 2, and two UPOs of
transition to lag synchronization? We begin the discussiohength 3. Characteristics of unstable periodic orbits for the
with the observation that growth of the coupling strengthvalue e slightly beyonde s are shown in Fig. 10. According
reduces the volume of phase space occupied by the attractéo. Fig. 10a), correspondence with an isolated oscillator is
Evolution of the system to this state is illustrated by returnnot reached yet; the full system possesses two UPOs of
maps for one coordinate, recovered from the intersection dength 2, as well as four orbits of length 3 and four orbits of

the attractor with the Poincagdaney,=0 (Fig. 9. length 4, whereas the description based on the unimodal
15 I’ T T T i 15 F T T T g T T T T T T T T T T
R (a) _ (b) ot b @ ON
g 10f 1 & 10} : ' 0.4 | LT
< 2 + 1 * + I
53 ] 5t ] +
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x, -y < Sl ] < .
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— — + + T
t 10Ff 1 & 10t} 0.995 | v, 1 01t +
3 3
St 1 5r +
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FIG. 9. Return maps for the variablg on the Poincarglaney,;=0. (a) FIG. 10. Periodic orbits at=0.15. (a) Individual frequencied);; (b)
£=0.03; (b) £=0.08; (c) £=0.12; (d) £=0.14. phase lagf\¢ on turns of periodic orbits.
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mapping prescribes one orbit of length 2, not more than twdecomes unstable in the direction “transversal” to the lag
orbits of length 3 and odd numbél or 3) for UPOs of pattern; in this sense, this is a kind of a bubbling-type tran-
length 4. sition.

In the course of the further increase othe “superflu- The existence of a window of stable length-five oscilla-
ous” orbits eventually disappear: two orbits of length 3 an-tions aboves5)=0.231 03(see Fig. $was not noted in pre-
nihilate by means of the tangent bifurcation at  vious works. The stable periodic orbit is bornegt, in the
=0.154 856; then at=0.156 94 a period-doubling bifurca- saddle-node bifurcation. Below this value the behavior, typi-
tion unifies the orbit of length 4 with the “superfluous” orbit cal for the type-I intermittency is observed, and the distribu-
of length 2, and finally the branch of the latter UR@hich  tion of invariant measure on the attractor is very nonuniform;
will be separately discussed belpyoins the branch of the the periodic orbit leaves a “ghost,” the density of imaging
length-1 orbit ate =0.238 92. points is rather high in five corresponding regions of the

The frequencies of the UPOs are distributed over thé?oincaresection, and the length-1 UPO, which lies aside
narrow range(notably, the state of phase synchronizationfrom these regions, is very seldom visited. Probably, this is
does not necessarily assume that all these frequencies coiifte reason why earlier the intermittent behavior was not ob-
cide). To characterize the time shift between the subsystemserved above =0.145.
we use the value of the phase lag between them at the mo- Another interesting feature of the transition from phase
ment of intersection of the Poincaptaney,=0. Since we 10 lag synchronization was reported in Ref. 14. The criterion
are interested in instantaneous values, each UPO of tHer this transition, proposed in Ref. 10, requires the mini-
lengthl delivers| values ofA¢. As seen in Fig. 1®), most mum of the “similarity function” S*(7)=((x,(t) —xy(t
of the values of the phase lag belong to the narrow range 7))2)/((x(t)){x5(t)))* to vanish or nearly vanish for
between 0.27 and 0.3; however, large deviations from thi§omero; naturally, 7y is the lag duration. In Ref. 14 it was
range also present. Notably, most of these deviations belongpticed that besides the main minimummgt T<1, the simi-
to the “superfluous” orbits. As understood from Fig(bg  larity function has secondary minima at 7o+mT, where
noticeable outbursts of phase difference are very rare; thig?=1,2,..., andT is close to the mean duration of one turn
means that a chaotic trajectory only seldom visits the neighin the phase space. When perfect lag synchronization is lost,
borhoods of these UPOs; accordingly, their contribution int¢he magnitudes of the secondary minimaS3fdecrease. It
dynamics is relatively small. turns out that intermittent violations of lag synchronization

Growth of ¢ beyond the values shown in Fig. 9 leads toconsist of jumps from the main lag configuratiom, (t)
the further condensation of the points of the return map ontg™ X2(t+ 70)) to configurations of the kind;(t) =x,(t+ 7o
the one-dimensional backbone; the proportion of deviations-MT). According to Ref. 14, during the jump stage the
becomes smaller. It appears that in the space phase thef¥Stem seems to approach a periodic orbit.
exists a patterriat the moment we know too little about its ~ This observation confirms the above conjecture that in-
properties in order to label it an “invariant manifoly” f[ermittency which precedes the onset of lag synchronization,
which is responsible for the lag structure and on which dyS caused by passages near the out-of-phase UPOs. Our nu-
namics is adequately represented by a unimodal map. Thigerical data shed more light on the nature of these jumps
pattern is locally attracting almost everywhere, except forand allow us to identify the orbits responsible for the inter-
certain “spots;” a chaotic trajectory which hits such a spot, Mittency. According to Fig. 5, among the orbits belonging to

makes a short departure from the pattern and disturbs the I&Be out-of-phase Iocking Qf two UPOs of length 2, the'least
synchronism. unstable ongthe orbit which has only one unstable direc-

Note that at large values af the UPOs have only one tion) exists for 0.1246.£<0.1426. Temporal evolution of
unstable directior(one characteristic multiplier outside the X1(t) andx(t) for this orbit is shown in Fig. 1®); phase
unit circle); this corresponds to the instability of all periodic Shift is close to the duration of one turn. Figureljishows
points of the unimodal mapping. Whenis gradually de- the y, ~projection of this UPO embedded into the attractor.

creased, the first orbit to become unstable in a second diredVe observe that part of this orbit is “transversal” with re-
tion is the orbit of length 1 £=0.23892). This bifurcation SP&Ct t0 the bulk of the attractor. In the course of the inter-

was reported in Ref. 18, where synchronization transitiondnittent bursts, chaotic trajectories which leave the bulk re-

for different mismatches between, and w, were studied. gion, move along this UPO. During this motion the dynamics
At this critical point, the length-1 periodic orbit embedde

g of both oscillators gets approximately correlated, and the lag
into the “lag attractor” undergoes the period-doubling bifur- between them corresponds to the time shift seen in Fig.
cation. As a result, an orbit of length 2 is created. Tracin

gll(a), T~719+T.
this new orbit down to the small values ofwe observe that
it ends up as a phase-stable orbit on the torus formed by tf\(;

I. DISCUSSION

length-1 and length-2 UPOs of decoupled subsystems; corre-
sponding bifurcations are shown in Fig. 5. The configuration  Our results show that transition to phase synchronization
of this orbit (two approximately equal maxima in the projec- and onset of lag synchronization between two coupled cha-
tion onto one subsystem versus two unequal maxima in thetic oscillators are accompanied by profound changes in the
second subsystenmis obviously incompatible with the re- structure of the attracting set. Unstable periodic orbits serve
quirements of the lag-synchronized state. Thereby, the loss @fs mediators in these processes; when the coupling strength
perfect lag synchronization occurs because one of the orbiis increased, they should, first, appear in the phase space in
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