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Role of unstable periodic orbits in phase and lag synchronization
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An increase of the coupling strength in the system of two coupled Ro¨ssler oscillators leads from a
nonsynchronized state through phase synchronization to the regime of lag synchronization. The role
of unstable periodic orbits in these transitions is investigated. Changes in the structure of attracting
sets are discussed. We demonstrate that the onset of phase synchronization is related to
phase-lockings on the surfaces of unstable tori, whereas transition from phase to lag synchronization
is preceded by a decrease in the number of unstable periodic orbits. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1518430#
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An interaction between chaotic oscillators leads to adjust-
ment of their characteristics. Depending on the strength
of the coupling, interacting subsystems can share differ-
ent dynamical features. Under relatively weak coupling,
only the time scales of chaotic motions get adjusted; this
is known as ‘‘phase synchronization.’’ A stronger cou-
pling can enforce a convergence between phase portraits
a subsystem imitates the sequence of states of the oth
one, either immediately„‘‘complete synchronization’’…, or
after a time shift „‘‘lag synchronization’’ …. With the help
of unstable periodic orbits embedded into the chaotic at-
tractor, we investigate transition from nonsynchronized
behavior to phase synchronizaton and further to lag syn-
chronization. We demonstrate that the onset of phase
synchronization requires locking on the surfaces of un-
stable tori, and relate intermittent phase jumps to local
violations of this requirement. Further, we argue that on-
set of lag synchronization is preceded by the disappear
ance of many unstable periodic orbits whose geometry is
incompatible with the lag configuration. We identify or-
bits which are responsible for intermittent deviations
from the state of lag synchronization.

I. INTRODUCTION

Synchronization is a universal phenomenon that of
occurs when two or more nonlinear oscillators are coup
Its discovery dates back to Huygens,1 who observed and ex
plained the effect of mutual adjustment between two pen
lum clocks hanging from a common support. For coup
periodic oscillators the effect of entrainment of frequencie
well understood and widely used in applications.2 The last
years have witnessed the successful expansion of the b

a!Electronic mail: diego@fmmeteo.usc.es; http://chaos.usc.es
3091054-1500/2003/13(1)/309/10/$20.00
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ideas of synchronization to the realm of chaotic dynamic3

Since chaotic oscillations are more complicated than perio
ones, such expansion is neither obvious nor straightforw
The instantaneous state of a periodic process is adequ
characterized by the current value of its phase; on the c
trary, complete information about the state of a chaotic va
able includes, in general, more characteristics. Different
grees of adjustment between these characteristics corres
to different kinds of synchrony: from complete synchroniz
tion where the difference between two chaotic signals vir
ally disappears,4–6 through the ‘‘generalized’’ synchroniza
tion where the instantaneous states of subsystems
interrelated by a functional dependence,7,8 to phase synchro-
nization. In the latter case coupled chaotic oscillators rem
largely uncorrelated, but the mean time scales of their os
lations coincide or become commensurate.9

Phase synchronization appears to be the weakest for
synchrony between chaotic systems; it does not require
coupling to be strong. In certain situations, the increase
coupling leads through the further, more ordered stage
synchronized motion: the lag synchronization.10 In this state,
which precedes the complete synchronization, phase port
of subsystems are~nearly! the same, and the plotX1(t) for a
variableX1 from the first subsystem can be obtained fro
the plot of its counterpartX2 from the second subsystem b
a mere time shift,X1(t)5X2(t1t).

Different aspects of phase and lag synchronization h
been investigated mostly from the point of view of glob
characteristics~Lyapunov exponents, distributions of pha
jumps, statistics of violations of lag configuration, etc.!. It
has been found that onsets of both these kinds of synchr
zation are preceded by intermittent behavior; close to
threshold parameter values, the coupled subsystems re
synchronized most of the time, but these epochs of sync
nization are interrupted by time intervals during which sy
© 2003 American Institute of Physics
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chronization is missing. Descriptions of pretransitional int
mittencies have been given in Refs. 11–13 for the case
phase synchronization and, respectively, in Refs. 10,14
for lag synchronization. Below, we intend to have a clo
look at the local changes which occur in the phase spac
mathematical models. We concentrate on invariant sets
their restructurings which simplify dynamics by gradua
transforming the nonsynchronized chaotic attractor into
coherent attractor of the phase-synchronized state and,
ther, into a set which corresponds to the state of lag sync
nization.

To follow the evolution of the attracting set under th
increase of the coupling, we trace the fate of unstable p
odic orbits~UPOs! embedded into the attractor. A univers
and powerful tool for the exploration of chaotic dynamics16

unstable periodic orbits proved to be especially efficient
the context of synchronization.17 Interpretation in terms of
UPOs helped to understand the onset of phase synchro
tion in the case of a chaotic system perturbed by an exte
periodic force,11,12 i.e., in the case of unidirectionally
coupled periodic and chaotic oscillators. Below, we exte
this approach to a system of two bidirectionally coupled n
identical chaotic oscillators. This situation is more comp
cated, since now each of the participating subsystems
sesses an infinite set of UPOs. In the following section
briefly characterize the properties of unstable periodic or
which exist in both subsystems in the absence of coupling
Sec. III we describe changes in the structure of the attra
of the coupled system which occur in the course of the
crease of the coupling strength. We interpret the onse
phase synchronization in terms of phase locking on unst
tori, and argue that transition to lag synchronization sho
be preceded by extinction of most of the unstable perio
orbits. In Secs. IV and V, respectively, these qualitative
guments are supported by numerical results which illust
the role of UPOs in the intermittent bursts close to thresho
of both phase and lag synchronization.

II. PERIODIC ORBITS IN THE ABSENCE OF
COUPLING

As an example, we consider the system of two coup
Rössler oscillators under the same set of parameter value
which lag synchronization was reported for the first time,10

ẋ1,252v1,2y1,22z1,21«~x2,12x1,2!,

ẏ1,25v1,2x1,22ay1,2, ~1!

ż1,25 f 1z1,2~x1,22c!.

Below, only the coupling strength« is treated as an ac
tive parameter; other parameters have fixed valuesa
50.165, f 50.2, c510, v1,25v06D (v050.97,D50.02),
respectively. Besides the original paper,10 scenarios of onse
of lag synchronization in Eqs.~1! under these parameter va
ues were discussed in subsequent publications.14,15,18

In each of the subsystems, taken alone, this combina
of parameters ensures chaotic oscillations@Fig. 1~a!#. Pro-
jected onto thexy plane of the corresponding subsyste
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these oscillations look like rotations around the origin; th
allows us to introduce phase geometrically, as a lift of t
angular coordinate in this plane,

f1,25arctan
y1,2

x1,2
1

p

2
sign~x1,2!. ~2!

The mean frequency of the chaotic oscillations is th
defined as the mean angular velocity;V (1,2)5^df1,2/dt&.
The difference in the values of the parametersv1,2 makes the
mean frequencies of uncoupled oscillators slightly differe
at «50, they areV (1)51.01926... andV (2)50.97081...,
respectively. As a result, the phases of the oscillators d
apart; in order to enforce phase synchronization, the coup
should be able to suppress this drift by adjusting the rota
rates.

In order to understand the role of unstable phase orbit
the phase space of the coupled system, it is helpful to s
with the classification of such orbits in the absence of c
pling. In its partial subspace, each of the three-dimensio
flows induces the return mapping on an appropriate Poinc´
surface~it is convenient to use for this purpose the trajec
ries which in thei th system intersect ‘‘from above’’ the sur
face yi50). This two-dimensional mapping is, of cours
invertible; however, due to the strong transversal contract
the trace of the attractor on the Poincare´ surface is graphi-
cally almost indistinguishable from a one-dimensional cu
@Fig. 1~b!#. Parameterizing this curve~e.g., by the value of
the coordinatex), we arrive at the noninvertible one
dimensional map shown in Fig. 1~c!. Since the latter turns
out to be unimodal, its dynamics is completely determin
by the symbolic ‘‘itinerary:’’19 the sequenceRLL... in
which the j th symbol isR if the j th iteration of the extre-
mum lies to the right from this extremum, andL otherwise.
According to numerical estimates, forv5v150.99 the itin-
erary isRLLLLRLLL..., and forv5v250.95 it becomes
RLLLLLRLL... . The starting segments of the two symbo
strings coincide, the first discrepancy occurs in the si
symbol; therefore, the number of unstable periodic orb
which makel turns around origin, is the same in both su

FIG. 1. Rössler oscillator atv5v150.99. ~a! Projection of the phase por
trait; solid line: location of the Poincare´ plane;~b! trace of the attractor on
the Poincare´ plane;~c! one-dimensional return mapping.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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systems ifl does not exceed 5. The number of orbits with t
lengthl>6 is larger in the second subsystem. Comparison
the initial 25 symbols with the symbolic itinerary of the lo
gistic mappingxi 115Axi(12xi) shows that flows withv
5v150.99 andv5v250.95 correspond to maps withA
53.9904857... andA53.9977031..., respectively.

For our purpose we need to modify some conventio
characteristics. When we consider the flow near a long p
odic orbit, the duration of each single revolution~turn! in the
phase space appears to be of little importance: what ma
for phase dynamics, is the mean duration of the turn, i.e.,
overall period of the orbit divided by the number of turns
this orbit. Below we refer to the number of turns as to t
~symbolic! length of the orbit.12 Since the time between con
secutive returns onto the Poincare´ plane depends on the po
sition on this plane, the periods of all periodic solutions a
in general, different. It is convenient to characterize perio
orbits in terms of ‘‘individual frequencies’’V i ; these are not
the usual inverse values of the corresponding overall peri
but mean frequencies per one turn in the phase space: fo
orbit with periodT which consists ofl turns, V i[2p l /T.
Figure 2 presents the distributions of individual frequenc
for periodic solutions for both subsystems in the absenc
coupling. Since commonly the orbits with relatively sho
periods are sufficient for an adequate description of
whole picture,20 we restrict ourselves to orbits with lengthl
<10; this yields 164 UPOs atv50.99 and 196 UPOs atv
50.95.

As shown in Fig. 2, two frequency bands are separa
by a gap. Forv50.99 the individual frequencies belong
the interval betweenVmax

(1) 51.035519...~orbit with length 1!
andVmin

(1) 51.014042...~one of the orbits with length 5!. For
v50.95 the values are distributed betweenVmax

(2)

50.9927899...~the same orbit with length 1! and Vmin
(2)

50.9790416...~one of the orbits with length 6!.
Besides periodic orbits, the Ro¨ssler equations possess

saddle-focus fixed point located close to the origin. Althou
this point does not belong to the chaotic attractor, it is
irrelevant; under coupling, it interacts with periodic orbits
the complementary subsystem and contributes to the gen

FIG. 2. Frequencies of unstable periodic orbits embedded into the attra
of the Rössler equations. Circles,v50.99; crosses,v50.95.
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scenario. To unify notation, we refer to this fixed point as t
‘‘length-0 orbit.’’

III. ATTRACTOR OF THE COUPLED SYSTEM: ROLE
OF UNSTABLE TORI IN SYNCHRONIZATION
TRANSITIONS

Formally, at«50 ~absence of coupling! the attractor in
the joint phase space of two systems contains a countabl
of degenerate invariant 2-tori; direct products of each p
odic orbit from the first subsystem with each periodic or
from the second one. Again, for the purpose of compari
of phase evolution in both subsystems, it is convenient
redefine the usual notion of the rotation number on such t
let the mean times of one revolution around the torus for
projections onto two subsystems be, respectively,t1 andt2 .
Then the rotation number is introduced as the ratior
5t1 /t2 . If the equality r51 holds, within a sufficiently
long time projections of trajectories make an equal num
of rotations in the subspaces of subsystems: the toru
‘‘phase locked.’’ Generalization of this interpretation fo
other rational values ofr is straightforward. Obviously, a
«50, the rotation number isv1 /v2 , wherev1 and v2 are
the individual frequencies~per one rotation, as discusse
above! of the two periodic orbits which form the torus.

As soon as the infinitesimal coupling between the s
systems is introduced, the degeneracy of tori is removed.
UPOs shown in Fig. 2 produce 1643196532144 tori whose
rotation numbers ~in the above sense! lie between
Vmin

(2) /Vmax
(1) 50.92737... andVmax

(2) /Vmin
(1) 50.97904... . In gen-

eral, each torus persists in a certain range of«, and its rota-
tion numberr is the devil’s staircase-like function of«: in-
tervals of values of« correspond to rational values ofr.

Since the periodic orbits in subsystems are unstable,
tori are also unstable; for small values of«, a trajectory on
the toroidal surface has at least two positive Lyapunov ex
nents.

The boundaries of ‘‘locking intervals’’ of« for each
torus are marked by tangent bifurcations of periodic orb
Such a bifurcation creates/destroys on the surface of
torus two closed trajectories, one stable~with respect to dis-
turbances within the surface!, the other one unstable. Sinc
the motion along the torus is parameterized by the phase
subsystems, below we refer to these orbits as, respectiv
‘‘phase stable’’ and ‘‘phase unstable.’’12

The following argument demonstrates that on each to
the phase-stable and phase-unstable orbits are not neces
unique. Let the torus originate from the direct product of tw
periodic orbits: an UPO from the first subsystem with t
length l and an UPO from the second subsystem with
length m. Then the main locking~1:1 in our notation! as-
sumes that the phase curve is closed aftern turns,n being
the least common multiple ofl andm. Let us take the pro-
jection of the periodic orbit onto the subspace of the fi
subsystem, and select some particular point on it~e.g., the
highest of then main maxima for one of the variables!. By
translating forwards and backwards the partial project
onto the other subsystem, we getn configurations in which
one of then maxima of the second variable is close to t
selected point. Figure 3 shows such ‘‘appropriate for

rs
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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locking’’ configurations for the torus generated by two orb
of length 2; in this case,l 5m5n52. In general, this implies
that we should expect to observe on the surface of a si
torus up ton coexisting pairs of phase stable and phase
stable periodic orbits.@Naturally, the argument is not rigor
ous; in principle, not all ofn possible configurations shoul
necessarily be exhausted; on the other hand, the existen
additional lockings cannot be totally excluded as well.# A
locking interval in the parameter space ranges from the b
of the first couple of curves with the prescribed locking rat
to the death of the last such couple. Uniqueness of the r
tion number forbids the coexistence on the same torus
periodic orbits with different locking ratios.

In the course of time a chaotic trajectory repeatedly v
its the neighborhoods of unstable tori; in each of them
spends some time winding along the surface, until being
pelled to some other unstable torus. During the timeT spent
in the vicinity of the torus with rotation numberr, the incre-
ment of the phase differencef12f2 between the sub
systems isDf'2p(T/t12T/t2)52p(12r)/t1 . Hence,
unlessr51, the passage close to a torus results in a ph
drift. On the other hand, if the torus is locked in the ratio 1
a passage of a chaotic trajectory along one of the ph
stable UPOs on the toroidal surface leads neither to a p
gain nor to a phase loss. Therefore we can expect that in
phase synchronized state all of the tori embedded into
chaotic attractor are locked and have the same freque
ratio. From this point of view, in the course of transition
phase synchronization each of the tori present at«50 should
either reach the main locking state or disappear, from
attractor or from the whole phase space. Note that, even
single torus within the attractor remains not locked, the
godic nature of chaotic dynamics will ensure that from tim
to time the trajectory will approach this torus close enough
make the system exhibit a phase jump.

Now we proceed to lag synchronization. Let us start w
ordering the UPOs in uncoupled subsystems into two
quences$Ui

(k)%,k51,2;i 51,2,... . The ordering can be don
by means of criteria which take into account the symbo
length and topology~expressed, e.g., by symbolic itinerar!

FIG. 3. Configurations favorable for the locking on the torus origina
from the direct product of the UPOs of length 2:~a! ‘‘in-phase;’’ ~b! ‘‘out-
of-phase.’’ Solid curves,x1(t); dashed curves,x2(t).
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of the orbits. This induces labeling among the tori of t
coupled system: the torusTi j originates from the interaction
of the orbitUi

(1) from the first subsystem and the orbitU j
(2)

from the second one.
As discussed above, for the values of« beyond the

threshold of phase synchronization all the tori inside the
tractor should have the same rotation number 1, hence
should possess periodic orbits. In fact, at finite values o«
neither smoothness nor even the very existence of a t
dimensional toroidal surface can be guaranteed, but this
cumstance appears to be of little importance; in the synch
nized state the decisive role is played not by the entire to
or its global remnants, but by relatively small segments n
closed phase-stable and phase-unstable orbits. The torus
break up, but periodic orbits persist. Therefore, in our d
cussion below the symbolTi j denotes not so much the actu
two-dimensional torus, but rather the set of~possibly several!
periodic orbits corresponding to the locking 1:1 on this tor
If Ui

(1) andU j
(2) have symbolic lengthsl andm, then their

symbolic labelsA(1)5RL... and A(2)5RL... consist, re-
spectively, of l and m letters. Letn be the least common
multiple of l andm. Symbolic labelsB(1) andB(2) for pro-
jections ofTi j , respectively, onto the first and second su
system consist ofn symbols:B(1) is n/ l times repeatedA(1),
andB(2) is n/m times repeatedA(2). It can be shown, that
unlessA(1)5A(2), the labelsB(1) andB(2) can neither coin-
cide, nor be obtained from each other by cyclic permutat
of symbols. The symbolic label determines the topology
the periodic orbit; in particular, it prescribes the order
which the smaller and larger turns alternate. Therefore
symbolic labels for projections are different, there is no w
to bring one of these projections very close to the other
time shift; for all values of such shift the averaged~with
respect to time! difference between these projections w
neither vanish nor become very small. According to this
gument, onlyTi j for which two generating UPOs have th
same length and topology can persist in the attractor of
synchronized state. The presence of the ‘‘nondiagonal’’Ti j is
incompatible with lag synchronization. Therefore all su
tori and associated closed orbits should, in the course
increase of«, either disappear, or leave the attractor.

Further,Ti j with identical symbolic labels may contai
several phase-stable periodic orbits. However, only the p
sage close to the ‘‘in-phase’’ orbit would allow for lag syn
chronization with small~compared to the mean duration o
one turn! value of lag. For ‘‘out-of-phase’’ configurations
which are obtained from the ‘‘in-phase’’ by cyclic permut
tion of maxima, the appropriate time shift would be close
several~length of the shift! durations of the turn. Apparently
only the ‘‘in-phase’’ orbits contribute to the motion in th
lag-synchronized state. For example, the UPO in Fig. 3~a!
can participate in the lag-synchronized dynamics, wher
the UPO in Fig. 3~b! is obviously unsuitable for this purpos
and, hence, should not be contained in the attractor.

Thus we expect that the onset of lag synchronizat
should be preceded by extinction of most of unstable p
odic orbits which populate the attractor at the onset of ph
synchronization. In fact, a set of two oscillators in the st
of lag synchronization behaves almost the same way as
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 4. Phase slips near the synchronization threshold:~a! mean timê Tpj& between slips versus coupling strength«; ~b! scaling of frequencyf of phase slips
near«ps.
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of them taken separately; in this sense, the complexity of
synchronization is relatively low.

If the above interpretation is correct, intermittency
respective characteristics, observed below the threshold
ues of the coupling strength both for phase13 and lag
synchronization14,15 should be caused by the passage of c
otic trajectories close to the last obstructing invariant sets
the first case these sets are the last nonlocked tori, and in
second case they are either the last remaining UPOs f
‘‘nondiagonal’’ Ti j or the ‘‘out-of-phase’’ UPOs.

For completeness, it should be mentioned that there
certain UPOs which do not emerge from tori, but, inste
exist already at zero coupling. At«50 they are just direct
products of steady state~fixed point! on one side, and an
UPO on the other side. Obviously, such orbits are also
compatible with lag synchronization, and should disappea
the course of increase of«.

In the following sections we test these qualitative co
jectures about the mechanisms of onset of phase and
synchronization against the numerical data obtained by i
gration of Eq.~1!; UPOs have been computed by combin
tion of the Schmelcher–Diakonos21 and Newton–Raphson
methods.

IV. PHASE SYNCHRONIZATION

Phase synchronization in Eq.~1! is observed beyond th
threshold value«5«ps. For«.«ps, the difference of phase
between two oscillators remains confined within a narr
interval for t→`; below this threshold it grows unbound
edly. According to our computations,«ps'0.0416; ~this is
somewhat higher than the value 0.036 reported in Ref.!.
In fact, already at«>0.036 the phases of two oscillators st
synchronized for most of the time; the plot of phase diff
ence as a function of time reminds a staircase in which l
nearly horizontal segments are interrupted by relatively sh
transitions. Such transitions~phase slips! are not instanta-
neous; usually it takes several dozens of turns in the ph
space, in order to increase the phase difference by 2p. How-
ever, compared to the average duration of the synchron
ownloaded 02 Mar 2006 to 141.89.176.72. Redistribution subject to AIP lic
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segment, phase slips are fast; as seen in Fig. 4, when« ap-
proaches«ps, such duration grows from hundreds of turn
through tens of thousands to millions and further on. T
value 0.0416 is the highest value of« at which we were able
to observe a phase jump~only one event within;109 turns
of the chaotic orbit!.

In the case of chaotic oscillators driven by external p
riodic force, the transition to phase synchronization ma
fests itself in the phase space as a kind of repeller–attra
collision;11,12,22 the local bifurcation~tangent bifurcation in
which a phase-stable and a phase-unstable UPOs are bor!, is
simultaneously the global event: disappearance of the
channel for phase diffusion. Seldom violations of synchro
zation below the threshold were named ‘‘eyelet interm
tency,’’ since escapes from the phase-locked state were
to the very accurate hitting of a vicinity of the last nonlock
torus.

The same mechanism is at work in our case just be
«ps; of infinitely many tori Ti j embedded into the chaoti
attractor, almost all are locked in the ratio 1:1. Only t
passages near several remaining nonlocked~or locked in
other ratios! tori can contribute to gains/losses of phase d
ference. Since the tori are unstable, mostly the chaotic
jectories are kicked out from their neighborhoods before p
ducing a noticeable phase difference. Only the trajecto
which come very close to the nonlocked tori, stay lo
enough in their vicinities in order to gain a phase slip. T
frequencyf of such events depends on the distribution of t
invariant measure on the attractor. Assuming, for simplic
that this measure is uniform, the same scaling law forf as in
Ref. 11 can be obtained:f («);exp(21/A«ps2«). This
qualitative dependence is well corroborated by our numer
data@cf. Fig. 4~b!#.

Figure 5 presents the ‘‘tree’’ of the periodic orbits o
length 1 and 2 as a function of the coupling strength«. The
vertical ‘‘amplitude’’ coordinate on this plot is fictitious; i
plays the role of appropriately rescaled and shifted coo
nate values~if actual values of coordinates were used, mo
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 5. Bifurcation diagram showing
UPOs of length 1 and 2. Notation:* ,

saddle-node bifurcations;s, period-
doubling bifurcations. Solid, dashed
and dotted lines, orbits unstable in 1
2, and 3 directions, respectively.
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of the branches would overlap, strongly hampering und
standing of the bifurcation sequences!.

Tangent bifurcations are marked with asterisks~* !, and
period-doublings are denoted by small circles~s!. The no-
tationm2m8 stands for the locking on the torus which is th
direct product of the length-m and the length-m8 orbits of the
first and second oscillators, respectively. Thus, the 2-2 to
undergoes two lockings: at the moment of birth of cor
sponding UPOs, phase lags between both oscillators, ar
spectively,;p/2 and;2p1p/2; as« grows, the values of
these lags decrease. In accordance with the above class
tion, we call these orbits in- and out-of-phase lockings
may be seen in Fig. 5 that the tangent bifurcations wh
create orbits of length 1 and 2, occur in a small inter
around«50.04, i.e., close to the approximate threshold
phase synchronization. At slightly higher values («.0.05)
we detect period-doubling bifurcations. The presence
period-doublings, as well as of Hopf bifurcations on oth
branches~see below! indicates that the smoothness of t
corresponding toroidal surfaces is already lost.

Recall that label 0 denotes orbits which are born fro
the direct products of the steady solution with periodic so
tions. The plot shows that, as expected, such orbits disap
relatively early; the branch 2-0 joins the branch 1-0 in t
course of the inverse period-doubling bifurcation. T
branch 1-0, in its turn, annihilates at«50.076 736 1 with one
of the branches born on the torus 1-1.

As a further illustration, in Fig. 6 we show solutio
curves and bifurcation points for orbits of length 3. This ca
is richer, insofar as each isolated oscillator contains t
UPOs of this length~cf. Fig. 2!; they are labeled 3a and 3b
ownloaded 02 Mar 2006 to 141.89.176.72. Redistribution subject to AIP lic
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Since every orbit possesses three maxima ofx1,2, on each of
the 4 emerging tori there can be up to three pairs of UP
along with in-phase orbits, there are two out-of-phase c
figurations, with phase lags;2p and ;4p, respectively.
Now, besides tangent and period-doubling bifurcations, H
bifurcations~denoted by °! are also identified. In fact, it ap
pears that Hopf bifurcations substitute some expected lo
ings. It should be noted that in this case all tangent bifur
tions which create UPOs, occur at«,0.04.

A remarkable feature here are the isolas in Figs. 6~b! and
6~c!; each family of out-of-phase lockings is not connect
to families of periodic solutions and exists only in the re
tively small interval of values of«. As seen in Fig. 6~a!, for
sufficiently high values of« of all the UPOs of length 3, only
two in-phase orbits survive.

Several further families of UPOs are not shown on the
plots. When« is increased, the orbits of the type 0-2n dis-
appear one-by-one in the inverse period-doubling casc
and finally the last of them, the UPO 0-1, shrinks and mer
with the fixed point of the system~in our notation, 0-0! in the
inverse Hopf bifurcation. The orbits 3a-0 and 3b-0 coale
in a saddle-node bifurcation, as well as the orbits 0-3a
0-3b. The tori 3a-1 and 3b-1 annihilate each other in
same way as the 2p-out-of-phase lockings, 3a-3b and 3a-3
in Fig. 6~b!. On the other hand, we failed to locate nume
cally the 1–3a and 1–3b lockings; it seems that both tori a
collide and disappear in a saddle-node bifurcation~or they
get locked but their UPOs survive in a very narrow range
«!.

Calculations for UPOs of other lengths have sho
qualitatively similar pictures, with tangent bifurcation
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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around«'0.04 and short-lived out-of-phase lockings.
We have also performed numerical experiments in or

to verify the conjecture that phase jumps occur when
trajectory approaches a nonlocked torus. Since we are p
ently unable to locate numerically in the phase space
two-dimensional unstable tori, sometimes it is difficult

FIG. 6. Bifurcation diagram for UPOs of length 3. Notation: °, Hopf bifu
cations; others as in Fig. 5.
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assign the jump to the passage near a particular torus. N
ertheless, in certain cases it was possible to identify a c
figuration which provoked a phase jump. In such situatio
in the beginning of the jump the segments of trajectories
the first and the second oscillators resemble closed orbits
example is shown in Fig. 7, where the passage of the sys
close to the 1–3 torus can be recognized. In general,
further from 1 is the rotation numberr on the degenerate
torus at«50, the higher should be the magnitude of co
pling required for the locking. In the frequency distributio
from Fig. 2, the highest individual frequency belongs to t
orbit of length 1; the tori, built with the participation of thi
UPO, require relatively strong coupling in order to g
locked. In accordance with this, many of the phase jum
close to the threshold of phase synchronization are prece
by an approach of the first oscillator to the orbit of length

Notably, the locking on the torus 1-1 occurs at the re
tively high value«50.042 458 5, which is above the empir
cally determined threshold«ps50.0416. This means that e
ther this torus does not belong to the attractor, or the cl
passages happen so seldom, that one should observe th
tem for times higher than 109 mean rotation periods~our
longest runs! in order to experience such jumps. We cann
point out which torus is the last one to be locked. Among
relatively short orbits, the closest to«ps locking appears to be
the tangent bifurcation, which creates orbits of length 4
«ps50.041 430 2.

V. LAG SYNCHRONIZATION

The lag synchronized state in Eq.~1! was found to exist
above the critical value of the coupling strength« ls'0.14.10

In this state, the dynamics of both oscillators is very simi
to the one that they exhibit being isolated, but now they
related by a time lag,x1(t)'x2(t1t0).

The transition from phase synchronization to lag sy
chronization was shown to be preceded by a intermitt
region where lag synchronization was interrupted
bursts.10 Since the Ro¨ssler oscillator is approximately iso
chronous, the time lag is practically equivalent to the ph
lag. In Fig. 8~a! the value of the mean phase difference^Df&
between both oscillators is shown, as well as the corri
formed by this difference6 its standard deviations. For «
.0.14 this corridor is rather narrow~albeit nonzero!; when«

FIG. 7. A snapshot of the system at the beginning of the phase jum«
50.0409. Dotted lines, chaotic orbit; solid lines, last six turns of the cha
orbit.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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FIG. 8. ~a! Mean phase difference be
tween subsystems, and the bounds
by standard deviation.~b! Maximum
and minimum phase difference com
puted for trajectories with different
number of turns.
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is decreased below 0.14, the deviation rapidly grows. Ho
ever, the minimal and maximal values for deviations
phase difference from its mean value remain nonsmall a
beyond«50.14@Fig. 8~b!#. This is a typical feature of inter
mittency. By increasing computing time, we were able
detect larger deviations from̂Df& at higher values of«; the
plot shows dependencies estimated from chaotic orbits
different length.

What is the role played by UPOs in this intermitte
transition to lag synchronization? We begin the discuss
with the observation that growth of the coupling streng
reduces the volume of phase space occupied by the attra
Evolution of the system to this state is illustrated by retu
maps for one coordinate, recovered from the intersection
the attractor with the Poincare´ planey150 ~Fig. 9!.

FIG. 9. Return maps for the variablex1 on the Poincare´ planey150. ~a!
«50.03; ~b! «50.08; ~c! «50.12; ~d! «50.14.
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As « is increased, the initially diffuse cloud become
more structured, with more and more points settling onto
‘‘one-dimensional’’ backbone. For«'« ls , the mapping is
reminiscent of Fig. 1~c! ~however, there remains a small pro
portion of points which lie at a distance from the parabo
like curve!. Such behavior implies that the system must p
sess a set of UPOs similar to that of an isolated Ro¨ssler
oscillator; according to Fig. 2, for«.« ls there should be one
UPO of length 1, one UPO of length 2, and two UPOs
length 3. Characteristics of unstable periodic orbits for
value« slightly beyond« ls are shown in Fig. 10. According
to Fig. 10~a!, correspondence with an isolated oscillator
not reached yet; the full system possesses two UPOs
length 2, as well as four orbits of length 3 and four orbits
length 4, whereas the description based on the unimo

FIG. 10. Periodic orbits at«50.15. ~a! Individual frequenciesV i ; ~b!
phase lagsDf on turns of periodic orbits.
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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mapping prescribes one orbit of length 2, not more than
orbits of length 3 and odd number~1 or 3! for UPOs of
length 4.

In the course of the further increase of« the ‘‘superflu-
ous’’ orbits eventually disappear: two orbits of length 3 a
nihilate by means of the tangent bifurcation at«
50.154 856; then at«50.156 94 a period-doubling bifurca
tion unifies the orbit of length 4 with the ‘‘superfluous’’ orb
of length 2, and finally the branch of the latter UPO~which
will be separately discussed below! joins the branch of the
length-1 orbit at«50.238 92.

The frequencies of the UPOs are distributed over
narrow range~notably, the state of phase synchronizati
does not necessarily assume that all these frequencies
cide!. To characterize the time shift between the subsyste
we use the value of the phase lag between them at the
ment of intersection of the Poincare´ planey250. Since we
are interested in instantaneous values, each UPO of
length l deliversl values ofDf. As seen in Fig. 10~b!, most
of the values of the phase lag belong to the narrow ra
between 0.27 and 0.3; however, large deviations from
range also present. Notably, most of these deviations be
to the ‘‘superfluous’’ orbits. As understood from Fig. 8~b!,
noticeable outbursts of phase difference are very rare;
means that a chaotic trajectory only seldom visits the ne
borhoods of these UPOs; accordingly, their contribution i
dynamics is relatively small.

Growth of « beyond the values shown in Fig. 9 leads
the further condensation of the points of the return map o
the one-dimensional backbone; the proportion of deviati
becomes smaller. It appears that in the space phase
exists a pattern~at the moment we know too little about it
properties in order to label it an ‘‘invariant manifold’’!,
which is responsible for the lag structure and on which
namics is adequately represented by a unimodal map.
pattern is locally attracting almost everywhere, except
certain ‘‘spots;’’ a chaotic trajectory which hits such a sp
makes a short departure from the pattern and disturbs the
synchronism.

Note that at large values of« the UPOs have only one
unstable direction~one characteristic multiplier outside th
unit circle!; this corresponds to the instability of all period
points of the unimodal mapping. When« is gradually de-
creased, the first orbit to become unstable in a second d
tion is the orbit of length 1 («50.238 92). This bifurcation
was reported in Ref. 18, where synchronization transiti
for different mismatches betweenv1 and v2 were studied.
At this critical point, the length-1 periodic orbit embedde
into the ‘‘lag attractor’’ undergoes the period-doubling bifu
cation. As a result, an orbit of length 2 is created. Trac
this new orbit down to the small values of« we observe that
it ends up as a phase-stable orbit on the torus formed by
length-1 and length-2 UPOs of decoupled subsystems; co
sponding bifurcations are shown in Fig. 5. The configurat
of this orbit ~two approximately equal maxima in the proje
tion onto one subsystem versus two unequal maxima in
second subsystem! is obviously incompatible with the re
quirements of the lag-synchronized state. Thereby, the los
perfect lag synchronization occurs because one of the o
ownloaded 02 Mar 2006 to 141.89.176.72. Redistribution subject to AIP lic
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becomes unstable in the direction ‘‘transversal’’ to the l
pattern; in this sense, this is a kind of a bubbling-type tra
sition.

The existence of a window of stable length-five oscil
tions above« (5)50.231 03~see Fig. 5! was not noted in pre-
vious works. The stable periodic orbit is born at« (5) in the
saddle-node bifurcation. Below this value the behavior, ty
cal for the type-I intermittency is observed, and the distrib
tion of invariant measure on the attractor is very nonunifor
the periodic orbit leaves a ‘‘ghost,’’ the density of imagin
points is rather high in five corresponding regions of t
Poincare´ section, and the length-1 UPO, which lies asi
from these regions, is very seldom visited. Probably, this
the reason why earlier the intermittent behavior was not
served above«50.145.

Another interesting feature of the transition from pha
to lag synchronization was reported in Ref. 14. The criter
for this transition, proposed in Ref. 10, requires the mi
mum of the ‘‘similarity function’’ S2(t)5^(x2(t)2x1(t
2t))2&/(^x1

2(t)&^x2
2(t)&)1/2 to vanish or nearly vanish fo

somet0 ; naturally,t0 is the lag duration. In Ref. 14 it wa
noticed that besides the main minimum att0 /T!1, the simi-
larity function has secondary minima att't01mT, where
m51,2,. . . , andT is close to the mean duration of one tu
in the phase space. When perfect lag synchronization is
the magnitudes of the secondary minima ofS2 decrease. It
turns out that intermittent violations of lag synchronizati
consist of jumps from the main lag configuration (x1(t)
5x2(t1t0)) to configurations of the kindx1(t)5x2(t1t0

1mT). According to Ref. 14, during the jump stage th
system seems to approach a periodic orbit.

This observation confirms the above conjecture that
termittency which precedes the onset of lag synchronizat
is caused by passages near the out-of-phase UPOs. Ou
merical data shed more light on the nature of these jum
and allow us to identify the orbits responsible for the inte
mittency. According to Fig. 5, among the orbits belonging
the out-of-phase locking of two UPOs of length 2, the le
unstable one~the orbit which has only one unstable dire
tion! exists for 0.1246,«,0.1426. Temporal evolution o
x1(t) and x2(t) for this orbit is shown in Fig. 11~a!; phase
shift is close to the duration of one turn. Figure 11~b! shows
the y1,2-projection of this UPO embedded into the attract
We observe that part of this orbit is ‘‘transversal’’ with re
spect to the bulk of the attractor. In the course of the int
mittent bursts, chaotic trajectories which leave the bulk
gion, move along this UPO. During this motion the dynam
of both oscillators gets approximately correlated, and the
between them corresponds to the time shift seen in F
11~a!, t't01T.

VI. DISCUSSION

Our results show that transition to phase synchroniza
and onset of lag synchronization between two coupled c
otic oscillators are accompanied by profound changes in
structure of the attracting set. Unstable periodic orbits se
as mediators in these processes; when the coupling stre
is increased, they should, first, appear in the phase spac
ense or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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order to enforce the entrainment of phases, and, second,
of them should again disappear, in order to leave in the
tractor only patterns suitable for lag synchronization. A
sence of necessary UPOs in the first case, and presen
‘‘nonsuitable’’ orbits in the second case are the reasons
intermittency. Before the onset of phase synchronizat
such intermittency is caused by passages near the 2
which are not yet locked, or locked in ratios different fro
1:1; in the latter case such intermittency is, in fact, a cert
form of ‘‘other’’ short-lived synchronization. Intermittenc
which precedes the onset of lag synchronization, is due to
passages near the periodic orbits, in which two oscillators
locked ‘‘out-of-phase;’’ such passages make the system
hibit momentary exotic lag configurations. We feel that u
stable periodic orbits are an appropriate tool for the anal
of intricate details of these transitions; further numerical
vances would, probably, require the technique for the ca
lation of unstable 2-tori.

The studied system of two coupled oscillators is non
perbolic, at least in the parameter region around the onse
phase synchronization. As seen in Fig. 5, an increase«
leads to the decrease in the dimension of the unstable m
folds of UPOs. As a result, over the large intervals of« we
observe coexistence of UPOs with two-, three-, and fo
dimensional unstable manifolds. In general, this pheno
enon, known under the name of unstable dimension varia
ity, has important implications for dynamics itself as well
for the validity and applicability of numerical algorithms;23

its significance in the context of synchronization is yet to
analyzed.

FIG. 11. Role of the out-of-phase UPO of length 2 in an intermittent
synchronization.~a! Time series ofx1 ~solid line! andx2 ~dashed line! over
one period.~b! Dots, chaotic orbit on the ‘‘lag attractor’’ in the region o
intermittent lag synchronization («50.14); solid line, out-of-phase UPO.
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