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Abstract

We report the occurrence of vibrational resonance in excitable systems. Namely, we show that an optimal amplitu
high-frequency driving enhances the response of an excitable system to a low-frequency signal. The phenomenon is
in an excitable electronic circuit and in the FitzHugh–Nagumo model. In this last case we also analyze the influence of
noise and the interplay between stochastic and vibrational resonance. Additionally, we show that this effect can be ex
spatially extended excitable media, taking the form of an enhanced propagation of the low-frequency signal.
 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Signal detection by nonlinear systems can be c
siderably affected by external influences. The most
evant example of this fact is stochastic resonance (S
where the response of a nonlinear system to a weak
terministic signal is enhanced by external random fl
tuations [1]. Initially reported in bistable systems [2
SR has been found in many models and even na
systems [3,4], including excitable media [5].

In bistable systems, it has been shown that
role of noise in improving the quality of signal d
tection can be played by other types of driving, su
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as a chaotic signal [6] or a high-frequency perio
force [7]. In the latter case, known asvibrational res-
onance (VR), the system is under the action of a tw
frequency signal. Such bichromatic signals are pe
sive in many different fields, including brain dynami
[8], where, for instance, bursting neurons may exh
two widely different time scales, and telecommuni
tions [9], where information carriers are usually hig
frequency waves modulated by a low-frequency s
nal that encodes the data. Two-frequency signals
also of interest in several other fields, such as la
physics [10], acoustics [11], neuroscience [12], a
physics of the ionosphere [13]. The beneficial role
high-frequency (ultrasonic) driving has already be
reported as increased drug uptake by brain cells [
acceleration of bone and muscle repairing [15], a
resonantly enhanced biodegradation of micro-or
hts reserved.
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nisms [16]. Additionally, ultrasonic irradiation of tw
widely different frequencies has been seen to enha
cavitation yield [17].

In contrast to the investigations in bistable syste
in this Letter we analyze the effect of high-frequen
forcing in signal detection byexcitable systems, and
demonstrate the occurrence of VR in excitable me
Excitable systems have only one stable fixed point,
perturbations above a certain threshold induce la
excursions in phase space, which take the form
spikes of fixed shape. The duration of these exc
sions introduces an intrinsic time scale in the syst
Excitable systems are naturally sensitive to exte
perturbations. By way of example, they exhibit a r
onant response to external harmonic driving [18,1
Here we establish that this response can also be
hanced by a second, higher frequency periodic driv
In essence, we show that for an optimal amplitude
the high-frequency forcing, signal processing at
low-frequency driving is enhanced. This result in
cates that the role of noise in standard stochastic
onance in excitable systems can also be played
monochromatic driving.

First, we show that VR occurs in a simple ele
tronic circuit with excitable properties, and confir
this effect by numerical simulation of the parad
matic FitzHugh–Nagumo (FHN) model in an excitab
regime. Next we study the effect of noise on this p
nomenon, concluding that SR in excitable systems
be controlled by high-frequency driving. Finally, w
show that this effect can also be observed in s
tially extended systems of coupled excitable osci
tors, in the form of resonant vibrational propagation
a low-frequency signal through the system for an o
mal high-frequency driving applied to all elements
the system. Again, this result parallels the constr
tive role of noise in signal propagation through no
linear media, which has been substantially studie
recent years in excitable [20], bistable [21], and ev
monostable [22] systems. The present results s
that similar enhanced propagation can be obtaine
replacing the broadband noisy driving with a sing
frequency signal.

2. Vibrational resonance in an excitable electronic
circuit

In order to demonstrate the occurrence of VR
an excitable system, we have constructed a sim
electronic circuit based on Chua’s diode, which h
been implemented with an operational amplifier (O
taken from the integrated circuit TL082 (see Fig.
When the voltage that controls this OA is asymme
the circuit becomes excitable [23].

The signals from two function generators operat
at widely different frequencies (1 kHz/50 kHz) a
added and introduced into the system through the 1
condenser, as shown in Fig. 1. We have analy
the behavior of the circuit for increasing amplitud
of the high-frequency (HF) harmonic driving, whi
keeping the amplitude of the low-frequency (L
signal component fixed. The results are plotted
Fig. 2 (left) in terms of the voltage drop at the 1
Fig. 1. Excitable electronic circuit exhibiting vibrational resonance.
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romatic
5 V, (B)
onding
Fig. 2. Left: experimental results exhibiting vibrational resonance in the excitable electronic circuit of Fig. 1 under the action of a bich
signal. The voltage drop at the 1 nF condenser is plotted for different amplitudes of the high-frequency harmonic forcing: (A) 0.43
0.465 V, (C) 0.66 V, (D) 0.985 V, and (E) 1.385 V. The amplitude of the low-frequency component is fixed to 1.3 V. Right: corresp
regimes obtained by numerical simulations of the FitzHugh–Nagumo model for different HF amplitudes: (A)B = 0.05, (B)B = 0.0505, (C)
B = 0.055, (D)B = 0.065, and (E)B = 0.07.
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condenser. For a small enough amplitude of the
component the total signal is below threshold, a
hence there are no spikes in the system output
shown in regime A of Fig. 2 (left). By increasin
slightly the amplitude of the HF component, spik
start to appear at the low frequency (regime B).
this regime processing of the information (which
encoded in the LF signal) begins to occur, but c
be considerably improved by further increasing
number of spikes per half period of the LF signal, sin
in this way the energy contained at this frequen
is also increased. This happens in regimes C and
which show the optimal detection of the LF sign
With further increase of the HF amplitude (regim
E), the system fires immediately after reaching
stable point, so that the output mainly contains o
the own frequency of the excitable system. Hence
LF component basically disappears from the sys
output, and signal processing is degraded again.
is a manifestation of vibrational resonance in
excitable medium, where an intermediate amplitud
a high-frequency driving leads to a resonant respo
at the low-frequency signal.
3. Vibrational resonance in the
FitzHugh–Nagumo model

Next we show that the behavior reported in t
previous section is not particular to the experimen
system considered, but is a generic property of
citable systems. To that end we study numerically
FitzHugh–Nagumo (FHN) model, which is a parad
matic model describing the behavior of firing spik
in neural activity [24], and in general the activato
inhibitor dynamics of excitable media [25]. In th
presence of two harmonic signals, this model is
fined by the following set of coupled equations:

(1)ε
dx

dt
= x − x3

3
− y,

(2)
dy

dt
= x + a +Acos(ωt)+B cos(Ωt)+ ξ(t),

wherex(t) is the activator variable (representing t
membrane potential in the neural case) andy(t) is the
inhibitor (related to the conductivity of the potassiu
channels existing in the neuron membrane [24]). T
value of the time scale ratioε = 0.01 is chosen so tha
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system,

results
Fig. 3. (a) Oscillations exhibited by the bichromatically forced FHN model (1)–(2) at a frequency close to the own frequency of the
and (b) at the driving high-frequency. The amplitude of the HF forcing isB = 0.1 and 10, respectively. (c) ResponseQ of the system at the low
frequencyω vs. the amplitudeB of the high-frequency input signal. The inset shows the corresponding figure for the electronic circuit
presented in Fig. 2 (left).
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the activator evolves much faster than the inhibi
Under these conditions the system is excitable fora >

1 [26]; we choosea = 1.05. ξ(t) is a Gaussian white
noise with zero mean and correlation〈ξ(t)ξ(t ′)〉 =
σ 2
a δ(t − t ′). The termsAcos(ωt) andB cos(Ωt) stand

for the low- and high-frequency components of t
external signal, respectively. In what follows we w
choseA = 0.01, so that the system is below th
excitation threshold (which isAthr ≈ 0.075 forB = 0),
and Ω 	 ω, in particularΩ = 5 andω = 0.1. In
Eq. (2) we have considered no phase shift betw
the two driving signals, but it can be checked that
existence of an arbitrary phase shift does not alter
results that follow. To integrate model (1)–(2) we ha
used Heun’s algorithm [27].

First we consider the noise-free caseσa = 0 and,
mimicking the electronic implementation described
the previous section, we fix the amplitude of the
signal component and increase the HF amplitude.
different regimes exhibited by the FHN model und
these conditions are shown in Fig. 2 (right). The
regimes closely resemble the preceding observat
made in the electronic circuit (compare left and rig
plots in the figure). As in that case, an increase
the HF amplitudeB initially improves (regimes A–D)
and finally degrades (regime E) signal processing
the low frequency, in what constitutes another c
of vibrational resonance. Several additional aspe
of the system behavior can be found in this mo
with respect to the electronic implementation. F
instance, in regime E (Fig. 2 right) it is clearly se
that the intervals between spikes are not const
This happens when the amplitude of the HF fo
is such that the system starts to fire asynchrono
with respect to the signal. In this case, during o
half of the signal period the system has to wait so
time before spiking, whereas in the other half per
the system can fire sooner once it reaches the s
point. This happens because in the latter case
time during which the signal is above threshold
larger, while the waiting time is close to the ha
period of the high-frequency force. Increasing
amplitudeB further leads to a very regular spikin
as in the regime E of the electronic circuit (see a
Fig. 3(a)). Finally, for large enough values ofB we
obtain a new regime that has not been observe
the circuit. In this regime, the oscillations happ
with a frequency different from the own frequen
of the system (i.e., the one related to the intrin
time scale of the spiking behavior), but correspond
fact to the high-frequency component (Ω = 5 in this
case). This regime is depicted in Fig. 3(b), where i
compared with the above mentioned case where e
spike follows the previous one almost periodica
with the system internal frequency (Fig. 3(a)).

The VR effect illustrated in Fig. 2 can be quantifi
by computing the responseQ of the system (i.e., the
component from the Fourier spectrum) at the sig

frequencyω, which is given byQ =
√
Q2

sin +Q2
cos,
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e

Fig. 4. Response of the system at the low frequencyω in the presence of additive noise: (a) versus the HF amplitudeB for different intensities
of additive noise (curve 1:σ2

a = 0, curve 2:σ2
a = 0.05× 10−3, curve 3:σ2

a = 0.25× 10−3, curve 4:σ2
a = 3× 10−3; and (b) versus the nois

intensityσ2
a for different amplitudes (curve 1:B = 0, curve 2:B = 0.04, curve 3:B = 0.06, curve 4:B = 0.07, curve 5:B = 0.1).
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where

Qsin = ω

πn

2πn/ω∫
0

y(t)sin(ωt) dt,

(3)Qcos= ω

πn

2πn/ω∫
0

y(t)cos(ωt) dt.

The dependence of this response on the amplitud
the high-frequency driving (Fig. 3(c)) displays a re
onant form with a clearly defined maximum atB ∼
0.06, similarly to what happens in SR. The stairca
form of this dependence is caused by the abrupt
crete appearance of new spikes in the spike train
the forcing amplitude increases. The staircase pat
persists (although its shape may change) when the
quency ratio between the two periodic signal chang
even when this ratio is incommensurate. We h
checked that the resonance displayed in Fig. 3(c)
sists for a wide range of values of the high-freque
aroundΩ = 5.0 (the values tested cover the ran
2.0–17.0). However, due to the additional interp
between the HF signal and sub-threshold oscillatio
the position and amplitude of the resonance peak v
with the value of the high frequency. This behav
constitutes a difference with respect to the stand
SR effect, and could be useful for determining the s
tem’s natural selectivity of special frequency comp
nents from the white noise when SR occurs.

So far we have not considered the influence of no
in the behavior of the FHN model. In order to stu
the interplay of VR and SR in this system, we no
increase the intensityσ 2

a of additive noise in the sys
tem. Fig. 4(a) shows that by adding noise to the sys
the response dependence is shifted to the left and
creased. Hence, with increasing noise the maximum
the response is achieved for a smaller value ofB (com-
pare curves 1 and 2 in Fig. 4(a)). This fact could be
evant for an efficient information processing, beca
natural fluctuations or noise (unavoidably presen
experimental systems) are able to replace a fractio
the high-frequency driving and help to reduce the n
essary input energy. If the noise intensity is too lar
VR dissapears (curve 4 in Fig. 4(a)). Next we anal
the response of the system as a function of noise
tensity for varying amplitudeB of the HF forcing (see
Fig. 4(b)). For no HF amplitude (curve 1 in the figur
standard SR is found. Adding then a high-freque
driving to the signal improves SR, because the re
nance curve is shifted to lower values ofσ 2

a and is
increased (curve 2 in Fig. 4(b)). Hence the amo
of noise needed for an optimal signal processing
smaller. We can thus interpret that a high-freque
driving allows us to control stochastic resonance. F
ther increase ofB to the value which corresponds
the optimal amplitudeB = 0.06 in the noise-free cas
leads only to a monotonous decrease of the qualit
signal processing with increasing noise intensityσ 2

a ,
shown as curve 3 in Fig. 4(b) (but its value at ze
noise is the largest one among all curves, as expe
from the optimal driving amplitude – compare the v
ues atσ 2

a = 0 of all the curves in Fig. 4(b) with curv
1 in Fig. 4(a)). For even larger values ofB, signal
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horizontal

tion LF
Fig. 5. Resonant vibrational propagation in a excitable medium. A chain of coupled oscillators (Eqs. (4)) is represented along the
axisz. Time evolution goes from bottom to top. Left: without HF vibration (B = 0); right: with HF vibration (B = 1.6). The first 100 oscillators
(i < iex) are always driven by the low-frequency signal. An increase of high-frequency vibration leads to propagation of the informa
signal.
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processing has very bad quality for all intensities
additive noise (curves 4 and 5).

4. Resonant vibrational propagation

When excitable systems are coupled spatially
an extended medium, excitation pulses are able
propagate through the system in a very efficient w
Consequently, it is interesting to analyze whet
the phenomenon of vibrational resonance can
generalized to the case of spatially extended syste
To that end we consider a chain of coupled excita
oscillators, whose behavior we represent now by
Barkley model [28]:

dui

dt
= 1

ε
ui(1− ui)

(
ui − vi + b

a

)

+ D

�x

∑
j∈N(i)

cij uj +Ai cos(ωt)+B cos(Ωt),

(4)
dvi

dt
= cui − vi,

where i is the cell index along the chain, and w
take Ai = 0 for i > iex. In what follows we used
the following values for the model parameters:ε =
0.01, a = 0.85, b = 0.18, andc = 0.7 (for which
the system operates locally in an excitable regim
and the coupling strength is takenD = 0.05. The
.

weight coefficientscij correspond to the first-orde
discretization of the Laplacian operator [29] wi
�x = 0.25. Every oscillator in the chain is drive
by a high-frequency signalB cos(Ωt), with Ω = 5.0,
and the oscillators withi < iex are additionally unde
the action of the low-frequency information-carryi
signalAcos(ωt), with ω= 0.1 andA= 3.0.

The behavior of this extended system is illustra
in Fig. 5. When no high-frequency vibration (B = 0)
is applied to the oscillators the signal is unable
propagate for the coupling strength chosen (Fig
left). However, if we now apply a HF vibration (B =
1.6) to all oscillators in the chain, the LF informatio
carrying signal propagates through the whole ch
of oscillators as a train of pulses (Fig. 5 right). T
mechanism of this effect is based on the occurre
of VR in single oscillators, but now the input o
each oscillator (fori > iex) comes from the output o
the previous element in the chain. Hence, the ef
of VR in excitable oscillators can be observed
spatially extended systems as a resonantvibrational
propagation.

5. Conclusions

We have studied several aspects of the dynam
response of excitable systems to bichromatic sig
with two very different frequencies. We have demo
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strated the existence of two phenomena: vibratio
resonance in zero-dimensional systems and reso
vibrational propagation in spatially extended med
Experimental results obtained in an excitable el
tronic circuit have been confirmed by a numeri
analysis of the FitzHugh–Nagumo model. In part
ular, it has been shown that an optimal amplitude
the high-frequency component of the signal can o
mize signal processing of the low-frequency com
nent, which encodes the information. We have a
shown that in the presence of noise high-freque
driving can substitute a fraction of the noise a
hence control the effect of stochastic resonance
spatially extended excitable media, vibrational re
nance enhances propagation of the low-frequency
nal through the system by means of the action
the high-frequency driving. We have reported vib
tional resonance and resonant vibrational propaga
in simple systems and paradigmatic models, and h
studied these effects in a general framework, hence
expect that these findings will be relevant for diffe
ent fields, including communication technologies, o
tics, chemistry, neuroscience, and medicine. Given
ubiquity of two-frequency signals in neural system
mentioned already in the introduction, this result co
be of special interest in the study of the activity of ne
ron ensembles, and in general in wave propagatio
excitable activatory–inhibitory systems.
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