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ABSTRACT

Motivation: Clustering co-expressed genes usually
requires the definition of ‘distance’ or ‘similarity’ between
measured datasets, the most common choices being
Pearson correlation or Euclidean distance. With the size
of available datasets steadily increasing, it has become
feasible to consider other, more general, definitions as
well. One alternative, based on information theory, is
the mutual information, providing a general measure
of dependencies between variables. While the use of
mutual information in cluster analysis and visualization
of large-scale gene expression data has been suggested
previously, the earlier studies did not focus on comparing
different algorithms to estimate the mutual information
from finite data.

Results: Here we describe and review several approaches
to estimate the mutual information from finite datasets.
Our findings show that the algorithms used so far may
be quite substantially improved upon. In particular when
dealing with small datasets, finite sample effects and other
sources of potentially misleading results have to be taken
into account.

Contact: steuer@agnld.uni-potsdam.de

INTRODUCTION

still assume that it is fairly safe to hypothesize that
co-expressed genes may have something in common in
their regulatory mechanism. Almost all clustering algo-
rithms rely on a definition of pair-wise distances between
measured expression profiles and it is widely recognized
that the choice of the distance may be as crucial as the
choice of the clustering algorithm itself (D’haeselesr

al., 2000). However, as pointed out by Brazma and Vilo
(2000), the appropriateness of similarity measures has
not been systematically explored and these measures are
used on an ad-hoc basis. In this work, we investigate
the use of mutual information as a measure of distance
between variables. This approach is not entirely new: An
early attempt to use information-theoretic concepts in
this context was given in (Michaekt al., 1998), a more
recent analysis was applied by Butte and Kohane (2000).
We supplement this earlier work by focusing on different
algorithms to estimate the mutual information for small
datasets. As will be shown below, the simple algorithms
used so far may be quite substantially improved upon.
In particular, we will point out potential pitfalls in the
analysis and discuss strategies to overcome them. The
results will be exemplified using a publicly available
dataset corresponding to up to 300 diverse mutations and
chemical treatments 5. cerevisagsee (Hughest al,

The ability to monitor whole-genome gene expressiorpooo) for further details.

in a parallel and quantitative way represents one of the \we shall point out that the detection of relationships be-
latest breakthroughs in experimental molecular biologytween two or more variables is not restricted to the analysis
(Brazma and Vilo, 2000; Nature, 1999; Scheslaal,  of gene expression, but is of great interest in many areas of
1995). Simultaneously with experimental progress, inscience. Variables which are not statistically independent
creasing methodologies are available for conceptualizinguggest the existence of some functional relation between
and unraveling the functional relationships implicit in them. While there are several approaches to quantify the
these datasets, see D’haesette.(2000) and references linear dependence between variables, the framework of
therein for a short review. One of the most widely usedinformation theory (Shannon, 1948) providegyeneral
concepts is, to group together genes with similar patternmeasure of dependencies between variables. In particular,
of expression (Eiseret al, 1998). This clustering of a vanishing Pearson correlation does not imply that two
co-expression is thought to allow the inference of sharedariables are independent. The mutual information there-
regulatory inputs and functional pathways (D’haeseleefore provides a better and more general criterion to inves-
et al, 2000). Even a more modest description wouldtigate relationships between variables.
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THE MUTUAL INFORMATION statistically independenthe joint probabilities factorize

We begin with a brief review of information theory and thejointentropyd (A, B) becomes

and Shannon entropy. Following Shannon (1948), all _

definitions will be given in terms of discrete systems. As H(A.B)=H(A +H(B) ®)
we shall later see, for the application on gene-expressio
data, this implies that we have to partition the continuou
values into discrete bins.

[h general, however, the joint entropy may be expressed in
Yerms of the conditional entropy (A|B)

The Shannon entropy H(A, B) = H(A|B) + H(B) (6)

Consider a systenh with Ma possible states. That is, with H(A|B) being defined as
a measurement performed ofx will yield one of the

possible valuesy, . .., am,, each with its corresponding Ma Mg
probability p(aj). The average amount of information H(AIB) := —ZZ p@a, bj)log pailb))  (7)
gained from a measurement that specifies one particular i=1j=1
vaue g is given by theentropy H(A) of the system . )
(Shannon, 1948; Cover and Thomas, 1991). Since for arbitrary systemé& andB
Ma H(AIB) = H(A) (8)
H(A) = - p(a)log p(a) €Y .
= we get the relation

As stated by Faser and Swinney (1986), the entropy H(A, B) <H(A) + H(B) 9)

H (A) could be described as the ‘quantity of surprise you

should feel upon reading the result of a measurement’. Winstead of Equation (5). Theutual information (A, B)
summarize some properties df( A): between the systensandB is then defined as (Shannon,

) 1948; Kolmogorov, 1968)
e Assume the outcome of the measurement is com-

pletely determined to bey, that is, the probability (A, B):=H(A)+H(B)-—H(AB) >0 (10)
p(a) is one and all other probabilitiep(g) with
i # | are zero. In this case we get(A) = 0. The Kullback entropy

A different approach to the mutual information was
given by Kullback (1959). Th&ullback entropyK (p| p%)
between two probability distributiorigp} and{p°} is

e Forequiprobable events the entroply( A) is maximal.

1
p@@) = M_VI = H(A) =logMa 2
A

K(pIp®) =3 pilog 2 (1)
e The Shannon entropy remains unchanged, when Pi

adding impossible events. The Kullback entropy can be interpreted as th@rma-

e The logarithm in Equation (1) always refers to theion gainwhen replacing an initial probability distribution

natural logarithm except otherwise noted. However, p°} by a final distribution{ p}. ThereforeK (p| p°) estab-
this is a matter of definition only. If the logarithm to lishes a measure of the distance between the distributions

baseM is used, the entropy is normalized. {p®} and{p}. However, the Kullback entropy is not sym-
metric and thus not a distance in the mathematical sense.
O<HA) <1 )
K(pp% # K(p°|p) (12)

The joint entropyH (A, B) of two discrete systemA& and

0 .
B is defined analogously The Kullback entropyK (p|p”) is always greater than or

equal to zero and vanishes if and only if the distributions

Ma Ms {p} and{p°} are identical (Cover and Thoméals, 1991). In
H(A, B) := — (&,bi)logpa, b)) (4 our case thea priori probability distribution{p”} is given
; ng P iiogPp D@ by the hypothesis of statistical independence between the

two systemsA and B. Thus p°(a;, bj) is the product of
Here p(a, bj) denotes the joint probability thah is in  the marginal distributions.
statea; andB is in statebj. The number of possible states
Ma andMg may be different. If the system& andB are P(a;, bj) = p(a) p(bj) (13)
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The elements of the final distributidip} are given by the

. % o o [ °Ted .
actual joint probability distributiorp(x;, yj). Given this N b ., % ;z
choice, the Kullback entropi{ (p| p®) becomes A RS e 1 A
06t p T L= 2
0 o PG@iby) - PR e
K (pIp”) —; SR e e A~ B e u s AL
P s ML ¥ MU S
200 0 ST A B T
Here K (p|p°) is a measure of ‘distance’ between our s O;'- ?.‘4' P, ISR
hypothesis that the systems are statistically independent R " observed Mutdal Information -

and the actual joint probability distribution. It can be

easily verified, that for our particular choice pp} and Fig. 1. Naive estimation of the mutual information for finite data.

0 0
{p”}, the Kullback entropyK (p|p”) corresponds to the Left: The dataset consists di = 300 artificially generated

mutual informatioql (A, B), as defined _in Equa‘;ion _(10)' independent and equidistributed random numbers. The probabilities
Of interest for us is, that the mutual information is zeroge estimated using a histogram which divides each axistxte=

if and only if the measurements on the systesand M, = 10 bins. Right: The histogram of the estimated mutual
B are statistically independent. This putgA, B) in information| (X, Y) obtained from 300 independent realizations.
contrast to the more commonly used measures, such as

Pearson correlation or Euclidean distance, which quantify

linear dependencies only. A vanishing mutual informationThe most straightforward and widely used (Butte and
does imply that two variables are independent, while fotKohane, 2000; Michaelst al,, 1998) approach is, to use a
the Pearson correlation this doest hold. Thus, the histogram based technique. Given an origiand a width
mutual information can be interpreted as a generalize#), the bins of the histogram for the variabteare defined
measure of correlation, analogous to Pearson correlatioffjrough the intervalgo + mh, o + (m + 1)h] with m =

but sensitive to any functional relationship, not just linear0, ..., M. The data are thus partitioned inM discrete
dependencies. Before we continue with the numericapinsa andk; denotes the number of measurements that
estimation of the above-defined quantities from finitelie within the bin a. The probabilitiesp(a) are then
dataset, we must remark, that the mutual information itsel@pproximated by the corresponding relative frequencies of
is not a distance in the mathematical sense. However, tHeccurrence

definition pa) — % (16)
D(A,B):=H(A,B)—I1(A, B) (15) andthe mutual informatioh(X, Y) between both datasets

X andY may be expressed as
satisfies the necessary axioms. In this work, we will focus
on the mutual information as a measure of similarity and 1(X,Y)=logN + 1 Z kij log ki (17)
will not explicitly use Equation (15). N ki Kj

NUMERICAL ESTIMATION Herekjj denotes the number of measurements where

Up to now all definitions involved the explicit knowledge lies N & andy in b. TO. demonstrate the gppllcatlon .Of
. e Equation (17) on experimental data we will now provide
of the respective probability distributions. In general, these_ _. . ) , .
oo . a simple numerical example. Our ‘measurement’ consists
probabilities are not known, but have to be estimated from e ) S
! ) . . . of N artificially generated independent and equidistributed

measurements. Therefore it remains crucial to investigat
; . . . : ndom numberg andy.

possible strategies to give reliable estimates of the mutua

information for finite datasets. Xi, Vi) : Xi,¥i€[0,1] Vi=1...,N

The Naive Algorithm In this case the system$ andY are independent and we
Consider a collection ofl simultaneous measurements of know the true value of the mutual informatidX, Y) to
two continuous variablex andy (to be later identified be zero.

with the expression of two genés andY under various ~ Figure 1 (left) shows an example di = 300
conditions). ‘measurements’x;, V). The data was divided inthy =
My = 10 bins and the mutual informatioh(X, Y)

measured: (X, Vi) i=1,...,N was calculated using Equation (17). By repeating this
experiment with 300 independent realizationsXofndY
"In the following ¥";; is used to denotg; 4 3" }"8. we obtain a histogram of estimated values fgiX, Y),
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as shown in Figure 1 (right). What we observe is that
the mutual information not only fluctuates around its true

value, but getssystematicallyoverestimated. In our case
the estimated mutual information is

(1(X,Y)sstimated ~ 9 15+ 0.02

instead of the true valué(X, Y)'U® = 0. In the next

section we will discuss the reason for this observed

systematic error.

Finite size effects
It is known that the estimation of entropies from finite

samples may be affected by systematic errors (Grass-

berger, 1988). Herzdt al. (1994) showed that
M-—-1

Hobserved ~H-—
( ) N

(18)

0.3

0.25¢

0.2f

0.15¢

0.1

observed Mutual Information

0.05F

0.5 2 25

x 10°

1 15
size of dataset 1/N

Fig. 2. The observed mutual information for finite data (artificially
generated equidistributed random numbers, usngistogram bins

Here Hobsered genptes the estimated entropy using aon each axis). The straight lines denote the theoretical value for

finite sample ofN datapoints to estimate the probabilities
of M discrete states. It should be pointed out that i
this approximation the systematic errorinslependenof

the underlying probability distribution. Since the mutual
information, as defined in Equation (10), is a sum of

entropies, we may use this expression to estimate th

systematic error ofl (X,Y) (Herzel and Grosse, 1995;
Grosse, 1996; Roulston, 1999).

( | Observed ) Al (X, V)€ L AT (X,Y) (19)

With

Myy — My — My +1
2N

Here My, My and My denote the number of discrete

states (histogram bins) with nonzero probability. In our

previous example we usddy = My = 10 andMyy =

100. With the true value of (X, Y) being zero andN =

300 we get

Al (X,Y) =

(20)

(1obsewedy — A (X, Y)~ 0.14 (21)

which is in good agreement with the numerical result.

n

M = 15,10, 5 (from top to bottom). The numerical values (circles)
were averaged over an ensemble of 300 trials—the errorbars denote
the standard deviation. The numerical simulations are in good
agreement with the values predicted by Equation (20).

futual information might thus be estimated from datasets
of different size. But as we learn from Equation (20),
the finite-size corrections depend on the number of data-
points, leading to potentially spurious results. Finally, we
must note that Equation (20) representg&pproximation
which is believed to hold only as long as the number of
datapoints is still considerably larger than the number
of histogram bins. This must be verified prior to any
application (Herzeét al,, 1994).

Adaptive partitioning

We shall now discuss one aspect of the mutual informa-
tion, which has been neglected so far. As also accounted
for by Michaelset al. (1998), the mutual information
depends on the distribution of the individual datasets:
I (X,Y) is bounded by the individual entropies ¥fand

Note that by plotting the observed mutual information as'-

afunction of 1/N Equation (20) corresponds to a straight

line. With M = My = My we get

(M-121
2 N

As seen in Figur 2 alinear extrapolation of the mutual in-
formation! (X, Y) in the limit 1/N — 0 may improve the

( |observed ) ~ |

(22)

I (X,Y) <min{H(X), H(Y)}

Since our perspective is to do a comparison of the mutual
information between datasets, we have to ascertain that
the results are not blurred by the individual distributions
of measured gene-expression values. The most straight-
forward strategy is to normalize all measured datasets to
an identical reference distribution. Since correlations are

result considerably, compared to the uncorrected estimatgseserved under such a transformation, this does not af-

using a straightforward application of Equation (17).
This is of particular importance for the application on

fect the validity of our analysis. Suppose the datasags
an arbitrary distributionp(x) which is generated by the

gene-expression data. These datasets are often charagle x = h(&¢) with & having the desired well defined sim-
terized by missing values, in pair-wise comparisons thele probability distribution (e.g. uniform or Gaussian) and
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h being a static monotonic function. The primary task is  ,,

now to approximate the inverse function. . A o B .
£=h"1x) g 01 ) o .:3..},. ) g 02 "‘:"J

This is usually done by rank ordering the elements of % 0 ’*‘ é o f

{¢} to the same rank ordering as the elements{gf > o1 T Fetes > o

(Rappet al, 1994; Schreiber and Schmitz, 2000). Two 02l * ™

sets have the same rank ordering if thiéa element is 02 . )

the kth largest in both sets. In practical applications we 02 %% yorleec Ut %2 02 Joroigen O

rank-order the data to a uniform distribution with zero  , : -

mean. Alternatively, one might use a equivalent method, C . 01 D el

which mimics the above described transformation. Insteac o1 v Ry Ty

of using fixed intervals to divide the axes into discrete g %"” AT B .

bins, an adaptive partitioning method is applied. That& % - -f.:‘. A Soaf cSREMVLL

is, each axis is partitioned intM discrete bins, each .| ;.7 Py LR N, e

bin containing (approximatelykx = N/M datapoints e .

Consequently, the width of each interval is determined by -02 03 :

the local density of the measured dataset. 02 0 02 .04 06 020 el 0

The Fraser—-Swinney algorithm.Along similar lines,

Faser and Swinney (1986) developed a sophisticategig, 3. Examples of simultaneous measurements of expression data.
algorithm for the estimation of the mutual information in Each dot corresponds to the values (log-transformed) of two open
one of the ’classic’ papers on this topic. Since this algoreading frames (ORFs), given on tkeandy-axis, from one cDNA
rithm also involves the idea of adaptive partitioning andmicroarray experiment.

is sometimes used in bioinformatic analysis (Samoilov

et al, 2001), we shall shortly outline the essential ideas.

Instead of choosing a fixed number of intervals, theyexamples of simultaneous measurements of expression
construct ahierarchyof partitions Py, which recursively —data.

divide the (x, y)-plane in smaller and smaller intervals Each dot corresponds to the log-transformed values of
(histogram bins). The crucial observation is, that regiongwo open reading frames (ORFs), from one cDNA mi-
in the (x, y)-plane, where the datapoints are equidis-Croarray experiment. As could be easily observed, the four
tributed cease to contribute further to the estimateXamples show varying degrees of correlation. In particu-
mutual information under refinement of the partition andlar, exampleB suggests a strong linear relationship, while
there is no point in subdividing this region further. Thus, the examples\, C, andD are not easily classified by eye.
the partition in regions of théx, y)-plane where the Notsurprisingly, none of the datasets seems uniformly dis-
datapoints are rather dense becomes finer. Less occupititputed. On the contrary, we observe large fluctuations
or empty regions are covered with larger boxes. Howevegnd isolated datapoints, which make a computation of the
as pointed out by Pafu(1993), this algorithm, though mutual information using a fixed box size problematic. As
mathematically ingenious, does not lead to a substantig@iiready noted, it is preferable to have variables of known
improvement in the estimation of mutual information range and uniform density. Here we achieve this by replac-
compared to a simple adaptive partitioning approach.  ing all values with their respective rank order.

Experimental data: examples i, ¥i) —> (rk(xi), rk(yi)) i=1...,N <300

Before we continue with a more sophisticated approach ig;q,;re 4 shows the rank-ordered version of our examples.
estimate the mutual information, we shall shortly outline 1o gata are now distributed homogeneously on the

the application of some of the above described concepty. 5 y.axis, with the correlations within each dataset
on experimental data. As an example we will use threepreserved.

hundred full-genome expression profiles fr&rcerevisae

drawn from a publicly available dataset, see Hughedesting the significance.Prior to applying any algorithm

et al. (2000) for availability and experimental methods. to the datasets, we have to become clear about how the
The complete dataset contains upNo = 300 cDNA  results of such an analysis should be interpreted. Generally
experiments, but due to missing values the number ofpeaking, we set up aull hypothesisand test, whether
simultaneously measured pairs might be slightly less. Wé is consistent with our data. Here, the most natural null
start with visual inspection of the data: Figure 3 showshypothesis is to assume that the datasétand Y are
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Fig. 4. The rank-ordered representation of the four datasets. Each

value was replaced by its respective rank order. Note that th&ig. 5. The estimated mutual informatian(X, Y) using the naive
transformation preserved the correlations within each dataset. Séggorithm on the rank ordered datasets as a function of the number of
text for details. intervalsM = My = My. The average mutual information obtained

from an ensemble of 300 surrogates is drawn as a solid line, with
errorbars denoting the standard deviatohe largest value found
within the ensemble of surrogates is represented by the dotted line.

independent. Only if the observed mutual information is
not consistent with this null hypothesis, we may claim thatsurrogate data. The significan8és given by
the null hypothesis is wrong, and the data thus contains
sianifi . . . . I (X, Y)data _ (| (X, Y)SUH)

gnificant correlation. However, the rejection of a given S — (23)
null hypothesis is never absolute, but always with respect Osurr
to a certain significance level. Thus, in the interpretation olgince this approach implicitly assumes knowledge about
our test we have to follow Schreiber and Schmitz (2000)the distribution of the mutual information (e.ds| > 2.6
A rejection at a given significance level means that ifcan be treated as significant at a level of 99% assuming
the null hypothesis is true, there is still a certain smalla Gaussiandistribution), it was suggested to use a more
probability to see the structure we detected. Non-rejectiogeneral reasoning (Schreiber and Schmitz, 2000; Theiler
means even less: Either the null hypothesis is true, oet al, 1992): First a probabilityx of false rejection is
the statistics we use lacks the power to discriminate théelected. Then, for a one sided tédf = 1 —1 surrogates
data from it. To test our null hypothesis we constructare generated. Including the original data, we now have an
an ensemble oburrogate datasets| XS, YS}, consistent ensemble of o datasets. Thus, the prpbablllty_ that our
with the null hypothesis. There are two main approaches’?‘easuremem has the largest mutu_al |_nformat_|on within
Typical and constraintrealization. Constraint realizations the_Whole ensemble merely by coincidence is exactly

are obtained by creating random permutations of thé" The null hypothesis could therefore be rejected at a

. . Significance leve(l — «) - 100%.
original dataX andY. The values'are.constramed to take We now give an example in term of the earlier described
on the same values as the data, just in random order.

) D X experimental datasets: Figure 5 shows the estimated
For atypical realization, we use the data to infer the a1 informationl (X, Y) using the naive algorithm on
marginal probability distributions and draw new datasetspe rank ordered datasets as a function of the number
according to this distribution (Schreiber and Schmitz,of intervals M = My = My. The average mutual

2000). Here, we will only use the first approach. The nexinformation obtained from an ensemble of 300 surrogates
step is then to estimate mean and standard deviatioh is drawn as a solid line, with errorbars denoting the
the observed mutual information using the ensemble oftandard deviatioss,. The largest value found within the
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ensemble of surrogates is represented by the dotted line o4 - 04
As expected, dataset B shows strong deviations from its =i iy
shuffled counterparts. Also for dataset D the hypothesis o3 ; il 03
of statistical independence must be rejected, given oul
previously defined significance level. Zo2 Zo.2
However, we must comment on the interpretation of
the chosen significance level: Our long-term goal is to o1 01
identify correlated, and thus presumably co-regulated, :
genes within the complete genome. Consequently, we arc o~ 5 0= o 5
X

not only concerned with individual pair-wise correlation
measures, but with the application of such concepts on

th_e complete _dataset' usually involving uMlOG pair- Fig. 6. Density estimation using two different approaches. The

wise comparisons. Thus, even for a comparably larg@nderlying bimodal probability distribution is shown as a dotted

significance, thebsolute numbeof non-correlated pairs  |ine (two Gaussian distributions at1, both with standard deviation

which show a ‘significant’ mutual information (false o = 0.5). The probability density estimatelS(x) were obtained

positives) might still be large. When interpreting large from a artificially generated sample & = 600 datapoints. Left:

amounts of data, we have to keep this in mind. The histogram estimator using a bin width= 0.25. Right: The
naive estimator using = 0.2.

KERNEL DENSITY ESTIMATION

We will now resume our considerations towards ang pimoda| distribution (dotted line). There is no particular
effective algorithm for estimating the mutual information .o o< to stay with rectangular cubes as bins. Other shapes

between two variables. Until now we have focused Onij| jead to a valid estimate of the probability density. With
o oo e ) choma ik eTTSZSG WG, or Kemel unci () telme
method, based on kernel density estimation (KDE), waéjenslty estimator (x) is given by
suggested by Moomt al. (1995) and was found to be . 1 N X — %
superior to the histograms in terms of (i) a better mean fX) = — Z K ( ') (26)
square error rate of convergence of the estimate to the Nh &= h

underlying density, (i) an insensitivity to the choice of

The parameteh is calledsmoothing parametear window
width and the kernel functiorkK (x) is required to be a

counting (Moonet al, 1995; Silverman, 1986). Since )(normalized) proAbabiIity density. It may be easily verified

this approach aims at improving the estimate of thefnat in this casef itself is a probability density. Further,
probability densityp(x) in Equation (14) and is applicable f Will inherit all the continuity and differentiability
in many other situations apart from the estimation mutuaProperties of the kernd{. For simplicity we focus on the
information, we will give a short overview of kernel Gaussian kernel. The density estimate then reads:
density estimation in the following, for a comprehensive N 2

account we refer the reader to Silverman (1986). The first f(x) = 11 Zexp _X=x) (27)
step is to free the histogram from a particular choice of N hv2m — 2h?

origin and bin positions. This results in thaiveestimator ] ) ) ) )
Fdlowing the interpretation of the naive estimator, the

R 1 N Gaussian estimator may be explained as placing Gaussian
f(x)= >N Z@(h — [X = Xi]) (24)  ‘bumps’ at the position of each observation. The
i=1 Gaussian estimator is then given by the sum of ‘bumps’.
Crucial again is the choice of the bandwidth If
h is chosen to small spurious fine structure becomes
1 if x>0 visible, while if h is too large all detail, spurious or
Ox) = { 0 if x<0 (25) otherwise, is obscured. While there are several methods
B for choosing an appropriate bandwidth available, most of
A graphical interpretation of Equation (24) is that thethem are associated with a considerable computational
estimator is obtained by additivly putting boxes of width burden (Moon et al, 1995). As a tradeoff between
2h and height2Nh)—1 on each observation. computational effort and performance one may choose
Figure 6 shows an example for the naive estimator usinghe ‘optimal’ bandwidth as the one that minimizes the
N = 600 numerically generated datapoints drawn frommean integrated square error, assuming the underlying

where® (x) denotes the Heaviside function
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distribution is Gaussian. Following Silverman (1986), theand Ay could thus be based entirely on standard proce-
optimal Gaussiarbandwidthhopt is given by dures for numerical integration. Note that the discretiza-
tion introduced by the numerical integration does not cor-

4 \5 1 respond to our earlier attempts to partition the data. Fig-

hopt = <m> o~ 1060N"s (28)  ure 7 shows the estimated mutual information for the rank

ordered datasets A to D as a function of the smoothing

whereo denotes the standard deviation of the data. Foparameteh. The results were compared to uncorrelated
the estimation of the mutual information, we also needdatasets, using an ensemble of 100 randomly shuffled re-
the two-dimensional probability densify(x, y). With the  alizations. As could be observed, the standard deviation

abbreviation obtained from the ensemble of surrogates is much smaller
compared to the histogram-based algorithm. The discrim-
dix,y) = \/(x —Xi)2 4+ (y—Vi)? inability between the correlated and uncorrelated datasets

is thus enhanced. Further, the estimated mutual informa-
the two-dimensional Gaussian kernel estimfgex, y)  tionis much less sensitive to the choice of the smooth-
reads ing parameteh, than the probability density itself. For all
L LN 6 (x. y)? dqtasets the ‘optimal’ smoothing parar_nehellst (d_enoted
fy(x, y) = e Z ex (_ i 2r,]2)/) ) (29) with an arrow) seems to be an appropriate choice.
i=1 A simpler algorithm. Depending on the application,

As in the one-dimensional case, an appropriate valuf® numerical integration of Equation (31) might put

for h depends on the unknown density being estimated?i9h demands on computational power. So we may
sk for strategies to simplify the algorithm. As already

Under the assumption that this density is Gaussian, aft ) ) :
approximately optimal value is given by noted in the introduction, entropy measures represent

an averageover a probability distribution. According to
4 \Y@d+4 1/ Equation (14), the estimated mutual information may thus
hopt ~ o <d—+2) N (30)  be written as

with d = 2 being the dimension of the dataset anthe [(X,Y) = (log fx.y) (32)
average marginal standard deviation (Silverman, 1986). ' f(x)f(y)
Estimating the mutual information Under the assumption that our dataset is a faithful sample

The mutual informatior (X, Y) is a functional of proba- of the underlying probability distribution, we get

bility densities. Thus an obvious way to find an estimate N R

for 1 (X,Y) is to find estimates of the densities and then [(X.Y) = 1 Zlo f(xi, yi) (33)
to substitute these into the required integral. However, this O foxi) f(y)

is not as trivial as it may seem. Up to now, we have al-
ways referred to th@robability of discrete states, while However, we must note that Equation (33) should be ap-
by kernel estimation we obtain probabiliiensitiesonly.  plied with caution. For example, the individual datapoints
Remarkably enough, the discretization of they)-plane  have to be independent realizations of the underlying
into infinitesimal bins of size\V = Ax Ay corresponds distribution—a requirement not always fulfilled by
to the continuous form of the mutual information. experimental data.

A

r(x,y)Z// fx.yylog %Y gxdy  (31) NETWORK ANALYSIS AND RESULTS
xJy FOOTy) In the last section, we discuss the potential results ob-

Note that such a correspondence does hold for the tained from a cluster analysis based on mutual informa-
individual entropies used in Equation (10). Quite onfion. First of all, clustering based on Pearson correlation
the contrary: For a random variable with an arbitrary©r Euclidean distance is probably the most widely used
distribution the continuous expression for the entropy ignéthod for analyzing and visualizing expression data. It
finite, while the discrete diverges towards infinity as theN@s already been shown extensively, that the results ob-
bin size tends to zefo tained from such an analysis leads to biologically relevant
To evaluate Equation (31), we have to integrate over dnsights (Eiseret al, 1998). Also, direct applications of
smooth function. The choice of the integration steps ~ Mutual information as a measure of distance showed that
it groups together genes of known similar function (Butte
*However, in Equation (10) these terms cancel out. and Kohane, 2000; Davdt al., 2002). In the present work,

i=1
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Fig. 7. The estimated mutual information for the (rank-ordered) Positive correlations are much more frequent than nega-

datasets_A toDasa fupction pf the smoothing parantgtesing  tjve ones. Further, the Pearson correlafﬁa@ is bound by
a Gaussian kernel density estimator. Each result was compared ®e mutual information: Except for numerical or statisti-
an ensemble of 100 shuffled surrogates (lower dots) with errorbars . . . . A
denoting the standard deviation. The dotted line gives the maxima(l:al errors, a SItl.'Iatlon W'.th high Pearso'n Correlaﬂﬁ%"
mutual information found within the ensemble of surrogates. In eacf?nd low mutual m_formatlor_] d_oes not exist. However, more
plot the optimal smoothing parametespt is denoted with an arrow. important for us is, that within the analyzed dataset there
seems to be almost a one-to-one correspondence between
mutual information anqléxy| (apart from statistical fluc-
tuations). As could be observed in Figure (8) we detect
we will therefore focus solely on@mparisorof the mu-  genuinely non-linear correlation. This does have implica-
tual information to the Pearson correlation. Do we detections for further analysis. Most of all, it means that pre-
non-linear relationships in the data, which were previouslyious investigations using Pearson correlation as a mea-
missed by linear measures? To answer this question, waire of similarity for gene-expression measurements were
evaluate both, the pair-wise mutual information and thejustified and did not miss a significant fraction of possi-
Pearson correlation (correlation coefficient), defined as ble correlations: The correlations between simulateously
N measured gene-expression values are—if any—essentially
& 1 Z Xi — (X)\ (Y —(y) (34) linear. Here we can only speculate about the reasons. To
TN y some extend this may reflect the inherent robustness in
genetic networks: Many gene products are known to be-
where(-) ando denotes the mean and standard deviatiorhave in a highly coordinated fashion. Further, the detection
respectively, for the previously described experimentabf truly non-linear relationships usually requires a large
dataset (Hughest al, 2000). The dataset contains up to amount ofaccuratelymeasured datapoints. It may be eas-
N = 300 expression values for 6314 genes. Genes witily conceived, that measurement errors first affect the de-
less than 300 expression measurements were discardegttability of highly non-linear correlations, while linear
from the analysis, resulting ih = 5345 fully defined relationships are still visible.
rows. For each of th& (L — 1)/2 pair-wise comparisons,
we evaluated the mutual information according to EquaCONCLUSION

tion (33), and the correlation coefficieGky. To compare  \We presented several approaches to estimate the mutual
both measures, we plot the tuple(X, Y), Cxy) for each  information from finite data. Starting with a histogram-
pair of genesX andY, see Figure (8). based method, we discussed the systematic errors due
First, we gonfirm some well-known results: The Pearsorio the finite size of the dataset. As an alternative, a
correlationCyy distinguishes between positive and nega-kernel-based approach was described and exemplified
tive correlations, while the mutual information does not.using artificially generated numbers, as well as publicly

i=1 Ox
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available datasets of full-genome expression profiles. A Kidd,M.J., King,A.M., Meyer,M.R., Slade,D., Lum,P.Y., Stepa-
comparison between the mutual information and the niants,S.B., Shoemaker,D.D., Gachotte,D., Chakraburtty,K., Si-
Pearson correlation for one particular full-genome dataset mon.J., Bard,M. and Friend,S.H. (2000) Functional discovery via
revealed that there are presently no genuinely non-linear & compendium of expression profileSell, 102, 109-126. see
correlations detectable in this dataset. Here we could only http://www.rii.com/publications/celhughes.htm for additional

speculate about the reasons behind this finding, a mor information.
g‘) h di . il be qi | h 9 Igolmogorov,A.N. (1968) Logical basis for information theory and
thorough discussion will be given elsewnhere. probability theorylEEE Trans. Information Theqil4, 662—664.

The authors would like to thank W.Ebeling (HU-Berlin), kyiipack,s. (1959)nformation Theory and StatisticViley, New
J.Kopka (MPIMP) and S.Kloska (Scienion AG, Berlin) for  york.
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ogyi,R. (1998) Cluster analysis and data visualization of large-
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