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ABSTRACT
Motivation: Clustering co-expressed genes usually
requires the definition of ‘distance’ or ‘similarity’ between
measured datasets, the most common choices being
Pearson correlation or Euclidean distance. With the size
of available datasets steadily increasing, it has become
feasible to consider other, more general, definitions as
well. One alternative, based on information theory, is
the mutual information, providing a general measure
of dependencies between variables. While the use of
mutual information in cluster analysis and visualization
of large-scale gene expression data has been suggested
previously, the earlier studies did not focus on comparing
different algorithms to estimate the mutual information
from finite data.
Results: Here we describe and review several approaches
to estimate the mutual information from finite datasets.
Our findings show that the algorithms used so far may
be quite substantially improved upon. In particular when
dealing with small datasets, finite sample effects and other
sources of potentially misleading results have to be taken
into account.
Contact: steuer@agnld.uni-potsdam.de

INTRODUCTION
The ability to monitor whole-genome gene expression
in a parallel and quantitative way represents one of the
latest breakthroughs in experimental molecular biology
(Brazma and Vilo, 2000; Nature, 1999; Schenaet al.,
1995). Simultaneously with experimental progress, in-
creasing methodologies are available for conceptualizing
and unraveling the functional relationships implicit in
these datasets, see D’haeseleeret al.(2000) and references
therein for a short review. One of the most widely used
concepts is, to group together genes with similar patterns
of expression (Eisenet al., 1998). This clustering of
co-expression is thought to allow the inference of shared
regulatory inputs and functional pathways (D’haeseleer
et al., 2000). Even a more modest description would

still assume that it is fairly safe to hypothesize that
co-expressed genes may have something in common in
their regulatory mechanism. Almost all clustering algo-
rithms rely on a definition of pair-wise distances between
measured expression profiles and it is widely recognized
that the choice of the distance may be as crucial as the
choice of the clustering algorithm itself (D’haeseleeret
al., 2000). However, as pointed out by Brazma and Vilo
(2000), the appropriateness of similarity measures has
not been systematically explored and these measures are
used on an ad-hoc basis. In this work, we investigate
the use of mutual information as a measure of distance
between variables. This approach is not entirely new: An
early attempt to use information-theoretic concepts in
this context was given in (Michaelset al., 1998), a more
recent analysis was applied by Butte and Kohane (2000).
We supplement this earlier work by focusing on different
algorithms to estimate the mutual information for small
datasets. As will be shown below, the simple algorithms
used so far may be quite substantially improved upon.
In particular, we will point out potential pitfalls in the
analysis and discuss strategies to overcome them. The
results will be exemplified using a publicly available
dataset corresponding to up to 300 diverse mutations and
chemical treatments inS. cerevisae, see (Hugheset al.,
2000) for further details.

Weshall point out that the detection of relationships be-
tween two or more variables is not restricted to the analysis
of gene expression, but is of great interest in many areas of
science. Variables which are not statistically independent
suggest the existence of some functional relation between
them. While there are several approaches to quantify the
linear dependence between variables, the framework of
information theory (Shannon, 1948) provides ageneral
measure of dependencies between variables. In particular,
a vanishing Pearson correlation does not imply that two
variables are independent. The mutual information there-
fore provides a better and more general criterion to inves-
tigate relationships between variables.

c© Oxford University Press 2002 S231



R.Steuer et al.

THE MUTUAL INFORMATION
We begin with a brief review of information theory
and Shannon entropy. Following Shannon (1948), all
definitions will be given in terms of discrete systems. As
we shall later see, for the application on gene-expression
data, this implies that we have to partition the continuous
values into discrete bins.

The Shannon entropy
Consider a systemA with MA possible states. That is,
a measurement performed onA will yield one of the
possible valuesa1, . . . , aMa , each with its corresponding
probability p(ai ). The average amount of information
gained from a measurement that specifies one particular
value ai is given by theentropy H(A) of the system
(Shannon, 1948; Cover and Thomas, 1991).

H(A) = −
MA∑
i =1

p(ai ) log p(ai ) (1)

As stated by Faser and Swinney (1986), the entropy
H(A) could be described as the ‘quantity of surprise you
should feel upon reading the result of a measurement’. We
summarize some properties ofH(A):

• Assume the outcome of the measurement is com-
pletely determined to beal , that is, the probability
p(al ) is one and all other probabilitiesp(ai ) with
i �= l are zero. In this case we getH(A) = 0.

• For equiprobable events the entropyH(A) is maximal.

p(ai ) = 1

MA
∀i �⇒ H(A) = log MA (2)

• The Shannon entropy remains unchanged, when
adding impossible events.

• The logarithm in Equation (1) always refers to the
natural logarithm except otherwise noted. However,
this is a matter of definition only. If the logarithm to
baseMA is used, the entropy is normalized.

0 ≤ H(A) ≤ 1 (3)

The joint entropyH(A, B) of two discrete systemsA and
B is defined analogously

H(A, B) := −
MA∑
i =1

MB∑
j =1

p(ai , bj ) log p(ai , bj ) (4)

Here p(ai , bj ) denotes the joint probability thatA is in
stateai andB is in statebj . The number of possible states
MA andMB may be different. If the systemsA andB are

statistically independentthe joint probabilities factorize
and the joint entropyH(A, B) becomes

H(A, B) = H(A) + H(B) (5)

In general, however, the joint entropy may be expressed in
terms of the conditional entropyH(A|B)

H(A, B) = H(A|B) + H(B) (6)

with H(A|B) being defined as

H(A|B) := −
MA∑
i =1

MB∑
j =1

p(ai , bj ) log p(ai |bj ) (7)

Since for arbitrary systemsA andB

H(A|B) ≤ H(A) (8)

we get the relation

H(A, B) ≤ H(A) + H(B) (9)

instead of Equation (5). Themutual information I(A, B)

between the systemsA andB is then defined as (Shannon,
1948; Kolmogorov, 1968)

I (A, B) := H(A) + H(B) − H(A, B) ≥ 0 (10)

The Kullback entropy
A different approach to the mutual information was
given by Kullback (1959). TheKullbackentropyK (p|p0)

between two probability distributions{p} and{p0} is

K (p|p0) :=
∑

pi log
pi

p0
i

(11)

The Kullback entropy can be interpreted as theinforma-
tion gainwhen replacing an initial probability distribution
{p0} by a final distribution{p}. ThereforeK (p|p0) estab-
lishes a measure of the distance between the distributions
{p0} and{p}. However, the Kullback entropy is not sym-
metric and thus not a distance in the mathematical sense.

K (p|p0) �= K (p0|p) (12)

The Kullback entropyK (p|p0) is always greater than or
equal to zero and vanishes if and only if the distributions
{p} and{p0} are identical (Cover and Thomas, 1991). In
our case thea priori probability distribution{p0} is given
by the hypothesis of statistical independence between the
two systemsA and B. Thus p0(ai , bj ) is the product of
the marginal distributions.

p0(ai , bj ) = p(ai ) p(bj ) (13)
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The elements of the final distribution{p} are given by the
actual joint probability distributionp(xi , yj ). Given this
choice, the Kullback entropyK (p|p0) becomes†

K (p|p0) =
∑
i j

p(ai , bj ) log
p(ai , bj )

p(ai )p(bj )
(14)

Here K (p|p0) is a measure of ‘distance’ between our
hypothesis that the systems are statistically independent
and the actual joint probability distribution. It can be
easily verified, that for our particular choice of{p} and
{p0}, the Kullback entropyK (p|p0) corresponds to the
mutual informationI (A, B), as defined in Equation (10).
Of interest for us is, that the mutual information is zero
if and only if the measurements on the systemsA and
B are statistically independent. This putsI (A, B) in
contrast to the more commonly used measures, such as
Pearson correlation or Euclidean distance, which quantify
linear dependencies only. A vanishing mutual information
does imply that two variables are independent, while for
the Pearson correlation this doesnot hold. Thus, the
mutual information can be interpreted as a generalized
measure of correlation, analogous to Pearson correlation,
but sensitive to any functional relationship, not just linear
dependencies. Before we continue with the numerical
estimation of the above-defined quantities from finite
dataset, we must remark, that the mutual information itself
is not a distance in the mathematical sense. However, the
definition

D(A, B) := H(A, B) − I (A, B) (15)

satisfies the necessary axioms. In this work, we will focus
on the mutual information as a measure of similarity and
will not explicitly use Equation (15).

NUMERICAL ESTIMATION
Up to now all definitions involved the explicit knowledge
of the respective probability distributions. In general, these
probabilities are not known, but have to be estimated from
measurements. Therefore it remains crucial to investigate
possible strategies to give reliable estimates of the mutual
information for finite datasets.

The Naive Algorithm
Consider a collection ofN simultaneous measurements of
two continuous variablesx and y (to be later identified
with the expression of two genesX andY under various
conditions).

measured: (xi , yi ) i = 1, . . . , N

† In the following
∑

i j is used to denote
∑MA

i =1
∑MB

j =1.
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Fig. 1. Naive estimation of the mutual information for finite data.
Left: The dataset consists ofN = 300 artificially generated
independent and equidistributed random numbers. The probabilities
are estimated using a histogram which divides each axis intoMx =
My = 10 bins. Right: The histogram of the estimated mutual
information I (X, Y) obtained from 300 independent realizations.

The most straightforward and widely used (Butte and
Kohane, 2000; Michaelset al., 1998) approach is, to use a
histogram based technique. Given an origino and a width
h, the bins of the histogram for the variablex are defined
through the intervals[o + mh, o + (m + 1)h] with m =
0, . . . , M . The data are thus partitioned intoM discrete
bins ai andki denotes the number of measurements that
lie within the bin ai . The probabilitiesp(ai ) are then
approximated by the corresponding relative frequencies of
occurrence

p(ai ) → ki

N
(16)

and the mutual informationI (X, Y) between both datasets
X andY may be expressed as

I (X, Y) = log N + 1

N

∑
i j

ki j log
ki j

ki k j
(17)

Here ki j denotes the number of measurements wherex
lies in ai and y in bj . To demonstrate the application of
Equation (17) on experimental data we will now provide
a simple numerical example. Our ‘measurement’ consists
of N artificially generated independent and equidistributed
random numbersx andy.

(xi , yi ) : xi , yi ∈ [0, 1] ∀i = 1, . . . , N

In this case the systemsX andY are independent and we
know the true value of the mutual informationI (X, Y) to
be zero.

Figure 1 (left) shows an example ofN = 300
‘measurements’(xi , yi ). The data was divided intoMx =
My = 10 bins and the mutual informationI (X, Y)

was calculated using Equation (17). By repeating this
experiment with 300 independent realizations ofX andY
we obtain a histogram of estimated values forI (X, Y),
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as shown in Figure 1 (right). What we observe is that
the mutual information not only fluctuates around its true
value, but getssystematicallyoverestimated. In our case
the estimated mutual information is

〈I (X, Y)estimated〉 ≈ 0.15± 0.02

instead of the true valueI (X, Y)true = 0. In the next
section we will discuss the reason for this observed
systematic error.

Finite size effects
It is known that the estimation of entropies from finite
samples may be affected by systematic errors (Grass-
berger, 1988). Herzelet al. (1994) showed that

〈 Hobserved 〉 ≈ H − M − 1

2N
(18)

Here Hobserved denotes the estimated entropy using a
finite sample ofN datapoints to estimate the probabilities
of M discrete states. It should be pointed out that in
this approximation the systematic error isindependentof
the underlying probability distribution. Since the mutual
information, as defined in Equation (10), is a sum of
entropies, we may use this expression to estimate the
systematic error ofI (X, Y) (Herzel and Grosse, 1995;
Grosse, 1996; Roulston, 1999).

〈 I observed 〉 ≈ I (X, Y)true + �I (X, Y) (19)

With

�I (X, Y) = Mxy − Mx − My + 1

2N
(20)

Here Mx, My and Mxy denote the number of discrete
states (histogram bins) with nonzero probability. In our
previous example we usedMx = My = 10 andMxy =
100. With the true value ofI (X, Y) being zero andN =
300 we get

〈 I observed 〉 = �I (X, Y) ≈ 0.14 (21)

which is in good agreement with the numerical result.
Note that by plotting the observed mutual information as
a function of 1/N Equation (20) corresponds to a straight
line. With M = Mx = My we get

〈 I observed 〉 ≈ I + (M − 1)2

2

1

N
(22)

As seen in Figure 2 alinear extrapolation of the mutual in-
formationI (X, Y) in the limit 1/N → 0 may improve the
result considerably, compared to the uncorrected estimates
using a straightforward application of Equation (17).

This is of particular importance for the application on
gene-expression data. These datasets are often charac-
terized by missing values, in pair-wise comparisons the
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Fig. 2. The observed mutual information for finite data (artificially
generated equidistributed random numbers, usingM histogram bins
on each axis). The straight lines denote the theoretical value for
M = 15, 10, 5 (from top to bottom). The numerical values (circles)
were averaged over an ensemble of 300 trials—the errorbars denote
the standard deviation. The numerical simulations are in good
agreement with the values predicted by Equation (20).

mutual information might thus be estimated from datasets
of different size. But as we learn from Equation (20),
the finite-size corrections depend on the number of data-
points, leading to potentially spurious results. Finally, we
must note that Equation (20) represents anapproximation,
which is believed to hold only as long as the number of
datapoints is still considerably larger than the number
of histogram bins. This must be verified prior to any
application (Herzelet al., 1994).

Adaptive partitioning
We shall now discuss one aspect of the mutual informa-
tion, which has been neglected so far. As also accounted
for by Michaels et al. (1998), the mutual information
depends on the distribution of the individual datasets:
I (X, Y) is bounded by the individual entropies ofX and
Y.

I (X, Y) ≤ min{H(X), H(Y)}
Since our perspective is to do a comparison of the mutual
information between datasets, we have to ascertain that
the results are not blurred by the individual distributions
of measured gene-expression values. The most straight-
forward strategy is to normalize all measured datasets to
an identical reference distribution. Since correlations are
preserved under such a transformation, this does not af-
fect the validity of our analysis. Suppose the datasetX has
an arbitrary distributionp(x) which is generated by the
rule x = h(ξ) with ξ having the desired well defined sim-
ple probability distribution (e.g. uniform or Gaussian) and
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h being a static monotonic function. The primary task is
now to approximate the inverse function.

ξ = h−1(x)

This is usually done by rank ordering the elements of
{ξ} to the same rank ordering as the elements of{x}
(Rappet al., 1994; Schreiber and Schmitz, 2000). Two
sets have the same rank ordering if thej th element is
the kth largest in both sets. In practical applications we
rank-order the data to a uniform distribution with zero
mean. Alternatively, one might use a equivalent method,
which mimics the above described transformation. Instead
of using fixed intervals to divide the axes into discrete
bins, an adaptive partitioning method is applied. That
is, each axis is partitioned intoM discrete bins, each
bin containing (approximately)k = N/M datapoints
Consequently, the width of each interval is determined by
the local density of the measured dataset.

The Fraser–Swinney algorithm.Along similar lines,
Faser and Swinney (1986) developed a sophisticated
algorithm for the estimation of the mutual information in
one of the ’classic’ papers on this topic. Since this algo-
rithm also involves the idea of adaptive partitioning and
is sometimes used in bioinformatic analysis (Samoilov
et al., 2001), we shall shortly outline the essential ideas.
Instead of choosing a fixed number of intervals, they
construct ahierarchyof partitionsPm, which recursively
divide the (x, y)-plane in smaller and smaller intervals
(histogram bins). The crucial observation is, that regions
in the (x, y)-plane, where the datapoints are equidis-
tributed cease to contribute further to the estimated
mutual information under refinement of the partition and
there is no point in subdividing this region further. Thus,
the partition in regions of the(x, y)-plane where the
datapoints are rather dense becomes finer. Less occupied
or empty regions are covered with larger boxes. However,
as pointed out by Palus̆ (1993), this algorithm, though
mathematically ingenious, does not lead to a substantial
improvement in the estimation of mutual information
compared to a simple adaptive partitioning approach.

Experimental data: examples
Before we continue with a more sophisticated approach to
estimate the mutual information, we shall shortly outline
the application of some of the above described concepts
on experimental data. As an example we will use three-
hundred full-genome expression profiles fromS. cerevisae
drawn from a publicly available dataset, see Hughes
et al. (2000) for availability and experimental methods.
The complete dataset contains up toN = 300 cDNA
experiments, but due to missing values the number of
simultaneously measured pairs might be slightly less. We
start with visual inspection of the data: Figure 3 shows
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Fig. 3. Examples of simultaneous measurements of expression data.
Each dot corresponds to the values (log-transformed) of two open
reading frames (ORFs), given on thex- andy-axis, from one cDNA
microarray experiment.

examples of simultaneous measurements of expression
data.

Each dot corresponds to the log-transformed values of
two open reading frames (ORFs), from one cDNA mi-
croarray experiment. As could be easily observed, the four
examples show varying degrees of correlation. In particu-
lar, exampleB suggests a strong linear relationship, while
the examplesA, C, andD are not easily classified by eye.
Not surprisingly, none of the datasets seems uniformly dis-
tributed. On the contrary, we observe large fluctuations
and isolated datapoints, which make a computation of the
mutual information using a fixed box size problematic. As
already noted, it is preferable to have variables of known
range and uniform density. Here we achieve this by replac-
ing all values with their respective rank order.

(xi , yi ) −→ (rk(xi ), rk(yi )) i = 1, . . . , N ≤ 300

Figure 4 shows the rank-ordered version of our examples.
The data are now distributed homogeneously on the

x- and y-axis, with the correlations within each dataset
preserved.

Testing the significance.Prior to applying any algorithm
to the datasets, we have to become clear about how the
results of such an analysis should be interpreted. Generally
speaking, we set up anull hypothesisand test, whether
it is consistent with our data. Here, the most natural null
hypothesis is to assume that the datasetsX and Y are
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Fig. 4. The rank-ordered representation of the four datasets. Each
value was replaced by its respective rank order. Note that the
transformation preserved the correlations within each dataset. See
text for details.

independent. Only if the observed mutual information is
not consistent with this null hypothesis, we may claim that
the null hypothesis is wrong, and the data thus contains
significant correlation. However, the rejection of a given
null hypothesis is never absolute, but always with respect
to a certain significance level. Thus, in the interpretation of
our test we have to follow Schreiber and Schmitz (2000):
A rejection at a given significance level means that if
the null hypothesis is true, there is still a certain small
probability to see the structure we detected. Non-rejection
means even less: Either the null hypothesis is true, or
the statistics we use lacks the power to discriminate the
data from it. To test our null hypothesis we construct
an ensemble ofsurrogatedatasets{Xs, Ys}, consistent
with the null hypothesis. There are two main approaches:
Typical andconstraintrealization. Constraint realizations
are obtained by creating random permutations of the
original dataX andY. The values are constrained to take
on the same values as the data, just in random order.

For a typical realization, we use the data to infer the
marginal probability distributions and draw new datasets
according to this distribution (Schreiber and Schmitz,
2000). Here, we will only use the first approach. The next
step is then to estimate mean and standard deviationσ of
the observed mutual information using the ensemble of

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4  A

Number of Intervals M

m
ut

ua
l i

nf
or

m
at

io
n

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

1.2

Number of Intervals M

m
ut

ua
l i

nf
or

m
at

io
n

 B

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

 C

Number of Intervals M
m

ut
ua

l i
nf

or
m

at
io

n
2 4 6 8 10 12

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of Intervals M

m
ut

ua
l i

nf
or

m
at

io
n

 D

Fig. 5. The estimated mutual informationI (X, Y) using the naive
algorithm on the rank ordered datasets as a function of the number of
intervalsM = Mx = My. The average mutual information obtained
from an ensemble of 300 surrogates is drawn as a solid line, with
errorbars denoting the standard deviationσ . The largest value found
within the ensemble of surrogates is represented by the dotted line.

surrogate data. The significanceS is given by

S := I (X, Y)data − 〈I (X, Y)surr 〉
σsurr

(23)

Since this approach implicitly assumes knowledge about
the distribution of the mutual information (e.g.|S| ≥ 2.6
can be treated as significant at a level of 99% assuming
a Gaussiandistribution), it was suggested to use a more
general reasoning (Schreiber and Schmitz, 2000; Theiler
et al., 1992): First a probabilityα of false rejection is
selected. Then, for a one sided test,Ms = 1

α
−1 surrogates

are generated. Including the original data, we now have an
ensemble of 1/α datasets. Thus, the probability that our
measurement has the largest mutual information within
the whole ensemble merely by coincidence is exactly
α. The null hypothesis could therefore be rejected at a
significance level(1 − α) · 100%.

Wenow give an example in term of the earlier described
experimental datasets: Figure 5 shows the estimated
mutual informationI (X, Y) using the naive algorithm on
the rank ordered datasets as a function of the number
of intervals M = Mx = My. The average mutual
information obtained from an ensemble of 300 surrogates
is drawn as a solid line, with errorbars denoting the
standard deviationσsurr. The largest value found within the
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ensemble of surrogates is represented by the dotted line.
As expected, dataset B shows strong deviations from its
shuffled counterparts. Also for dataset D the hypothesis
of statistical independence must be rejected, given our
previously defined significance level.

However, we must comment on the interpretation of
the chosen significance level: Our long-term goal is to
identify correlated, and thus presumably co-regulated,
genes within the complete genome. Consequently, we are
not only concerned with individual pair-wise correlation
measures, but with the application of such concepts on
the complete dataset, usually involving up to∼ 106 pair-
wise comparisons. Thus, even for a comparably large
significance, theabsolute numberof non-correlated pairs
which show a ‘significant’ mutual information (false
positives) might still be large. When interpreting large
amounts of data, we have to keep this in mind.

KERNEL DENSITY ESTIMATION
We will now resume our considerations towards an
effective algorithm for estimating the mutual information
between two variables. Until now we have focused on
a histogram-based approach, dividing each axis intoM
discrete non-overlapping intervals. An alternative to this
method, based on kernel density estimation (KDE), was
suggested by Moonet al. (1995) and was found to be
superior to the histograms in terms of (i) a better mean
square error rate of convergence of the estimate to the
underlying density, (ii) an insensitivity to the choice of
origin, and (iii) the ability to specify more sophisticated
window shapes than the rectangular window for frequency
counting (Moonet al., 1995; Silverman, 1986). Since
this approach aims at improving the estimate of the
probability densityp(x) in Equation (14) and is applicable
in many other situations apart from the estimation mutual
information, we will give a short overview of kernel
density estimation in the following, for a comprehensive
account we refer the reader to Silverman (1986). The first
step is to free the histogram from a particular choice of
origin and bin positions. This results in thenaiveestimator

f̂ (x) = 1

2Nh

N∑
i =1

�(h − |x − xi |) (24)

where�(x) denotes the Heaviside function

�(x) =
{

1 if x > 0
0 if x ≤ 0 (25)

A graphical interpretation of Equation (24) is that the
estimator is obtained by additivly putting boxes of width
2h and height(2Nh)−1 on each observation.

Figure 6 shows an example for the naive estimator using
N = 600 numerically generated datapoints drawn from
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Fig. 6. Density estimation using two different approaches. The
underlying bimodal probability distribution is shown as a dotted
line (two Gaussian distributions at±1, both with standard deviation
σ = 0.5). The probability density estimateŝf (x) were obtained
from a artificially generated sample ofN = 600 datapoints. Left:
The histogram estimator using a bin widthh = 0.25. Right: The
naive estimator usingh = 0.2.

a bimodal distribution (dotted line). There is no particular
reason to stay with rectangular cubes as bins. Other shapes
still lead to a valid estimate of the probability density. With
a generalized weight or kernel functionK (x) the kernel
density estimatorf̂ (x) is given by

f̂ (x) = 1

Nh

N∑
i =1

K

(
x − xi

h

)
(26)

The parameterh is calledsmoothing parameteror window
width and the kernel functionK (x) is required to be a
(normalized) probability density. It may be easily verified
that in this casef̂ itself is a probability density. Further,
f̂ will inherit all the continuity and differentiability
properties of the kernelK . For simplicity we focus on the
Gaussian kernel. The density estimate then reads:

f̂ (x) = 1

N

1

h
√

2π

N∑
i =1

exp

(
− (x − xi )

2

2h2

)
(27)

Following the interpretation of the naive estimator, the
Gaussian estimator may be explained as placing Gaussian
‘bumps’ at the position of each observationxi . The
Gaussian estimator is then given by the sum of ‘bumps’.
Crucial again is the choice of the bandwidthh: If
h is chosen to small spurious fine structure becomes
visible, while if h is too large all detail, spurious or
otherwise, is obscured. While there are several methods
for choosing an appropriate bandwidth available, most of
them are associated with a considerable computational
burden (Moon et al., 1995). As a tradeoff between
computational effort and performance one may choose
the ‘optimal’ bandwidth as the one that minimizes the
mean integrated square error, assuming the underlying
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distribution is Gaussian. Following Silverman (1986), the
optimalGaussianbandwidthhopt is given by

hopt =
(

4

3N

) 1
5

σ ≈ 1.06σ N− 1
5 (28)

whereσ denotes the standard deviation of the data. For
the estimation of the mutual information, we also need
the two-dimensional probability densityp(x, y). With the
abbreviation

di (x, y) =
√

(x − xi )2 + (y − yi )2

the two-dimensional Gaussian kernel estimatef̂g(x, y)

reads

f̂g(x, y) = 1

Nh2

1

2π

N∑
i =1

exp

(
−di (x, y)2

2h2

)
(29)

As in the one-dimensional case, an appropriate value
for h depends on the unknown density being estimated.
Under the assumption that this density is Gaussian, an
approximately optimal value is given by

hopt ≈ σ

(
4

d + 2

)1/(d+4)

N−1/(d+4) (30)

with d = 2 being the dimension of the dataset andσ the
average marginal standard deviation (Silverman, 1986).

Estimating the mutual information
The mutual informationI (X, Y) is a functional of proba-
bility densities. Thus an obvious way to find an estimate
for I (X, Y) is to find estimates of the densities and then
to substitute these into the required integral. However, this
is not as trivial as it may seem. Up to now, we have al-
ways referred to theprobability of discrete states, while
by kernel estimation we obtain probabilitydensitiesonly.
Remarkably enough, the discretization of the(x, y)-plane
into infinitesimal bins of size�V = �x �y corresponds
to the continuous form of the mutual information.

Î (X, Y) =
∫

x

∫
y

f̂ (x, y) log
f̂ (x, y)

f̂ (x) f̂ (y)
dx dy (31)

Note that such a correspondence doesnot hold for the
individual entropies used in Equation (10). Quite on
the contrary: For a random variable with an arbitrary
distribution the continuous expression for the entropy is
finite, while the discrete diverges towards infinity as the
bin size tends to zero‡.

To evaluate Equation (31), we have to integrate over a
smooth function. The choice of the integration steps�x

‡ However, in Equation (10) these terms cancel out.

and�y could thus be based entirely on standard proce-
dures for numerical integration. Note that the discretiza-
tion introduced by the numerical integration does not cor-
respond to our earlier attempts to partition the data. Fig-
ure 7 shows the estimated mutual information for the rank
ordered datasets A to D as a function of the smoothing
parameterh. The results were compared to uncorrelated
datasets, using an ensemble of 100 randomly shuffled re-
alizations. As could be observed, the standard deviation
obtained from the ensemble of surrogates is much smaller
compared to the histogram-based algorithm. The discrim-
inability between the correlated and uncorrelated datasets
is thus enhanced. Further, the estimated mutual informa-
tion is much less sensitive to the choice of the smooth-
ing parameterh, than the probability density itself. For all
datasets the ‘optimal’ smoothing parameterhopt (denoted
with an arrow) seems to be an appropriate choice.

A simpler algorithm. Depending on the application,
the numerical integration of Equation (31) might put
high demands on computational power. So we may
ask for strategies to simplify the algorithm. As already
noted in the introduction, entropy measures represent
an averageover a probability distribution. According to
Equation (14), the estimated mutual information may thus
be written as

Î (X, Y) =
〈
log

f̂ (x, y)

f̂ (x) f̂ (y)

〉
(32)

Under the assumption that our dataset is a faithful sample
of the underlying probability distribution, we get

Î (X, Y) = 1

N

N∑
i =1

log

[
f̂ (xi , yi )

f̂ (xi ) f̂ (yi )

]
(33)

However, we must note that Equation (33) should be ap-
plied with caution. For example, the individual datapoints
have to be independent realizations of the underlying
distribution—a requirement not always fulfilled by
experimental data.

NETWORK ANALYSIS AND RESULTS
In the last section, we discuss the potential results ob-
tained from a cluster analysis based on mutual informa-
tion. First of all, clustering based on Pearson correlation
or Euclidean distance is probably the most widely used
method for analyzing and visualizing expression data. It
has already been shown extensively, that the results ob-
tained from such an analysis leads to biologically relevant
insights (Eisenet al., 1998). Also, direct applications of
mutual information as a measure of distance showed that
it groups together genes of known similar function (Butte
and Kohane, 2000; Daubet al., 2002). In the present work,
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Fig. 7. The estimated mutual information for the (rank-ordered)
datasets A to D as a function of the smoothing parameterh, using
a Gaussian kernel density estimator. Each result was compared to
an ensemble of 100 shuffled surrogates (lower dots) with errorbars
denoting the standard deviation. The dotted line gives the maximal
mutual information found within the ensemble of surrogates. In each
plot the optimal smoothing parameterhopt is denoted with an arrow.

we will therefore focus solely on acomparisonof the mu-
tual information to the Pearson correlation. Do we detect
non-linear relationships in the data, which were previously
missed by linear measures? To answer this question, we
evaluate both, the pair-wise mutual information and the
Pearson correlation (correlation coefficient), defined as

Ĉxy = 1

N

N∑
i =1

(
xi − 〈x〉

σx

) (
yi − 〈y〉

σy

)
(34)

where〈·〉 andσ denotes the mean and standard deviation
respectively, for the previously described experimental
dataset (Hugheset al., 2000). The dataset contains up to
N = 300 expression values for 6314 genes. Genes with
less than 300 expression measurements were discarded
from the analysis, resulting inL = 5345 fully defined
rows. For each of theL(L − 1)/2 pair-wise comparisons,
we evaluated the mutual information according to Equa-
tion (33), and the correlation coefficientĈxy. To compare
both measures, we plot the tuple (Î (X, Y), Ĉxy) for each
pair of genesX andY, see Figure (8).

First, we confirm some well-known results: The Pearson
correlationĈxy distinguishes between positive and nega-
tive correlations, while the mutual information does not.
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Fig. 8. A comparison between the mutual informationI (X, Y) and
the Pearson correlation̂Cxy. Each dot corresponds to the tuple
( Î (X, Y), Ĉxy) for a pair of genesX and Y. Plotted is only
a representative fraction of theL(L − 1)/2 possible pair-wise
comparisons. See text for details.

Positive correlations are much more frequent than nega-
tive ones. Further, the Pearson correlationĈxy is bound by
the mutual information: Except for numerical or statisti-
cal errors, a situation with high Pearson correlation|Ĉxy|
and low mutual information does not exist. However, more
important for us is, that within the analyzed dataset there
seems to be almost a one-to-one correspondence between
mutual information and|Ĉxy| (apart from statistical fluc-
tuations). As could be observed in Figure (8) we detectno
genuinely non-linear correlation. This does have implica-
tions for further analysis. Most of all, it means that pre-
vious investigations using Pearson correlation as a mea-
sure of similarity for gene-expression measurements were
justified and did not miss a significant fraction of possi-
ble correlations: The correlations between simulateously
measured gene-expression values are—if any—essentially
linear. Here we can only speculate about the reasons. To
some extend this may reflect the inherent robustness in
genetic networks: Many gene products are known to be-
have in a highly coordinated fashion. Further, the detection
of truly non-linear relationships usually requires a large
amount ofaccuratelymeasured datapoints. It may be eas-
ily conceived, that measurement errors first affect the de-
tectability of highly non-linear correlations, while linear
relationships are still visible.

CONCLUSION
We presented several approaches to estimate the mutual
information from finite data. Starting with a histogram-
based method, we discussed the systematic errors due
to the finite size of the dataset. As an alternative, a
kernel-based approach was described and exemplified
using artificially generated numbers, as well as publicly
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available datasets of full-genome expression profiles. A
comparison between the mutual information and the
Pearson correlation for one particular full-genome dataset
revealed that there are presently no genuinely non-linear
correlations detectable in this dataset. Here we could only
speculate about the reasons behind this finding, a more
thorough discussion will be given elsewhere.

The authors would like to thank W.Ebeling (HU-Berlin),
J.Kopka (MPIMP) and S.Kloska (Scienion AG, Berlin) for
stimulating discussion.
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