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Regular and chaotic phase synchronization of coupled circle maps
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We study the effects of regular and chaotic phase synchronization in ensembles of coupled nonidentical
circle maps~CMs! and find phase-locking regions for both types of synchronization. We show that synchro-
nization of chaotic CMs is crucially influenced by the three quantities:~i! rotation number difference,~ii !
variance of the phase evolution, and~iii !relative duration of intervals of phase increase respect decrease. In the
case of regular CMs, only variance and rotation number difference are important. It is demonstrated that with
increase of noncoherence of phase evolutionsin the regular and chaotic regime, the regions of the main~1:1!
synchronization are usually decreased. We present a chaotic synchronization in the systems of coupled non-
identical circle maps where phase entrainment occurs and it is not accompanied by bifurcations of the chaotic
set. For ensembles~chains! of coupled CMs with linear and random distributions of the individual frequencies
soft and hard transitions to global synchronization are found.
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I. INTRODUCTION

Synchronization of oscillations is one of the fundamen
nonlinear phenomena in biology, physics, chemistry, co
munication, and many other branches of science and e
neering @1#. Synchronization of periodic systems studi
since Huygens is understood now sufficiently well. The a
pearance of periodic synchronization is manifested throug
frequency entrainment that implies phase locking, i.e.,
existence of bounded shifts between the phases of intera
elements. Recently, the phenomenon of phase locking
been also observed in systems of coupled chaotic oscilla
@2#. That chaotic phase synchronization~CPS! has been stud
ied in the cases~i! of an external force acting on a chaot
system@3,4#, ~ii ! of interaction between two chaotic system
@5# and in ensembles of~iii ! globally @6# and~iv! locally @7#
coupled chaotic oscillators. First examined for paradigma
dynamical model systems: Ro¨ssler and Lorenz oscillators
the CPS has been observed in many real systems, in par
lar electrically coupled neurons@8,9#, ecological systems
@10#, human cardiorespiratory system@11#, and in magne-
toencephalograms@12# and electroencephalograms@13#. All
these systems are time continuous. Many systems in the
ture and technology and their corresponding mathema
models are discrete in time, because of that it is also ne
sary to consider analogous synchronization phenomen
ensembles of coupled time-discrete elements.

In this paper we study conditions for an onset of regu
and chaotic phase synchronization in small~two elements!
and large~chains! ensembles of coupled nonidentical circ
maps~CMs!. For networks of coupled maps different pro
lems of synchronization, pattern formation, and spatiotem
ral chaos have been extensively investigated@14–16#. But in
most previous studies identical coupled elements were
lyzed. It is evident that for networks of coupled identic
elements the investigation of CPS has no sense becaus
1063-651X/2001/65~1!/016216~13!/$20.00 65 0162
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individual frequencies of the uncoupled elements already
incide. We consider here coupled nonidentical elements,
a more realistic case that usually arises in nature where
systems are never identical. In contrast to other time-disc
dynamical systems, the CMs are such objects for which
phase variables yet exist that allows to use the criteria
synchronization similar to criteria used by the detection
CPS in time-continuous systems. Synchronization in
sembles of complex systems has found important pract
applications in electronics, radioengeneering or commun
tions, in particular, in networks of digital phase-locked loo
~DPLL! @17–21#. Systems of coupled CMs can be used a
rather simple but a paradigmatic model to investigate p
cesses of mutual synchronization in coupled relaxation s
tems. In this case, the phase variable can be interpreted a
onset of a new impulse@1,22#. The system under conside
ation belongs to the broad class of ‘‘pulse-coupled’’ syste
arising in many branches of science and technology; e
pulse-coupled systems have been investigated as mode
neural networks@23#, cardiac pacemaker cells@24#, or in
communication@25#. It is important to note that systems wit
the phase variable as a dynamical variable but time cont
ous are subject of great interest in connection with differ
applications in biological@26# and chemical@27# systems,
Josephson junction arrays@28#, or laser arrays@29#.

The paper is organized as follows. In Sec. II we shor
describe the behavior of the CMs under study, and introd
three main characteristics of the phase evolution of a sin
CM. A model of chains of coupled CMs and criteria of sy
chronization in these chains are discussed in Sec. III. In S
IV we present our numerical results of regular and chao
phase synchronization in two-element systems. Section
devoted to synchronization in chains of coupled CMs w
linear and random distribution of the natural frequenci
The results are summarized in Sec. VI.
©2001 The American Physical Society16-1
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FIG. 1. Distribution of rotation numbers o
the circle map~1!. Several regions where the ro
tation numbers are rational (r5p/q) are pre-
sented. From the bottom to the top the differe
gray level regions are ordered as shown on
right side. Between these regions there exist~but
not presented! relatively small regions with other
rational rotation numbers.
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II. DYNAMICS OF INDIVIDUAL CIRCLE MAP

We consider the circle map as the basic element of
ensembles studied here,

xk115b1xk2F~xk!. ~1!

This map relates the phase variablexk at adjacent timesk
51,2, . . . ; bP@0;2p# is a positive parameter that can b
interpreted as frequency;F(x) is a piecewise linear
2p-periodic function of the formF(x)5cx/p defined in the
interval @2p,p#, andc is the control parameter. System~1!
is one of the basic models in nonlinear dynamics, and it
been studied in many mathematical~cf., Ref. @30#!, physical
~cf., Ref.@31#! and technical~in particular, in the theory digi-
tal phase-locked loops@20,32,33#! issues. Recently, fo
piece wise functionF(x) diffusive like phenomena hav
been observed in such a system@34#. Our choice of a piece-
wise linear functionF(x) is motivated not only by simplicity
of consideration~see, for example, Refs.@21,34#! but also by
the fact ~see Case 3 below! that chaos is observed in th
system for allc,0 and there is no stable periodic orbits f
any c,0. Moreover, our numerical simulations show th
the effects observed in this paper also exist for other fu
tions F(x), in particular, forF(x)5c sin (x).

First, we shortly recall basic properties of this circle ma
It has forb,ucu a unique fixed pointxf5bp/c that is stable
if xfP@0;p# ~Case 1 below! and unstable ifxfP@2p;0#
~Case 3!.

The dynamics of an individual CMs can be determined
the rotation numberr, which in both types of dynamics
~regular or chaotic! is defined as the average growth rate
the phase

r5
1

2p
lim

M→`

xM2x1

M
, ~2!

whereM is the number of iterations.
There are three types of behavior of Eq.~1! @33,35#
~i! Case 1:

U12
c

pU,1. ~3!

Here the map derivative is less than one, i.e., it is loca
contracting. In the intervalb,c the fixed point is stable and
there occur three variants:
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~a! For every value ofb Eq. ~1! has the only attractive se
V. For a rational rotation numberr5p/q this set is an at-
tracting periodic trajectory of periodq; for an irrational ro-
tation number the setV is a Cantor set on which Eq.~1! acts
as a rotation.

~b! With b varying, the rotation numberr depends con-
tinuously onb and does not decrease monotonously.

~c! For eachr5p/q there is a corresponding interval ofb
that is not reduced to a point. The dependence ofr on b is
shown for different values ofc in Fig. 1. With increasing of
c, the number and width of intervals ofb, in which the rota-
tion numbers are rational, are increased. Thus at relativ
large valuesc even uncoupled CMs are synchronized. As w
will show below, this property plays a decisive role for th
synchronization in ensembles of coupled regular CMs.

~ii ! Case 2:

U12
c

pU51. ~4!

If 1 2c/p51, then Eq.~1! becomes a continuous map o
a circle rotating throughb. In this case the dynamics of tw
coupled CMs have been considered in Ref.@18#. If 12c/p
521, then Eq.~1! remains a continuous map of a circle.

~iii ! Case 3:

U12
c

pU.1. ~5!

Here we are in a chaotic regime because the Lyapu
exponentl5 lnu12(c/p)u is positive. Its nonwandering se
consists of a finite number of intervals on which repelli
periodic orbits are dense, and there is a finite num
of repelling periodic orbits. For almost all values of th
parameterb this set is a nontrivial attractor. The dependen
of the rotation numbers on the individual frequency f
small ucu looks like the case of periodic motions~Fig. 1!, i.e.,
there are a number of intervals with rational rotati
numbers. If 2c increases, all these regions are firs
increase and then shrinking and consequently the rota
6-2
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REGULAR AND CHAOTIC PHASE SYNCHRONIZATION . . . PHYSICAL REVIEW E65 016216
numbers are irrational in an increasing part of the conside
interval of b. As we will show below, this is manifested i
different synchronization properties of regular and chao
motions at relatively largec.

The parameterc defines the coherence properties of t
motions. As a measure of the power of coherence, we use
varianceD that can be defined for largek as

D5^~xk112xk2^xk112xk&!2&, ~6!

^.& defines time averaging. So forc50 ~Case 2!, the rota-
tions are completely coherent andD50. If ucu grows, the
noncoherence properties of rotation are increased. The
pendence ofD on the parameterc at different values ofb
shows rather different features~Fig. 2!: for periodic motions
it can be well fitted by the curveD50.42c2.5, but for chaotic
motions by the quadratic curveD50.29c2. We explain this
effect as follows. For regular rotations~Cases 1 and 2! the
phasexk only monotonously increases. For chaotic motio
however, we can distinguish two different types of pha
evolution: In the first typexk only monotonously increases
The second type is represented as an alternation of inter
where the phase increases, with intervals, where the p
decreases. Both types of phase evolutions in the case
regular (c50,0.5) and chaotic (c520.5,21.0,21.5,22.0,
22.5,23.0) motions are presented in Fig. 3. Forb.0 the
mean duration of phase increase intervals is usually con
erably larger than the mean duration of phase decrease i
vals. Therefore, this type of motion looks like intermitten
of relatively large intervals of phase increase and short in
vals of phase decrease. It can be easily shown that the
type of the motion exists forb,2c. Both types of behavior
can be characterized by the ratio of the number of itera
where the phase is increasing and where the phase is dec
ing. Let us denoteNg the number of phase increase iteratio
and Nd the number of phase decrease iteration and loo
the parameterg5Nd /Ng . Then, we easily see that forb
,2c, g50, but otherwisegÞ0 ~Fig. 4!.

FIG. 2. The varianceD of xk ~6! vs c for map ~1! at different
values of the frequency parameterb.
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We will show below that for the synchronization of ch
otic CMs the three parameters: varianceD, parameterg, and
difference of rotation numbers of interacting elements
crucial, whereas for regular CMs only the varianceD and the
difference of rotation numbers are important.

III. ENSEMBLES OF COUPLED CIRCLE MAPS AND
CRITERIA OF SYNCHRONIZATION

As the main model we study a chain of nonidentical CM
that are locally coupled

xn
k115bn1xn

k2F~xn
k!1d@sin~xn11

k 2xn
k!1sin~xn21

k 2xn
k!#.

~7!

Here n51, . . . ,N corresponds to the number of individu
CMs andd is the coupling coefficient. The parametersbn
characterize the partial frequencies. We assume that the
tem is subjected to free-end boundary conditions:x0

k5x1
k and

FIG. 3. Phase evolution atb50.6 for differentc for map ~1!.

FIG. 4. Ratio of the duration of phase decrease intervals to
duration of phase increase intervals in dependence onc at different
values ofb.
6-3
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xN11
k 5xN

k . System~7! can be regarded as a model of a m
tichannel chain of partial DPLL connected in parallel
phase-mismatching signals. To realize these connection
the chain in its simplest variant, it is necessary to comp
the output signals of two neighboring DPLL generators w
the help of a separate phase discriminator and then to a
the obtained phase-mismatching signal for the freque
control of both generators. Some similar one dimensio
and two dimensional in space models of coupled ident
CMs have been studied in Ref.@21#.

We analyze the nonlinear coupling between partial e
ments in the form ofsinusof phase differences also becau
such kind of coupling naturally arises in models of e
sembles of weakly coupled time-continuous oscillators. R
spectively, pattern formation and synchronization in n
works of phase oscillators with coupling between near
neighbors have been investigated in Ref.@36#. For popula-
tions of such periodic elements with different partial freque
cies, the existence of global synchronization is observed,
all elements of the population are synchronized, but also s
eral clusters of synchronized rotators exist. In contras
often used types of diffusive coupling like linear phase d
ference between neighbors,

d~xn11
k 2xn

k!1d~xn21
k 2xn

k!, ~8!

or through the same nonlinear functions as individual fu
tions for each element

d~F@xn11
k #2F@xn

k# !1d~F@xn21
k #2F@xn

k# !, ~9!

thesinustype of coupling exhibits some special properties
the dynamics of populations of time discrete elements. I
important to emphasize that thesinuscoupling~7! generates
mutual synchronization already for a very small couplingd
compared to the cases~8! and~9!. To give one example for a
two-element system atc50.05 and b150.1, the critical
value ofDb5b22b1 for which 1:1 synchronization can b
achieved isDb50.01 for Eqs.~8! and ~9!, whereas we ge
for the nonlinear coupling~7! synchronization in the large
rangeDbP@0:6# ~see also Fig. 5!.

Another speciality here is that all presented types of c
pling can lead to a loss of synchronization when the coup
parameterd is increased~see also Ref.@37#!. To show that
we consider the system of two coherent (c50) CMs coupled
as in Eq.~7!. By introducing a new variableuk5x2

k2x1
k , the

mutual dynamic of two CMs can be defined by the followi
sinuscircle map:

uk115Db1uk22d sinuk. ~10!

The fixed pointu* 5arcsin(Db/2d) is stable ford,1 and
corresponds to a 1:1 regular synchronization in the orig
model ~7! with constant in time phase differenceu* . With
increasing of parameterd, a period doubling cascade take
place that ends up in a chaotic behavior of the oscillat
type ~i.e., uk is bounded!. Note that the rotation numbers o
the coupled CMs coincide here. But at some critical va
d* , the oscillatory chaotic attractor is changed into a ro
tionally chaotic one~i.e., uk is unbounded! that leads to the
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loss of synchronization in the two-element model~7!. This
effect will be discussed in more detail in Sec. IV A. Also fo
the N-element system~7! in dependence on the number
elements and on the parameterc, there is a critical coupling
valued* corresponding to the transition from synchronous
nonsynchronous behavior. Note that adesynchronizationbi-
furcation ~see Ref.@37#! in which the increase of the cou
pling between elements in the coupled ensembles may de
bilize the synchronous state are observed in many phys
systems@38#. The phenomenon, calledshort-wavelength bi-
furcation, has been also seen in systems with phase variab
such as phase-locked loops or Josephson junctions@20,39#.

We will use two criteria to test form1 :m2 synchroniza-
tion, wherem1,2 are integers.m1 :m2 phase synchronization
of regular rotations as well as chaotic regimes between
CMs can be defined as phase entrainment or locking

um1xn
k2m2xn11

k u,const, ~11!

for all k51,2, . . . . Aweaker criterion for the analysis o
both types of synchronization in a chain of coupled CMs
based on their rotation numbers~2!, i.e., we test for

m1rn5m2rn11 . ~12!

Because of its simplicity of calculation and convenience
presentation we often use in the following the criterion~12!.
By the study of synchronization effects in a chain of coup
CMs, the fulfillment of the conditions~11! and ~12! for all
n51, . . . ,N21 means the existence of global synchroniz
tion. If these conditions are satisfied only for several neig
boring elements, we have a regime of cluster synchron
tion.

FIG. 5. Critical values of couplingd1 andd* corresponding~i!
to the transition from nonsynchronous to synchronous motion~left
curve! and ~ii ! to the transition from synchronous to nonsynchr
nous motion~right curve! in the model~13! vs frequency mismatch
Db. Between both curves there is the region of 1:1 synchronizat
6-4
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IV. SYNCHRONIZATION OF TWO COUPLED CIRCLE
MAPS

First, we investigate systems of two coupled CMs, d
scribed by the following equations:

x1
k115b11x1

k2F~x1
k!1d sin~x2

k2x1
k!,

~13!
x2

k115b21x2
k2F~x2

k!1d sin~x1
k2x2

k!.

As mentioned above, the effects of mutual regular a
chaotic phase synchronization of two coupled systems ca
characterized by the ratio of their individual rotation num
bersr1,2 or by thewinding number:w5r2 /r1 and by the
evolution of the phase differences of CMs in time. It
important to emphasize that there is a remarkable differe
in the synchronization for regular and chaotic CMs.

A. Regular synchronization

First, synchronization of two coupled CMs in regular r
gimes is studied.

1. Coherent case (cÄ0)

In the coherent case, i.e.,c50, the critical value of the
coupling d1 corresponding to the transition from nonsy
chronous to 1:1 synchronous rotations can be easily fo
from the conditions of existence and stability of the fix
point for thesinusCMs ~10!: d15Db/2. Also the other criti-
cal value of couplingd* corresponding to the transition from
synchronous to nonsynchronous rotations can be found f
the map~10! ~cf., Refs.@40,41#!. With increase ofd the tran-
sition to chaos occurs via the period doubling scenario. T
way we get chaos of an oscillatory type. The chaotic traj
tory belongs always to the interval@2p;p#, i.e., the phase
differenceuk is bounded. In spite, that the rotation in o
model~13! is chaotic, both criteria~11! and~12! are satisfied
and 1:1 synchronization still exists. At some critical value
d* , the chaotic regime becomes rotational, i.e., the ph
differenceuk unrestrictedly increases. This transition fro
oscillatory to rotational behavior of the phase difference
accompanied with a change in the geometry of the cha
set. A sudden change in the type of the chaotic set occurs
an interior crises@42#; at this transition the 1:1 synchroniza
tion in the model~13! is violated. In Fig. 5 the dependence
of the critical valuesd1 andd* on the frequency mismatc
Db are presented. As we will show below, these both val
d1 and d* can be usually regarded as the lower and
upper estimates of the boundaries of the 1:1 synchroniza
region for both regular and chaotic rotations.

2. Noncoherent case (cÅ0)

Now we analyze the synchronization properties of
regular CMs at different values of the coherence parametc.
As one can see from Fig. 1 for fixed valuesb1 andb2 with
increasing parameterc, the individual rotation numbersr1
andr2, and therefore, the winding numberw can be varied.
Hence, we will study the two different cases of frequen
distribution. We choose the individual frequenciesb1,2 in
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such a way that for all considered values ofc, the rotation
numbers of the uncoupled CMs are~i! identical or~ii ! can be
different. The structure of the synchronization regions, th
number and transitions from one synchronous region to
other one can become very rich now. The dependence ow
on the coupling parameterd for both cases@Figs. 6~a! and
6~b!# demonstrates clearly the existence of a lot of pha
locking regions; the number and width of them are incre
ing with increasing ofc. So for c50 only the 1:1 synchro-
nization region@Figs. 6~a! and 6~b!# exists. For large enough
values ofc, synchronization between coupled CMs occu
not only as 1:1 synchronization but also as generalm1 :m2
synchronization~i.e., m1 ,m2Þ1). Thism1 :m2 synchroniza-
tion is typical for coupled relaxation periodic oscillators f
which the motions are noncoherent. For instance, in the
tem of two coupled strongly nonlinear van der Pol oscillato
the synchronization occurs firstly asm1 :m2 synchronization
and only for larger coupling as 1:1 synchronization. As w
can see from Fig. 2 with increasingc, the varianceD in-
creases too, and as a result of that the region of 1:1 s
synchronization becomes smaller for the first case of
quency parameters@Fig. 6~a!#. If c is larger than some critica
value c* , the 1:1 synchronization is impossible because
very strong noncoherence of the rotations. In the second
the size of the 1:1 synchronization region can surprisin
increase or decrease. In dependence on the valuesb1 andb2
the rotation number differenceDr can increase or decreas
Therefore, at fixed parametersb1 and b2with increase ofc,
synchronization can occur sometimes at smaller coup
and sometimes at larger coupling@Fig. 6~b!#.

B. Chaotic synchronization

In systems of two coupled chaotic CMs some differe
synchronization properties are observed. We have perfor
numerical simulations for fixedb150.6 and different values
of b2 ~Fig. 7!. Usually there exists only the region of 1:
synchronization. Only in rather small intervals ofc, regions
of m1 :m2 synchronization can occur. It should be noted th
in all our presented experiments onlym1 :1 synchronization
with different m152,3,4, . . . areobserved. Figure 7 indi-
cates that the geometrical structure and the sizes of the
chronization regions strongly depend onc which, as dis-
cussed above, defines the complexity of the behavior of
uncoupled elements. It is obvious that the processes of r
tion locking in the system of coupled elements cannot
exactly predicted from the properties of motion of the u
coupled elements. As it was demonstrated in the regular c
even a weak coupling can already lead to a strong chang
the mutual dynamics. But some common rules of appeara
and disappearance of synchronization can be obtained
explained by knowing properties of the behavior of sing
elements. Considering the effect ofc on the synchronization
properties, we can roughly distinguish three intervals ofc:

~i! small 2c where only a monotonously increase of th
phases is possible in the interacting elements; in our exp
ments it was the intervalD1 :cP@2b1520.6,0#;

~ii ! large2c for which the varianceD is very large~see
Fig. 2! and due to a high noncoherence of the motions, s
6-5
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FIG. 6. The winding numberw vs the coupling coefficientd at differentc and b15p/2, b252p/3 ~a!, respectively,b154p/7, b2

517p/23 ~b!.
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chronization cannot be achieved; in our simulation it was
interval D3 :c,22.25, and

~iii ! intermediatec that do not belong to the two prev
ously defined intervals; this is the intervalD2 :cP@22.25;
20.6#.

For each of these intervals we analyze influence of
three parameters on synchronization discussed in Sec. II,
the varianceD, the parameterg characterizing the relative
duration of intervals of phase increase, and phase decr
and the rotation number differenceDr5r22r1.

1. Small and large noncoherence

In the intervalD1 the difference of rotation numbersDr
plays the crucial role in the synchronization. As in the ca
of regular coherent CMs~Sec. IV A 1!, the critical value of
coupling d1, at which the transition to 1:1 synchronizatio
occurs, depends on the value of the rotation number dif
enceDr. At larger valuesDr a larger value of coupling is
needed to achieve synchronization. The sizes of the sync
nization regions become smaller with increase ofc. This hap-
pens due to increase of noncoherent properties of rotation
chosen valuesb1 andb2 in the intervalD3 synchronization is
in general impossible due to the highly noncoherent prop
ties of rotations. For instance, atc522.5 andb150.6 re-
spectivelyb152.6 we find that imperfect phase synchroniz
tion @43# ~i.e., seldomly occurring phase slips are possib!
01621
e

e
e.,

se

e

r-

ro-

At

r-

-

exists at the very small frequency mismatchDb50.0001.
Therefore, a very small frequency mismatch and as a re
of that a very small rotation number difference does not
ways guarantee the occurrence of synchronization. The c
plexity, specifically noncoherence, of the behavior quantifi
by the variance of rotationsD can be crucial. The existenc
of time intervals with a strongly different phase growth ra
makes the processes of locking of rotations impossible.

2. Intermediate noncoherence

A quite different situation is observed in the intervalD2.
For relatively small@~Figs. 7~a! and 7~b!# as well as large
@~Figs. 7~h!–7~j!# frequency mismatches the main influen
on synchronization is exerted by the rotation numbers diff
enceDr and the varianceD. But for intermediate values o
Db @~Figs. 7~c!–7~g!# initially synchronization is not
achieved with an increase ofc, for any values of coupling.
For further increase ofc, synchronization can appear agai
The existence of such ‘‘islands’’ of synchronization can
qualitatively explained as follows. As it was mentione
above for chaotic rotations, two types of phase increase
possible: monotonous increase or alternation of intervals
phase increase and phase decrease. The transition to the
ond type of rotation occurs at2c.b. So for the first element
with b150.6 this critical value is equal to20.6. Figure 4
indicates thatg ~the ratio of the duration of the phas
6-6
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FIG. 7. Regions of chaotic
phase synchronization forb1

50.6 and different values ofb2:
0.8 ~a!, 1.0~b!, 1.2~c!, 1.4~d!, 1.6
~e!, 1.8 ~f!, 2.0 ~g!, 2.2 ~h!, 2.4
~i! , 2.6 ~j!. The main gray regions
correspond to 1:1 synchronization
In columns ~c!–~j! for relatively
small 2c small regions of 2:1
~c!–~g!, 3:1 ~f!–~h! and 4:1~i!,~j!
synchronization are presented
They are visible as small stripes i
the left bottom areas.
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decrease intervals to the duration of the phase increase i
vals for the first element! becomes strongly increasing atc
'21. If in the second element the phase is still mono
nously increasing, then time intervals, where the phases
tate in opposite direction, are existing for coupled eleme
This makes the phase entrainment rather difficult and usu
phase synchronization does not exist@44#. If with increase of
c in the second element phase decrease intervals appea
tations in both elements becomes more similar, i.e., in b
elements the phases can grow and vanish, and a phas
trainment can happen. We assume that this mechanism l
to existence of ‘‘islands’’ of synchronization for several va
ues of frequency mismatch@~Figs. 7~c!–7~g!#, because these
‘‘islands’’ appear at such values ofc that approximately cor-
respond to the transition to the second type of rotations in
second CMs.

C. Synchronized hyperchaos

Next we use the Lyapunov exponents to describe the
currence of regimes of chaotic phase synchronization.
system~13! the Lyapunov exponents are given by

l15 lnU12
c

pU,
~14!

l25 lim
M→`

1

M (
k51

M

lnU12
c

p
22d cos~x2

k2x1
k!U.
01621
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Since the first Lyapunov exponentl1 is constant and positive
for all values ofd, we expect that only the sign of the secon
Lyapunov exponentl2 is important for the occurrence o
CPS. If both Lyapunov exponents are positive, we hava
hyperchaotic regimethat determines usually a nonsynchr
nized regime. If with increase of coupling the seco
Lyapunov exponent becomes negative, we have a strong
dication for the occurrence of phase synchronization. T
situation takes place at the transitions to 1:1 synchroniza
for all simulations presented in Figs. 7 and 8. Such bifur
tion is observed in CPS of time-continuous systems~e.g., see
Ref. @5#!. But this is not the only one scenario for the tra
sition from nonsynchronous to synchronous behavior
which criteria ~11! and ~12! are satisfied. We illustrate thi
with plots of dependences of the winding numberw and the
second Lyapunov exponentl2 on the coupling coefficientd
~Fig. 8! and phase diagrams for nonsynchronous@Figs. 9~a!
and 9~b!# and synchronous@Fig. 9~c!# regimes. In the interval
dP@0.285,0.32# the winding number is equalw53/1 that
corresponds to 3:1 synchronization, but the second Lyapu
exponent remains positivel2'0.05, i.e., synchronized hy
perchaos exists. Also there are intervals ofd in which 2:1
and 1:1 hyperchaos synchronizations are observed. The
sition to ~or from! synchronized hyperchaos are acco
plished with a change in the structure of the chaotic set~Fig.
9!. In the case of nonsynchronous hyperchaos@Figs. 9~a! and
9~b!# the chaotic trajectory covers practically the who
6-7
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phase space: the square@2p:p;2p:p# with different den-
sities. When the value of coupling is close to the critic
value corresponding to the transition to the synchronized
perchaos, we observe localization of areas visited by cha
trajectory. The appearance of more dense bands of mot
can be clearly seen@Fig. 9~b!#. From the synchronization
point of view the attendances of gaps between bands
corresponding to slips in the phase differenceuk, i.e., jumps
of 2p @45#. A decrease of the number of slips exhibits t
tendency of the system to the perfect synchronization wh
no slips exist. At synchronized hyperchaos, the chaotic
jectory is placed only in relatively narrow bands in the pha
space@Fig. 9~c!#. Like in the case of 1:1 synchronization o
regular coherent CMs~see Sec. IV A 1!, the transition to syn-
chronous motions corresponds to the transition of the ph
differenceuk5x2

k23x1
k from rotation to oscillation. Thus the

transition from nonsynchronous to synchronous behavior
two-element CMs system occurs throughinterior crisis @42#
of the hyperchaotic set, i.e., for both regimes both Lyapun
exponents are positive.

FIG. 8. The winding numberw and the second Lyapunov expo
nent l2 vs the coupling coefficientd for b150.6, b252.0, andc
520.15. Regions of 3:1, 2:1, and 1:1 synchronization are exist
Enlargements of the interval@0.25;0.35# are presented in the inset
01621
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V. SYNCHRONIZATION AND CLUSTERING IN A CHAIN
OF COUPLED CMS

To investigate synchronization in chains ofN coupled
CMs, we take first a linear increase of the individual freque
cies:

bn5b11Db~n21!, n51, . . . ,N, ~15!

whereDb is the uniform frequency mismatch, and second
random distribution of the frequencies:

bn5b11Dbjn , n51, . . . ,N, ~16!

where Db5const andjn are uniformly distributed in the
interval @20.5;0.5#. In dependence onc we study three dif-
ferent cases which correspond to the three types of beha
of a single CMs:~i! coherent regular rotations (c50), ~ii !
noncoherent regular rotations (c.0), and~iii ! chaotic rota-
tions (c,0).

A. Synchronization of coherent CMs

The system~7! for c50 and a linear distribution of the
partial frequenciesbn can be rewritten as

x1
k115b11x1

k1d sin~u1
k!, ~17!

un
k115Db1un

k1d~sinun11
k 22 sinun

k1sinun21
k !,

~18!

n51, . . . ,N21,

with Db5bn112bn , un
k5xn11

k 2xn
k and the boundary con

ditions:u0
k5uN

k 50. The stable fixed pointun
k115un

k5 ūn for
eachn51, . . . ,N21 in system~18! corresponds to a regim
of global synchronization in the chain. Then the system
equations for the stationary phase differencesūn can be writ-
ten as

Db1d~sinū222sinū1!50,

Db1d~sinūn1122sinūn1sinūn21!50, ~19!

n52, . . . ,N22,

Db1d~sinūN22 sinūN21!50.

.

n

FIG. 9. Phase portraits of system~10! for b1

50.6, b252.0, c520.15 and differentd within
~c! (d50.3) and outside~a! (d50.25) and~b!
(d50.275) of the 3:1 synchronization region. I
all three cases a hyperchaotic regime (l1 ,l2

.0) exists.
6-8
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FIG. 10. Rotation numberrn distribution in the transition to global synchronization in coherent~a!,~c! and noncoherent~b!,~d! regimes.
For a linear~a!,~b! individual frequency distributionbn5b11Db(n21) we takeb150.6, Db50.005, c50 ~a!, c50.000 05 ~b! and
coupling from bottom to topd50, 0.03, 0.042, 0.08, 0.106, 0.158. In the coherent case only clustered structures of synchroniza
presented. For a random~c!,~d! individual frequency distributionbn5b11Dbjn we takeb150.6, Db50.025,c50 ~c!, c50.05 ~d! and
coupling from bottom to topd50, 0.004, 0.008, 0.016, 0.02, 0.052.jn are uniformly distributed in the interval@20.5;0.5#.
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As follows from Ref.@46#, the distribution ofūn is

sinūn5
Db

2d
~Nn2n2!. ~20!

It follows from Eq. ~20! that the system~18! can have 2N21

fixed points. As the frequency mismatchDb is increased, the
condition of the existence of fixed points

UDb

2d
~Nn2n2!U,1, ~21!

is violated first forn5N/2 at evenN, i.e., for the middle
element in the chain. Thus, the condition for the existe
of a fixed point in theN-element chain is given by th
inequality

UDbN2

2d U,1. ~22!

This condition of global synchronization in system~7! coin-
cides with the results of our numerical experiments. Then
rotation numbers for all elements are equal to the rota
number of the middle elementrN/2 . However, with increas-
ing of the frequency mismatchDb a loss of global synchro
01621
e

e
n

nization takes place. For a long chain the two cluster s
chronization occurs, i.e., the chain is divided into tw
clusters of equal sizes that consist of mutually synchroni
CMs of different rotation numbers.

We have performed numerical simulations with a chain
50 elements with linear@Eq. ~15!# @Figs. 10~a! and 10~b!#
and random distribution of individual frequencies@Eq. ~16!#
@Figs. 10~c! and 10~d!#. For each CMs we calculate the rota
tion numberrn . If all the rotation numbers are equal, w
have global synchronization. If the rotation number are o
equal for some groups of neighboring elements, cluster s
chronization is formed. We have found that analogous to
self-synchronization in chains of periodic oscillators@47# and
chains of chaotic phase coherent Ro¨ssler oscillators@7#, mu-
tual global synchronization in chains of coupled CMs c
appear or vanish in two ways: soft and hard. The soft tr
sition, i.e., transition without cluster formation, is charact
ized through a smooth locking of the rotation numbers a
can be observed in the chains with very small frequen
mismatch. But for the hard transition@Fig. 10~a!#, transition
through clusters, the appearance or disappearance of g
synchronization is accompanied by the existence of clu
synchronization. This hard transition happens in long cha
with relatively large frequency mismatch. As shown befo
the loss of global synchronization leads to the appearanc
6-9
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FIG. 11. Critical value of cou-
pling d1 corresponding to the
transition to global synchroniza
tion vs c for different valuesb1

and fixed N520 and frequency
mismatchDb50.01.
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two clusters of elements that rotate at the same rotation n
ber. With further increase of the frequency mismatch the
pearance of new clusters is possible. The values of rota
number for each cluster~except the edge ones! are close to
those obtained by averaging the individual rotation numb
over all the elements forming the cluster. For the soft tran
tion after the loss of global synchronization most elements
the chain~except, perhaps, the edge ones! rotate with differ-
ent rotation numbers.

B. Effect of noncoherence of rotation on the regular
synchronization

In this section we are going to elucidate how the incre
of noncoherence (cÞ0) influences the synchronization i
chains. Our first finding is that the noncoherence can des
the clusters of synchronization that are excited at cohe
rotations. As our numerical experiments show for the lin
distribution of individual frequenciesbn even for very weak
noncoherence (c50.0001), the transition to global synchro
nization is usually soft, and only the transition from a tw
cluster structure to a one-cluster structure is hard@Fig.
10~b!#. The boundaries of clusters existing in the noncoh
ent case become first slightly smooth if the parameterc in-
creases @Fig. 10~b!#. If the noncoherence increasesc
'0.001), all clusters except the edge ones are comple
destroyed. Since there still exist a possibility of synchroni
tion at relatively largec of uncoupled CMs, synchronizatio
cluster structures can appear with further increase ofc.

For randomly distributed frequenciesbn , synchronization
clusters are more stable@Figs. 10~c! and 10~d!#. Smallc does
not practically change the number of clusters, the numbe
elements in the clusters and mean rotation numbers. W
increase of noncoherence the transition to global synchr
zation through the appearance of clusters is still observ
Only the structure of intermediate clustered states can
different @Fig. 10~d!#. We have also observed nonlocal sy
chronization@48,49#, where an oscillator or a cluster of os
cillators is synchronized not to a nearest oscillator or clus
of oscillators, but to a next-to-the-nearest-neighbor oscilla
or cluster.

Two opposite effects are observed in the study of the
fluence of the noncoherence on the global synchronizatio
the chain. As in the case of two-element systems, a ra
small increase of noncoherence of rotations practically d
not change the size of the global synchronization region.
with a further increase of noncoherence even in the cas
01621
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the absence of coupling, some neighboring elements
have the same rotation numbers, i.e., they belong to
interval of equal rotation numbers~Fig. 1!. Thus clusters of
synchronization can exist without coupling. If the differen
between rotation numbers of elements is small enough, t
the occurrence of global synchronization happens for sma
coupling than in the case of weak noncoherence. There
common rotation number coincides with the rotation num
of the elements in the largest cluster. Usually this situation
observed for intermediate values ofc. For strong noncoher-
ence the rotation number difference can be very large. T
in spite of the existence of synchronous clusters in an
coupled chain, global synchronization can be observed o
for stronger coupling~Fig. 11!. Moreover, the transition to
global synchronization in a chain of coupled regular CMs
rather complex in dependence onc ~Fig. 11! that is in accor-
dance with the two element case~Fig. 6!.

C. Chaotic phase synchronization

Phase synchronization in ensembles of locally coup
chaotic elements was first studied in chains of weakly dif
sively coupled chaotic Ro¨ssler oscillators@7#. Many phe-
nomena already observed in a population of periodic osc
tors were found there too, especially to mention the existe
of several clusters of mutually synchronized elements
global synchronization. The collective behavior in a chain
coupled chaotic (c,0) CMs ~7! exhibits similar properties.
We have explored such a chain with linear and random in
vidual frequency distributions. As in the case of regular no
coherent rotations for linearly distributed frequencies, b
soft and hard transitions to global synchronization are
served. But in the case of randomly distributed frequenc
only a hard transition is possible. For a linear distribution
the individual frequencies the rich spatiotemporal dynam
of the noncluster~smooth distribution of rotation numbers!
@Fig. 12~a!# and cluster synchronization structures@Fig.
12~b!# is illustrated in Fig. 13. In all plots the darker region
mark higher values of the presented variables. The two
panels show the quantity sin(xn

k), so that the white stripes
correspond to the phase'3p/2 and the black stripes to th
phase'p/2. The right panel shows the quantity

sn5sin2S xn11
k 2xn

k

2 D , ~23!

which characterizes the instantaneous phase difference
6-10
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FIG. 12. Hard~a! and soft~b! transitions to
global chaotic phase synchronization. Relati
rotation numbersrn /r1 for different coupling co-
efficients d for linear distribution of individual
frequencies for b150.6, frequency mismatch
Db50.002,c520.002~a! andc520.4 ~b!.
co
cc

n
rong
tween neighboring oscillators. We have then thatsn50 if the
phases are equal andsn51 if they differ by p. The spa-
tiotemporal behavior of the boundaries between clusters
responds to the positions where phase slips or defects o
01621
r-
ur.

These defects are clearly seen as maxima~black regions! of
sn . They can follow regularly in time at certain positions o
the chain; this case corresponds to the existence of st
jumps between clusters@Fig. 13~c!#. If cluster structures do
f

u-
re
FIG. 13. Space-time plots of evolution o
~a!,~b! sin(xn

k) and sn @Eq. ~23!# ~c!,~d! by hard
~a!,~c! and soft~b!,~d! transitions to global cha-
otic phase synchronization for a linear distrib
tion of individual frequencies. The parameters a
N550, b150.6, frequency mismatch Db
50.002, couplingd50.39 andc520.002~a!,~c!
andc520.4 ~b!,~d!.
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not exist or the borders between clusters are smooth,
defects appear irregularly in both space and time@Fig.
13~d!#.

We have explored synchronization properties in a chain
50 chaotic CMs with a linear distribution of individual fre
quenciesbn @Eq. ~15!# for b150.6, different values of fre-
quency mismatchDb and different values ofc. For all per-
formed simulations the following has been observed: W
an increase of the parameter2c the critical value of cou-
pling d1 that corresponds to the transition to global synch
nization first slightly increases and then can decrease
increase again, and finally increases. After some crit
value2c* a synchronization is impossible.

VI. CONCLUSIONS

We have observed a rich variety of phenomena in
formation of regular and chaotic phase synchronization
systems of coupled nonidentical circle maps. Two-elem
systems and chains of coupled elements have been e
ined. The main attention has been focused on the study o
influence of the power of the coherence of phase evoluti
on the synchronization processes. In order to characterize
phase evolution, we have analyzed three parameters:~i! the
rotation numberr, ~ii ! the varianceD of the phase evolution
and~iii ! the parameterg that defines the relative duration o
the intervals of phase increase and phase decrease. We
shown thatD,g, andDr are crucial for the synchronizatio
of chaotic CMs, whereas in the case of regular CMs onlyD
andDr are important. It has been demonstrated that with
increase of the coherence parameter in the regular and
otic regime, regions of main~1:1! synchronization are usu
ally decreased.
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We have found a chaotic synchronization: In systems
coupled nonidentical circle maps a phase entrainment oc
not through bifurcations, but through interior crises of a h
perchaotic set.

In the case of chains of coupled CMs, typical features
the onset and existence of global~all-to-all! and cluster~par-
tial! synchronization have been explored. We have found
scenarios of transition to global synchronization. First,
gradual adjustment of the rotation numbers is observ
while second, the transition occurs through the appearanc
synchronized clusters.

Our study supports the idea that phase synchronizatio
a general phenomenon of coupled chaotic systems that
pends on phase-coherent properties of motions.

These findings in chains of coupled maps should b
subject of further experimental studies, especially to ment
are the study of soft and hard transitions in chains of coup
chemical oscillators@50# or in coupled lasers@51# and the
study to check whether there are also transitions to ph
synchronization via interior crises.

Our result that synchronization can be destroyed thro
increasing coupling strength is of special importance for
design of DPLL in order to realize stable synchronization
engineering applications.
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