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Nonlinear analysis of bivariate data with cross recurrence plots
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Abstract

We use the extension of the method of recurrence plots to cross recurrence plots (CRP) which enables a nonlinear analysis
of bivariate data. To quantify CRPs, we develop further three measures of complexity mainly basing on diagonal structures in
CRPs. The CRP analysis of prototypical model systems with nonlinear interactions demonstrates that this technique enables to
find these nonlinear interrelations from bivariate time series, whereas linear correlation tests do not. Applying the CRP analysis
to climatological data, we find a complex relationship between rainfall and El Niño data.
 2002 Elsevier Science B.V. All rights reserved.

PACS:05.40; 05.45; 07.05.K

Keywords:Data analysis; Correlation test; Cross recurrence plot; Nonlinear dynamics

1. Introduction

A major task in bi- or multivariate data analysis
is to compare or to find interrelations in different
time series. Often, these data are gained from natural
systems, which show generally nonstationary and
complex behaviour. Furthermore, these systems are
often observed by very few measurements providing
short data series. Linear approaches of time series
analysis are often not sufficient to analyze this kind
of data. In the last two decades a great variety of
nonlinear techniques has been developed to analyze
data of complex systems (cf. [1,2]). Most popular
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are methods to estimate fractal dimensions, Lyapunov
exponents or mutual information [2–5]. However,
most of these methods need long data series. The
uncritical application of these methods especially to
natural data often leads to pitfalls.

To overcome the difficulties with nonstationary and
rather short data series, the method ofrecurrence plots
(RP) has been introduced [6–8]. An additional quan-
titative analysis of recurrence plots has been devel-
oped to detect transitions (e.g., bifurcation points) in
complex systems [9–12]. An extension of the method
of recurrence plots to cross recurrence plots enables
to investigate the time dependent behaviour of two
processes which are both recorded in a single time se-
ries [13,14]. The basic idea of this approach is to com-
pare the phase space trajectories of two processes in
the same phase space. The aim of this Letter is to de-
velop further new measures of complexity, which are
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based on cross recurrence plots and to evaluate the
similarity of the considered systems. This nonlinear
approach enables to identify epochs where there are
linear and even nonlinear interrelations between both
systems.

Firstly, we give an overview about recurrence plots
and cross recurrence plots and, than, we develop
further new measures of complexity. Lastly, we apply
the method to two model systems and to natural
data.

2. Recurrence plot

The recurrence plot (RP) is a tool in order to vi-
sualize the dynamics of phase space trajectories and
was firstly introduced by Eckmann et al. [7]. Follow-
ing Takens’ embedding theorem [15], the dynamics
can be appropriately presented by a reconstruction of
the phase space trajectory�x(t) from a time seriesuk

(with a sampling time∆t) by using an embedding di-
mensionm and a time delayτ

(1)

�x(t) = �xi = (ui, ui+τ , . . . , ui+(m−1)τ ), t = i∆t.

The choice ofm and τ are based on standard meth-
ods for detecting these parameters like method of
false nearest neighbours (form) and mutual informa-
tion (for τ ), which ensures the entire covering of all
free parameters and avoiding of autocorrelation ef-
fects [2].

The recurrence plot is defined as

(2)Ri,j = Θ
(
εi − ∥∥�xi − �xj

∥∥)
,

whereεi is a predefined cut-off distance,‖ · ‖ is the
norm (e.g., the Euclidean norm) andΘ(x) is the Heav-
iside function. The valuesone and zero in this ma-
trix can be simply visualized by the colours black and
white. Depending on the kind of the application,εi
can be a fixed value or it can be changed for eachi

in such a way that in the ball with the radiusεi a pre-
defined amount of neighbours occurs. The latter will
provide a constant density of recurrence points in each
column of the RP. Such a RP exhibits characteristic
large-scale and small-scale patterns which are caused
by typical dynamical behavior [7,10,12], e.g., diago-
nals (similar local evolution of different parts of the
trajectory) or horizontal and vertical black lines (state

does not change for some time). A single recurrence
point, however, contains no information about the state
itself.

As a quantitative extension of the method of re-
currence plots, therecurrence quantification analy-
sis (RQA) was introduced by Zbilut and Webber [10,
11]. This technique defines several measures mostly
based on diagonal oriented lines in the recurrence
plot: recurrence rate, determinism, maximal length
of diagonal structures, entropy and trend. The re-
currence rateis the ratio of all recurrent states (re-
currence points) to all possible states and is there-
fore the probability of the recurrence of a certain
state. Stochastic behaviour causes very short diago-
nals, whereas deterministic behaviour causes longer
diagonals. Therefore, the ratio of recurrence points
forming diagonal structures to all recurrence points
is called thedeterminism(although this measure does
not really reflect the determinism of the system). Di-
agonal structures show the range in which a piece of
the trajectory is rather close to another one at dif-
ferent time. Thediagonal lengthis the time span
they will be close to each other and their mean
can be interpreted as the mean prediction time. The
inverse of the maximal line length can be inter-
preted to be directly related with the maximal pos-
itive Lyapunov exponent [7,9,16]; in this interpre-
tation it is assumed that the considered system is
chaotic and has no stochastic influences. Since real
(natural) systems are always affected by noise, we
suggest that this measure has to be interpreted in
a more statistical way, for instance, as a predic-
tion time. However, if we consider a chaotic sys-
tem, the maximal positive Lyapunov exponent is
much more reflected in the distribution of the line
lengths. Theentropy is defined as the Shannon en-
tropy in the histogram of diagonal line lengths. Sta-
tionary systems will deliver rather homogeneous re-
currence plots, whereas nonstationary systems cause
changes in the distribution of recurrence points in
the plot visible by brightened areas. For example,
a simple drift in the data causes a paling of the
recurrence plot away from the main diagonal to
the edges. The parametertrend measures this ef-
fect by diagonal wise computation of the diago-
nal recurrence density and its linear relation to the
time distance of these diagonals to the main diago-
nal.
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3. Cross recurrence plot

Analogous to Zbilut et al. [13], we will use the
recently expanded method of recurrence plots to the
method ofcross recurrence plots, which compares the
dynamics represented in two time series. Herein, both
time series are simultaneously embedded in the same
phase space. The test for closeness of each point of
the first trajectory�xi (i = 1, . . . ,N ) with each point
of the second trajectory�yj (j = 1, . . . ,M) results in
a N × M array CRi,j = Θ(ε − ‖�xi − �yj‖) called
the cross recurrence plot (CRP). Visual inspection
of CRPs already reveals valuable information about
the relationship between both systems. Long diagonal
structures show similar phase space behaviour of both
time series. It is obvious, that if the difference of both
systems vanishes, the main diagonal line will occur
black. An additional time dilatation or compression of
one of these similar trajectories causes a distortion of
this diagonal line [14]. In the following, we suppose
that both systems do not have differences in the time
scale and have the same lengthN , hence, the CRP is
a N × N array and an increasing similarity between
both systems causes a raising of the recurrence point
density along the main diagonal until a black straight
main diagonal line occurs (cf. Fig. 3). Finally, the
CRP compares the considered systems and allows us
to benchmark their similarity.

4. Complexity measures based on cross
recurrence plots

Next, we will define some modified RQA measures
for quantifying the similarity between the phase space
trajectories. Since we use the occurrence of the more
or less discontinuous main diagonal as a measure
for similarity, the modified RQA measures will be
determined for each diagonal line parallel to the main
diagonal, hence, as functions of the distance from the
main diagonal. Therefore, it is also possible to assess
the similarity in the dynamics depending on a certain
delay.

We analyze the distributions of the diagonal line
lengthsPt(l) for each diagonal parallel to the main di-
agonal. The indext ∈ [−T , . . . , T ] marks the number
of the diagonal line, wheret = 0 marks the main diag-
onal,t > 0 the diagonals above andt < 0 the diagonals

below the main diagonal, which represent positive and
negative time delays, respectively.

The recurrence rateRRis now defined as

(3)RR(t) = 1

N − t

N−t∑

l=1

lPt (l),

and reveals the probability of occurrence of similar
states in both systems with a given delayt . A high
density of recurrence points in a diagonal results in a
high value ofRR. This is the case for systems whose
trajectories often visit the same phase space regions.

Analogous to the RQA the determinism

(4)DET(t) =
∑N−t

l=lmin
lPt (l)

∑N−t
l=1 lPt (l)

,

is the proportion of recurrence points forming long
diagonal structures of all recurrence points. Stochastic
as well as heavily fluctuating data cause none or only
short diagonals, whereas deterministic systems cause
longer diagonals. If both deterministic systems have
the same or similar phase space behaviour, i.e., parts
of the phase space trajectories meet the same phase
space regions during certain times, the amount of
longer diagonals increases and the amount of smaller
diagonals decreases.

The average diagonal line length

(5)L(t) =
∑N−t

l=lmin
lPt (l)

∑N−t
l=lmin

Pt (l)
,

reports the duration of such a similarity in the dynam-
ics. A high coincidence of both systems increases the
length of these diagonals.

High values ofRR represent high probabilities of
the occurrence of the same state in both systems, high
values ofDET andL represent a long time span of
the occurrence of a similar dynamics in both systems.
WhereasDET andL are sensitive to fastly and highly
fluctuating data,RRmeasures the probabilities of the
occurrence of the same states in spite of these high
fluctuations (noisy data). It is important to emphasize
that these parameters are statistical measures and that
their validity increases with the size of the CRP.

Compared to the other methods, this CRP tech-
nique has important advantages. Since all parameters
are computed for various time delays, lags can be iden-
tified and causal links proposed. An additional analy-
sis with opposite signed second time series allows
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us to distinguish positive and negative relations. To
recognize the measures for both cases, we add the in-
dex ‘+’ to the measures for the positive linkage and
the index ‘−’ for the negative linkage, e.g.,RR+ and
RR−. A further substantial advantage of our method
is the capability to find also nonlinear similarities in
short and nonstationary time series with high noise
levels as they typically occur, e.g., in biology or earth
sciences. However, the shortness and nonstationarity
of data limits this method as well. One way to re-
duce problems that occur with nonstationary data is
the alternative choice of the neighbourhood as a fixed
amount of neighbours in the ball with a varying ra-
dius ε. A further major aspect is the reliability of the
found results. Until a mature statistical test is devel-
oped, a first approach could be a surrogate test.

In the next section we apply these measures of
complexity to prototypical model systems and to real
data.

5. Examples illustrating the CRP

5.1. Noisy periodic data

First, we consider a classical example to check
whether our technique is there compatible with linear
statistical tools: two sine functionsf (x) andg(x) with
the same period (2π ), whereby the second function
g(x) is shifted by π/2 and strongly corrupted by
additive Gaussian white noiseξ ∈ [−1,1]; the signal
to noise ratio is 0.5 (Fig. 1). Both time series have
a length of 500 data points with a sampling rate of
2π/100.

We apply our analysis withm = 3, τ = π/2 and
ε = 1.5 (fixed radius, Euclidean distance). The CRP
shows diagonal structures separated by gaps (Fig. 2).
These gaps are the result of the high fluctuation of the
noisy sine function. Due to the periodicity of these
functions, the diagonals have a constant distance to
each other equal to the value of the periodλ = 2π . The
interrupted diagonal structures consist of a number of
short diagonals. However, these are long enough to
achieve significant maxima in the measuresRR, DET
andL.

As expected, in this example the classical cross-
correlation function shows a significant correlation
after a lag ofπ/2 (Fig. 3A). TheRR, DET and L

Fig. 1. Two delayed sine functions, one of them corrupted by addi-
tive white noise (B).

Fig. 2. Cross recurrence plot for two delayed sine functions (Fig. 1)
with an embedding ofm = 3, τ = π/2 andε = 1.5. The diagonal
lines in the CRP result from similar phase space behaviour of both
functions.

functions also show maxima for positive and negative
relation betweenf (x) andg(x). These maxima occur
with the same lagsπ/2 like the linear correlation
test (Fig. 3B–D). Despite the high noise level, these
measures find the correlation. Hence, the result of
this CRP analysis agrees with the linear correlation
analysis.
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Fig. 3. Cross-correlation (A),RR(B), DET (C) andL (D) for two
delayed sine functions.L has the unit of time. The solid black
lines show positive relation, the dashed lines show negative relation.
The dash-dotted line in (A) marks the 5% confidence interval. All
functions (A)–(D) detect the correlation after a lag ofπ/2.

Due to the noisy data, the trajectories strongly
fluctuate in the phase space. Therefore, only short
diagonal lines in the CRP occur and the means of the
measuresDET andL have (relative) small values.

5.2. System with nonlinear correlations

The next example is concerned to a nonlinear
interrelation between systems. We will study this
interrelation by using a standard linear method (cross
correlation), a standard method from nonlinear data
analysis (mutual information, cf. [2]) and the new
proposed measures. We consider linear correlated
noise (autoregressive process), which is nonlinearly
coupled with thex-component of the Lorenz system
x(t) (solved with an ODE solver for the standard
parametersσ = 10, r = 28, b = 8/3 and a time
resolution of∆t = 0.01, [17,18]). We use a first order
autoregressive processyn and force it with the squared
x-component

(6)yn = 0.86yn−1 + 0.500ξn + κx2
n,

whereξ is Gaussian white noise andxn (x(t) → xn,
t = n∆t) is normalized to standard deviationσ = 1
(Fig. 4). The data length is 8000 points. The coupling
κ is realized without any lag. In order to study the
behaviour of the proposed measures as a function
of the coupling strength, we compute the CRPs for

Fig. 4. (B) Time series of a nonlinear related system consisting of a
driven first order autoregressive process, forced by the squared (A)
x-component of the Lorenz system (κ = 0.2). The major periods
(frequencies) are 2.9 (0.34) and 1.1 (0.94) forx (C) and 0.77 (1.30)
and 0.96 (1.05) fory (D).

κ ∈ [0,3] and for 500 independent realizations. The
major periods of the systemx are 2.9 and 1.1, whereas
the major periods of the selected realization of the
systemy shown in Fig. 4 are 0.77, 0.96 and 0.59
(ordered from highest to lower).

The cross correlation analysis ofx and y do
not reveal a significant linear correlation between
them (Fig. 6A,B). The linear correlation does not
increase for a growing coupling strengthκ . However,
the mutual information shows a strong dependence
betweenx and y at delays of 0.05, −0.29 and 0.44
(Fig. 6C,D). This measure increases for a growing
coupling. Analogous results can also be found with
other nonlinear techniques which are designed for the
study of interrelations as described in [19,20].

The CRP of the driven AR-process (Eq. (6)) with
thex-component of the Lorenz system (m = 5,τ = 10,
ε = 2) contains a lot of longer diagonal lines, which
represent time ranges in which both systems have a
similar phase space dynamics (Fig. 5). The results of
the quantitative analysis of the CRP is strongly differ-
ent from those of the linear analysis. It is important
to note that the linear correlation analysis is here not
able to detect any significant coupling or correlation
between both systems (Fig. 6A and B).

Our measures of complexity exhibit the following:
RR and L exhibit maxima at a lag of about 0.05
for RR+/L+ and RR−/L− and additionally at 0.45
and −0.32 for RR−/L− (Fig. 7A,E). The delay of
about 0.05 stems from the auto correlation ofy
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Fig. 5. Cross recurrence plot for the forced autoregressive process
y (Fig. 4B) and the forcing function (x-component of the Lorenz
system, Fig. 4A) for a coupling strengthκ = 0.2 and an embedding
m = 5, τ = 10,ε = 2.

and approximately corresponds to its correlation time
∆t/ ln0.86= 0.066. The other both delays are in the
sum 0.77 which suggests, that they are due to an
interference of the main periods of the systems.DET+
andDET− has also maxima at these delays, but these
maxima are not significant in the sense that the values
exceed the 2σ -level of the DET distribution gained
from 500 realizations (Fig. 7C). This is due to the rapid
fluctuating ofy and, thus, the less amount of longer
diagonal structures (l > 3). The reconstructed phase
space trajectories ofx andy do not run parallel for
some time.

The three measures have a slightly different de-
pendence on the coupling strengthκ : whereasRR in-
creases rather fast with growingκ , DET increases
slower andL increases much slower with growingκ
(Fig. 7B,D,F). In comparison with the mutual infor-
mation, the proposed measures have a similar regime,
but especiallyDET andL, spread stronger. However,
this spread depends on the length of the considered
data and decreases for longer data sets.

Finally we can infer, that the measuresRR and
L are suitable in order to find the nonlinear relation
between the considered data series, where the linear

Fig. 6. Cross-correlation (A), (B) and mutual information (C), (D)
for the forced autoregressive process and the forcing function; (A)
and (C) represents the measures for one realization as functions
of the delay and for a couplingκ = 0.2, (B) and (D) represents
the measures for one realization (dots) and averaged (line) as
functions of the coupling strengthκ (for a delay of zero). The
dash-dotted lines in (A) mark the significance level of 5% for the
linear correlation betweenx andy, the gray bands in (B), (C) and
(D) mark the 2σ margin of the distributions of the measures gained
from the 500 realizations. The cross-correlation function does not
find a significant correlation, but the mutual information shows
significant interrelations betweenx and y at delays of 0.05, 0.4
and −0.3. The correlation coefficient does not clearly change for
a growing coupling strength (B), however, the mutual information
monotonically increases with a growing coupling strengthκ up to
κ = 1 and does not change forκ > 1 (D).

analysis is not able to detect this relation. In this
example,DET does not reveal the nonlinear relation,
because the rapidly fluctuation iny kicks away the
reconstructed phase space trajectory from the parallel
running to the trajectory ofx. Since the result is rather
independent of the sign of the second data before the
embedding, the found relation is of the kind of an even
function.

5.3. Climatological data

The last example shows the potential of the CRPs
in order to find interrelations in natural data. We inves-
tigate, whether there is a relation between the precipi-
tation in an Argentinian city and the El Niño/Southern
Oscillation (ENSO). Power spectra analysis of local
rainfall data found periodicities of 2.3 and 3.6 years
within the ENSO frequency band [21].
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Fig. 7. RR (A), (B), DET (C), (D) andL (E), (F) for the forced
autoregressive process and the forcing function (L has the unit
of time). The solid lines show positive relation, the dashed lines
show negative relation. The gray bands mark the 2σ margin of the
distributions of the measures gained from the 500 realizations; only
the 2σ margins forRR+, DET+ andL+ are shown.RR+/L+ and
RR−/L− have clear maxima for a lag about 0.05, RR− and L−
have additionally maxima at 0.4 and −0.3, which is the similar
behaviour as the mutual information. The dependence from the
coupling strengthκ is slightly different. WhereasRR increases
rather fast with growingκ (B), DET increases slower (D) andL
increases much slower (F) with growingκ . Since the maxima occur
for RR+, DET+ andL+− as well as forRR−, DET− andL−, the
found relation is of the kind of an even function.

For our analysis we use monthly precipitation
data from the city San Salvador de Jujuy in NW
Argentina for the time span 1908–1987 (data from
[22]). The behaviour of the ENSO phenomenon is well
represented by the Southern Oscillation Index (SOI),
which is a normalized air pressure difference between
Tahiti and Darwin (Fig. 8; data from the Climate
Server of NOAA, 1999,http://ferret.wrc.noaa.gov).
Negative extrema in SOI data mark El Niño events and
positive extrema La Niña events. We use the monthly
SOI data for the same time span as the rainfall data.
Both data sets have lengths of 960 points.

Fig. 8. (A) Southern oscillation index (SOI) and (B) rainfall data of
San Salvador de Jujuy.

Fig. 9. Cross recurrence plot of SOI vs. precipitation data from the
city of San Salvador de Jujuy for an embedding ofm = 3, τ = 4 and
ε = 1.3. Thex-axis shows the time along the phase space trajectory
of the SOI and they-axis that of JUY.

The cross correlation function and the mutual
information show rather small correlation% = 0.14
between both data series with time delays of around
3 and 7 months, respectively (Fig. 10A,B).

After normalization of the data, the CRP with
m = 3, τ = 4 and ε = 1.3 is calculated and shows
several structures (Fig. 9).

http://ferret.wrc.noaa.gov
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Fig. 10. Cross correlation (A), mutual information (B) and CRP parameters (C)–(E) of SOI vs. precipitation data from the city of San Salvador
de Jujuy (JUY). In (C)–(E), the solid lines show positive relation, the dashed lines show negative relation. The dashed-dotted lines in (A) mark
the 5% confidence interval. The maxima of the measures reveal an interrelation between the rainfall and the ENSO.

The CRP analysis of local rainfall and SOI is done
with a predefined shortest diagonal lengthlmin = 6.
The analysis reveals maxima for the complexity mea-
suresRR+, DET+ and L+ for correlated behaviour
around a delay of zero months, whereas the measures
for anti-correlated behaviourRR−, DET− andL− in-
crease after about five months (Fig. 10). This result
enables to conclude a positive relation between ENSO
and the local rainfall. This gives some indication that
the occurrence of an El Niño (extreme negative SOI)
at the end of a year causes a decreased rainfall in the
rainy season from November to January and the oc-
currence of a La Niña (extreme positive SOI) causes
an increased rainfall during this time of the year. This
conclusion extends the results obtained by power spec-
tra analysis, where the similar periodicities in both
SOI and local rainfall data were found [21]. These
analysis show that a source for inter-annual precipi-
tation variability in NW Argentina is the ENSO [21].

The linear correlation analysis finds the correlation,
however, it is scarce above the significance and its
mean at a lag of three months. The mutual informa-
tion does not reveal a clear sign for interrelation be-
tween the data. It has small maxima at delays of 7 and
−10 months. In contrast, all the complexity measures
RR, DET andL show a significant result and decom-
pose the correlation in a positive one with no delay and
in a negative one with a delay of about five months,
what suggests a more complex interrelation between

the ENSO phenomenon and local rainfall in NW Ar-
gentina.

6. Conclusions

We have modified the method of cross recurrence
plots (CRPs) in order to study the similarity of two
different phase space trajectories. Local similar time
evolution of the states becomes then visible by long
diagonal lines. The distributions of recurrence points
and diagonal lines along the main diagonal provides
an evaluation of the similarity of the phase space tra-
jectories of both systems. We have introduced three
measures of complexity based on these distributions.
They enable to quantify a possible similarity and in-
terrelation between both dynamical systems. We have
demonstrated the potentials of this approach for typi-
cal model systems and natural data. In the case of lin-
ear systems, the results with this nonlinear technique
agree with the linear correlation test. However, in the
case of nonlinear coupled systems, the linear correla-
tion test does not find any correlation, whereas non-
linear techniques, as the mutual information, and the
proposed complexity measures clearly reveal this re-
lation. Additionally, the latters determine the kind of
coupling as to be an even function. The application
to climatological data enables to find a more complex
relationship between the El Niño and local rainfall in
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NW Argentina than the linear correlation test, the mu-
tual information or the power spectra analysis yielded.

Our quantification analysis of CRPs is able to find
nonlinear relations between dynamical systems. It pro-
vides more information than a linear correlation analy-
sis and the nonlinear technique of mutual information
analysis. The future work is dedicated to the develop-
ment of a significance test for RPs and the complexity
measures which are based on RPs.
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