
VOLUME 88, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 7 JANUARY 2002

010
Noise Induced Propagation in Monostable Media

A. A. Zaikin,1 J. García-Ojalvo,2 L. Schimansky-Geier,3 and J. Kurths1

1Institut für Physik, Potsdam Universität, Am Neuen Palais 10, D-14469 Potsdam, Germany
2Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11 E-08222 Terrassa, Spain

3Institut für Physik, Humboldt Universität zu Berlin, Invalidenstrasse 110, D-10115 Berlin, Germany
(Received 24 April 2001; published 19 December 2001)

We show that external fluctuations are able to induce propagation of harmonic signals through monos-
table media. This property is based on the phenomenon of doubly stochastic resonance, where the
joint action of multiplicative noise and spatial coupling induces bistability in an otherwise monostable
extended medium, and additive noise resonantly enhances the response of the system to a harmonic
forcing. Under these conditions, propagation of the harmonic signal through the unforced medium is ob-
served for optimal intensities of the two noises. This noise-induced propagation is studied and quantified
in a simple model of coupled nonlinear electronic circuits.

DOI: 10.1103/PhysRevLett.88.010601 PACS numbers: 05.40.Ca, 05.70.Fh
It is a well-established fact nowadays that dynamical
noise, which usually has a disordering impact, can be used
to induce order in nonlinear nonequilibrium systems un-
der certain conditions. Examples of this counterintuitive
influence of random fluctuations are noise-induced tran-
sitions [1–4], stochastic transport in ratchets [5] (also in
a synthesis with a transition [6]), or noise-induced pat-
tern formation [7]. However, one of the most far-reaching
examples is stochastic resonance (SR) [8], which has been
experimentally observed in several physical and biological
systems [9]. In the classical situation, SR consists of an
optimization by noise of the response of a bistable system
to a weak periodic signal. Besides this standard scenario,
SR has also been found in monostable [10], excitable [11],
nondynamical [12], and thresholdless [13] systems, in sys-
tems without an external force (what is called coherence
resonance) [14,15], and in systems with transient noise-
induced structure [16].

Additionally, it has been recently shown that the energy
of fluctuations can be used even more efficiently in spa-
tially extended systems, by using noise twofold: to syn-
chronize output hops across a potential barrier with an
external signal, and also to optimally construct the barrier
itself. This phenomenon is known as doubly stochastic
resonance (DSR) [17]. DSR occurs in systems of coupled
overdamped oscillators; and it is a synthesis of two basic
phenomena: SR and noise-induced phase transitions [18].
Another important and nontrivial phenomenon connected
with SR in spatially distributed systems is the phenomenon
of noise enhanced propagation, in which the propagation
of a harmonic forcing through an unforced bistable or ex-
citable medium is increased for an optimal intensity of the
additive noise [19,20].

In this Letter, we present a new propagation phenome-
non in monostable media. We show that noise can enhance
propagation in deterministically monostable media, with-
out any deterministic threshold, provided bistability is
induced by a second (multiplicative) noise and coupling
through a phase transition. Although numerous works
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about noise-induced propagation exist (e.g., [21]), to our
knowledge propagation in monostable media, which is a
very important class of dynamical systems, has not been
considered before. In what follows, we present this propa-
gation or in a general model of overdamped coupled
nonlinear oscillators. Subsequently, and for the sake of
concreteness, the phenomenon is analyzed in particular in
a simple model of coupled electronic circuits.

We study a general class of spatially distributed systems,
which are locally coupled and periodically forced:

�xi � f�xi� 1 g�xi�ji�t� 1
D

4

X
j[nn�i�

�xj 2 xi�

1 zi�t� 1 Ai cos�vt 1 w� , (1)

where xi is defined in a two-dimensional discrete space
of N 3 N cells, with i denoting the cell position
[i � ix 1 N �iy 2 1�, where ix and iy run from 1 to
N ]. The sum in Eq. (1) runs over all nearest neighbors
of site i [nn�i�]. The additive and multiplicative noise
terms are mutually uncorrelated Gaussian distributed
with zero mean, and white both in space and time,
i.e., �zi�t�zj�t0�� � s2

adijd�t 2 t0� and �ji �t�jj�t0�� �
s2

mdijd�t 2 t0�. The results are averaged over the initial
phase w of a harmonic forcing, which has amplitude Ai

and frequency v.
In the absence of periodic forcing (Ai � 0), different

types of noise-induced phase transitions can be obtained
for different forces f�xi� and g�xi� [3]. In particular, a
system with a monostable deterministic potential can un-
dergo a phase transition to a noise-induced bistable state
for a suitable stochastic forcing g�xi� [18]. There, in the
presence of a global harmonic forcing, DSR is observed
[17]. We consider in this Letter the case that the peri-
odic forcing is applied coherently along only one side, as
shown in Fig. 1 [Ai � A�dix ,1 1 dix ,2 1 dix ,3�], and study
the propagation of this forcing action into the nonexcited
portion of the system.

Even though the results shown below are very general,
for a quantitative study we choose particular functions
© 2001 The American Physical Society 010601-1
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FIG. 1. Scheme of the spatially distributed system. The peri-
odic excitation is performed only from one side, elements under
the direct periodic action are denoted by black. All oscillators
are under the influence of noise. To study the behavior of both
driven and nondriven elements, first three columns (ix � 1, 2, 3)
are periodically driven; however, to achieve propagation it is
sufficient to excite only one column.

f�x� and g�x�. These functions model the local dynam-
ics of the electronic circuit designed theoretically (i.e., it
is so far a thought experiment) and displayed in Fig. 2.
This circuit consists of a capacitor with capacitance C, a
time-varying resistor (TVR) with conductance G�t�, a cur-
rent generator I�t�, four coupling resistors Rc (responsible
for the diffusive coupling with the neighbors), and a non-
linear resistor RN , which is realized with a set of ordinary
diodes or operational amplifiers [22], and has the charac-
teristic function

iN � h�V � �

8<
:

GbV 1 �Ga 2 Gb�Bp , if V # 2Bp ,
GaV , if jV j , Bp ,
GbV 2 �Ga 2 Gb�Bp , if V $ Bp ,

(2)

where iN is the current through the nonlinear resistor (RN),
V is the voltage drop across it, and the parameters Ga, Gb ,
and Bp determine the slopes and the break point of its
piecewise-linear characteristic curve.

We now consider that the conductance of the TVR fluc-
tuates randomly in time [Gi�t� � ji�t�], and that the input
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FIG. 2. Nonlinear electronic circuit at element i.
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current I�t� has the form of a periodic signal to which an
uncorrelated Gaussian noise z �t� is added [Ii�t� � zi�t� 1

Ai cos�vt 1 w�]. Under these conditions, the dynamics
of the spatially coupled system is described by Eq. (1),
where xi now represents the voltage drop across the non-
linear resistor of circuit i, and the forces are f�x� � 2h�x�
and g�x� � x [22]. Additionally, C � 1 by an appropriate
time normalization, and the coupling strength D �

4
CRc

.
SR behavior can be expected if the system is bistable

for the chosen set of parameters. Regions of bistability
can be determined approximately by means of a standard
mean-field procedure [3]. The mean-field approximation
consists of replacing the nearest-neighbor interaction by a
global term in the Fokker-Planck equation corresponding
to (1) in the absence of external forcing. In this way, we
get the steady-state probability distribution Pst:

Pst�x, m� �
C�m�p

s2
mg2�x� 1 s2

a

3 exp

µ
2

Z x

0

f�y� 2 D�y 2 m�
s2

mg2�y� 1 s2
a

dy

∂
, (3)

where C�m� is a normalization constant and m is the mean
field, defined implicitly by:

m �
Z `

2`
xPst�x, m� dx . (4)

The value of m is obtained by the self-consistent solu-
tion of Eq. (4), which enables us to determine the tran-
sition lines between the ordered bistable (m fi 0) and the
disordered monostable (m � 0) phases. These transition
boundaries are shown in Fig. 3 in the �D, s2

m� plane for
three different values of the additive noise intensity. Note
that bistability requires both multiplicative noise and cou-
pling between elements. We also find that an increase in
additive noise reduces the bistable region. This gives DSR
a special character with respect to standard SR [17].

Now, we place ourselves within the bistable regime
supported by multiplicative noise and coupling (e.g.,
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FIG. 3. Mean-field transition lines between disordered monos-
table (m � 0) and ordered bistable (m fi 0) phases for model
(1): s2

a � 0.3 (label 1), s2
a � 0.5 (label 2), and s2

a � 1.0 (la-
bel 3). Here Ga � 0.5, Gb � 10, and Bp � 1.
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D � 3, s2
m � 3), and investigate the propagation of a

wave through the system. To that end, we harmonically
excite the lattice from one side, as shown in Fig. 1, with
boundary conditions periodic in the vertical direction and
no-flux in the horizontal direction. The propagation will
be quantified by the system’s response at the excitation

frequency, computed as Q� j� �
q

�Q�j�
sin �2 1 �Q� j�

cos�2, with

Q
� j�
sin �

v

np

Z 2pn�v

0
2mj�t� sin�vt� dt , (5)

Q� j�
cos �

v

np

Z 2pn�v

0
2mj�t� cos�vt� dt , (6)

where mj�t� is the field (voltage) averaged along the ver-
tical column (Fig. 1), i.e., mj�t� �

1
N

PN
k�1 xj1�k21�N�t�.

The value of Q�j� for different oscillators along the chain
is shown in Fig. 4(a), for increasing intensities of additive
noise within the noise-induced bistable regime. The forc-
ing amplitude is taken to be large enough to produce hops
between the two wells in the bistable oscillators, without
the need of additive noise. Therefore, for the first oscilla-
tors an increase of additive noise leads only to a decreas-
ing response at the forcing frequency, whereas for distant
oscillators the situation changes qualitatively. There, a re-
sponse is induced that depends nonmonotonically on the
additive noise intensity. Clearly, a certain amount of ad-
ditive noise exists for which propagation of the harmonic
signal is optimal. For smaller s2

m [Fig. 4(b] the system
leaves the bistable region; hence the response is small and
always monotonically decreasing. Hence, the resonantlike
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FIG. 4. Response Q� j� to a periodic excitation in different
columns (the order j is shown in the curve labels) vs additive-
noise intensity (a),(c) inside the bistability region (s2

m � 3), and
(b),(d) outside that region (s2

m � 0.5). As shown in Fig. 1, the
oscillators with index j � ix � 1, 2, 3 are directly excited by
the periodic force, and oscillators with j � ix . 3 are excited
through the excitation propagation. Parameters are those of
Fig. 3, and D � 3. The amplitude is: (a),(b) A � 0.3 (noise-
induced propagation) and (c),(d) A � 0.2 (spatiotemporal
doubly stochastic resonance).
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effect requires suitable intensities of both the additive and
multiplicative noises.

A propagation of the harmonic signal can also be
obtained for values of the forcing amplitude small enough
so that hops are not produced in the directly excited sites
in the absence of additive noise. This is the regime in
which DSR really occurs in the excited part of the system,
and the excitation propagates through the rest of the lattice
enhanced by noise. Now all the oscillators have a non-
monotonic dependence on the additive noise intensity
for a multiplicative noise within the bistable region
[Fig. 4(c)], and a monotonic one for a multiplicative noise
within the monostable region [Fig. 4(d)]. The former case
corresponds to a spatiotemporal propagation in the DSR
medium, and we call this phenomenon spatiotemporal
doubly stochastic resonance (SDSR).

The mechanism of this phenomenon can be explained
theoretically on the basis of a mean-field approximation.
We give a first qualitative glimpse of this analysis in what
follows; quantitative details will be published elsewhere.
Because of coupling and multiplicative noise, the system
becomes bistable with the behavior approximately gov-
erned by a mean-field effective potential [17]

Ueff�x� � U0�x� 1 Unoise � 2
Z

f�x� dx 2
s2

mx2

4
.

(7)

Now the effect can be understood in the frame of a
standard SR mechanism [8], where the external signal is
provided by the periodic force for the directly excited os-
cillators, and by the influence of the left neighbors for
the nonexcited oscillators. For large forcing, only the lat-
ter need an additive noise to hop synchronously between
wells, whereas for small forcing, both the excited and the
nonexcited oscillators display SR. These two behaviors
correspond to Figs. 4(a) and 4(c), respectively.

At this point it is worth making several remarks to the
phenomenon described above. First, SDSR and noise-
induced propagation in monostable media are strongly
different to spatiotemporal SR [23] or noise enhanced
propagation [19] in bistable media. The effect presented
here can be controlled by multiplicative noise, which modi-
fies the depth and separation of the two potential wells.
Therefore, an optimal amount of multiplicative noise is
required to support the bistable structure. Nothing similar
occurs in array-enhanced SR [24] or in SR in extended
bistable systems [25]. On the other hand, an increase
of additive noise also leads to a loss of bistability (see
Fig. 3), and hence a decrease of Q for large additive noise
is explained not only by the fact that disordered hops are
produced by intense noise, as in standard SR, but also by
the loss of bistability. Second, noise-induced propagation
in monostable media is very intriguing from the viewpoint
of the theory of extended systems with noise and cannot be
directly predicted from DSR. The noise-induced bistabil-
ity, on which DSR is based, is a collective phenomenon,
010601-3
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which can be observed only for a positive value of
coupling enabling all elements to be close to the same
position. In contrast to it, here we have shown that a
propagation, which implies that different cells are simul-
taneously in different states, can occur in such a system
without destroying the mechanism of bistability.

In conclusion, we have reported the existence of a
propagation phenomenon, in which noise induces wave
propagation in monostable media. The joint action of mul-
tiplicative noise and spatial coupling induces bistability,
and additive noise enhances the propagation of harmonic
forcing in the stochastically induced bistable medium.
Because of its nontrivial propagation mechanism, this
effect can be considered as a contribution to the theory of
extended systems with noise. We also expect that these
theoretical findings will stimulate experimental work.
Especially, such kind of a propagation can be of great im-
portance in communications, due to the fact that the energy
of noise is used in a very efficient way, both to construct
the potential barrier and to provide propagation enhance-
ment in the noise-supported bistable system. We have
demonstrated noise-induced propagation in monostable
media in a simple realistic model, but in a general frame-
work. Because of the generality of the model we expect
that this effect can be also found in several more compli-
cated real extended systems with noise-induced bistability.
Probable experimental implementations include arrays
of simple electronic circuits as a communication system
[22], analog circuits [26], electronic cellular neural net-
works [27], and are expected to be achieved in several
real spatially distributed systems, such as liquid crystals
[28], photosensitive chemical reactions [29], Rayleigh-
Bénard convection [30], or liquid helium [31].
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