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Noise-Enhanced Phase Synchronization of Chaotic Oscillators
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The effects of noise on phase synchronization (PS) of coupled chaotic oscillators are explored. In
contrast to coupled periodic oscillators, noise is found to enhance phase synchronization significantly
below the threshold of PS. This constructive role of noise has been verified experimentally with chaotic
electrochemical oscillators of the electrodissolution of Ni in sulfuric acid solution.
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The study of synchronization in coupled oscillators is of
fundamental importance with applications in various fields
[1]. The notation of synchronization has been extended to
include a variety of phenomena in the context of interact-
ing chaotic oscillators, such as complete synchronization
(CS) [2], generalized synchronization [3], and phase syn-
chronization (PS) [4]. PS can be achieved with a coupling
strength much weaker than that for CS.

Noise influences synchronization in different ways. In
CS of coupled chaotic systems, noise may induce intermit-
tent loss of synchronization due to local instability of the
synchronization manifold [5]. On the other hand, identical
systems which are not coupled but subjected to a com-
mon noise may achieve CS at a large enough intensity,
as has been demonstrated both in periodic [6] and chaotic
systems [7]. The influence of random forcing on weakly
coupled oscillators is of relevance in neuroscience [8] and
ecology [9]. In PS of coupled oscillators, noise can induce
phase slips in phase-locked periodic oscillators [10] and
chaotic ones [11]. Internal noise-induced bursts in non-
coupled sensories may achieve stochastic PS under a com-
mon external noise [12].

In this Letter we study the interplay between noise and
weak coupling and report counterintuitive effects of noise
on PS of coupled chaotic oscillators with different natural
frequencies. Although noise induces phase slips in the
phase-locked region, both independent and common noise
can significantly enhance PS outside this region.

To take correlation of noise into account, we consider
that the added noise o &;(¢) (i = 1,2) is composed of a
common part e(¢) and an independent part 7;(z), satisfying
&i(t) = VR e(t) + /T — R 5i(r). Both e(¢) and 7, (1) are
assumed to be Gaussian noise and & correlated in time.

In coupled periodic oscillators, A¢p = Aw — esinAd¢,
perfect phase locking is achieved for & > g, = Aw.
Noise smears out the border of the synchronization region
which shrinks with increasing o, as seen in Figs. 1(a) and
1(b) by the average frequency difference AQ = [(A¢)|
in coupled Van der Pol oscillators. The degree of PS
is slightly higher for larger noise correlation R, but the
difference between independent noise R = 0 and common
noise R = 1 is fairly small and becomes detectable only
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for rather strong noise. We thus see that noise degrades
PS in coupled periodic oscillators, as has been previously
shown for R = 0 [10].

We demonstrate quite different PS behavior in two
coupled noisy chaotic Rossler oscillators

Xip = —wiay12 — 212 + elxan — x12), (1)
Vizg = wipx12 + 0.15y1, + 0&,(1), (2)
z12 =04 + (x12 — 85)z12, (3)

with w; = 0.99 and w, = 0.97. There are different ways
to define a phase variable for a chaotic oscillator [13].
Recently, it has been rigorously shown that in phase coher-
ent chaotic oscillations, there exists a transformation be-
tween the phases defined in different ways [13,14]. For the
Rossler oscillator, it is convenient to introduce amplitude
and phase variables as in Ref. [13], i.e., A,-2 = x,-2 + y,-2 and
tan¢; = y;/x;. It has been shown that chaotic fluctuation
of A; introduces a noiselike perturbation to the dynamics
of phase difference A¢, and PS in chaotic oscillators re-
sembles that in noisy periodic ones [4,13]. At o = 0, the
transition point gp, is somewhat higher than that of the pe-
riodic oscillators (Fig. 1).

We show that adding some noise to the chaotic oscilla-
tors can enhance PS significantly. For o = 0.1 [Fig. 1(c)],
AQ) is considerably smaller than that for o = 0 indicating
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FIG. 1. Frequency difference AQ) vs coupling strength .

Solid lines: noise-free case o = 0; open squares: independent
noise R = 0; filled circles: common noise R = 1. Left
panel: two coupled Van der Pol periodic oscillators ¥;, —
(I = xTo)iin + wigxy = s(iy — ¥12) + 0é12 With @) =
0.97 and w; = 0.99; right panel: two coupled chaotic Rossler
oscillators [Egs. (1)—(3)] with w; = 0.97 and w, = 0.99.
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enhanced PS below &; above & there is a small nonva-
nishing A} as a result of noise-induced intermittent phase
slips [11]. For o = 0.3 [Fig. 1(d)], AQ is larger than that
for o = 0 around &p,; however, it is clearly smaller in
weaker coupling strength, indicating enhanced PS. Similar
to periodic oscillators, PS has only a rather weak depen-
dence on the noise correlation R.

Figure 2(a) shows noise-enhanced PS for ¢ = 0.0205.
At o = 0, there are many epochs of phase synchroniza-
tion between phase slips, and typically the epochs last for
about 300 oscillation cycles. Adding a proper amount of
noise to the two oscillators (e.g., ¢ = 0.1, R = 1) pro-
longates remarkably the duration of the synchronization
epochs: the two oscillators maintain PS for a period of
about 3000 oscillation cycles. However, for stronger noise
(e.g., 0 = 0.3, R = 1), phase slips occur more frequently
again. To better characterize noise-enhanced PS, we focus
on the mean duration (7) of the PS epochs. We find that
(7) increases with the noise intensity o, reaches a maximal
value and decreases for larger o for all coupling strengths
analyzed [Fig. 2(b)]. The results are almost the same for
independent noise R = 0, but at large o, (7) takes slightly
smaller values. Similar behavior has been observed close
to the border of the synchronization region when ¢ is fixed,
while Aw is changed.

To understand this constructive effect of noise on PS,
we examine how noise changes time scales of chaotic os-
cillations, since PS is essentially a phenomenon of adjust-
ing time scales by weak interaction. We calculate the re-
turn time 7" between two successive returns of the chaotic
trajectory to a Poincaré section. There are many repeti-
tive configurations of 7 as a result of the fact that there
are many unstable periodic orbits (UPOs) embedded in
the chaotic attractors [15] and chaotic trajectories can stay
close to a certain UPO for some time. When adding a small
amount of noise to the system, e.g., o = 0.1, the repetition
has been reduced considerably, because noise prevents the
system from following the UPOs closely for a long time.
Noise may also speed up or delay the return of the or-
bits, thus generating both small and large return times not
presented in the noise-free systems. The changes of time
scales at weak noise are not clearly observable from the
chaotic attractors.
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FIG. 2. Noise enhanced PS in two weakly coupled Rossler
chaotic oscillators (¢ = 0.0205). (a) Phase difference vs time
for different noise intensity o. (b) Average duration of PS
epochs vs o for different coupling strength €. The standard
deviation is shown with error bars for £ = 0.0205.

014101-2

The interplay between noise and UPOs is important for
understanding noise-enhanced PS. Similar to periodically
driven chaotic oscillators [16], PS of coupled chaotic oscil-
lators can be viewed as phase locking of a number of pairs
of UPOs. Those pairs with larger difference in time scales
generally achieve locking at a larger coupling strength. In
the phase synchronization region, all pairs of UPOs are
mutually locked. When the coupling strength is decreased
past gps, some pairs of UPOs become unlocked while oth-
ers remain locked. In a pair of unlocked periodic orbits,
the characteristic time for developing a phase slip has a
dependence 7 ~ |& — &,5] /2 as at typical type-I inter-
mittency close to a saddle-node bifurcation [16]. Phase
slips of a chaotic oscillation now become possible, but only
when the system comes to follow one of the unlocked pairs
for at least a time of 7 long enough for a phase slip to oc-
cur. In Fig. 3, we confirm that phase slips are indeed gen-
erated by unlocked UPOs, which is seen especially clearly
for & close to 5, where only a few pairs of UPOs become
unlocked and it takes a rather long time 7 to complete a
phase slip. Periodic orbits are manifested by almost van-
ishing AX; = |X,+x — X,|, which is the difference be-
tween the x variable as every k returns to the Poincaré
section y = 0,x < 0, with a return time 7. It is seen that
phase slips occur between a period-4 UPO in oscillator
1 and a period-2 UPO in oscillator 2 which are followed
closely by the systems for a fairly long time (~30 cycles).
While most orbits are locked with return times fluctuat-
ing around a common value (T = 6.24), these UPOs have
clearly much smaller and larger return times [Figs. 3(e)
and 3(f)], and thus remain unlocked by the coupling. With
anoise of o = 0.1, such a long time staying close to UPOs
is rarely observed, and meanwhile most of the phase slips
are eliminated (Fig. 2). At stronger noise, e.g., o = 0.4,
phase slips develop quickly when the oscillators come to
some orbits with quite large differences in the return times,
which cannot follow UPOs closely.
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FIG. 3. [Illustration of phase slips (a),(d) induced by unlocked

UPOs; (b),(e) period-4 for oscillator 1; (c),(f) period-2 for os-
cillator 2 at ¢ = 0.0205. The insets in (b) and (c) show the
unlocked UPOs around ¢ = 2500. Many locked UPOs can also
be observed in this presentation.
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Thus we can explain noise-enhanced PS as follows.
Noise has two effects: (i) it prevents the system from stay-
ing close to the unlocked UPOs for long enough times to
allow a phase slip to occur and (ii) it generates fluctuation
in the return times and may induce phase slips of locked
orbits, as it does in coupled periodic orbits. The degree
of PS is enhanced when (i) is dominant over (ii) at weak
noise level, while it is degraded again when (ii) becomes
dominant at large noise. There thus exists an optimal noise
intensity yielding the maximal enhancement as a result of
the competition between these two factors, as is similar
to the resonantlike behavior typically observed between
the interaction of noise and nonlinear systems [17]. At a
smaller coupling strength &, more orbits become unlocked,
and phase slips may develop already during a shorter time
7s1 when the oscillators approach some unlocked orbits.
When noise prevents a phase slip, the trajectories may ap-
proach other unlocked orbits quickly; thus the enhance-
ment of PS becomes less pronounced [Fig. 2(b)]. For ¢
well below &y, phase slips occur frequently and are not
always clearly associated to UPOs. Beyond &, only (ii)
is active, and perfect PS is interrupted by noise-induced
phase slips. Increasing correlation R of noise can slightly
enhance PS further.

We have shown that the interplay between noise and
UPOs plays a constructive role in PS, which is in contrast
to that close to the threshold of CS in coupled identical
chaotic systems. There many UPOs are transversely un-
stable [5] and the synchronization error can be amplified
from the noise level to generate bursts of desynchroniza-
tion by these UPOs even in the presence of extremely weak
independent noise components 7 [18].

We have also carried out experiments on noise-enhanced
PS with two weakly coupled chaotic electrochemical os-
cillators. The reaction used is the electrodissolution of Ni
in sulfuric acid solution. The oscillations result from the
interaction of a (hidden) negative differential resistance of
the faradaic process with potential drops in the electrolyte
and/or in external resistances and with (normally slower)
reaction or transport steps. By changing parameters such
as applied potential, electrolyte concentration, and cell
geometry steady, periodic, and chaotic behavior can be
found. The reaction takes place on individual reacting sites
(here two electrodes) and the currents, proportional to the
rates of dissolution, can be independently measured. Such
systems thus constitute a good platform for the study of
coupled chaotic oscillators. In the experiments the two os-
cillators are chaotic and nonidentical. The oscillators are
coupled through external resistors and common noise is
added to the applied potential (driving force). Information
dimension calculations and power spectrum and Hilbert
phase analysis [19] showed that the chaos of each element
is phase coherent and low dimensional. The electrodes are
held at the applied potential [V,,,(¢)] that is the sum of
a constant potential (Vo vs Hg/HgySO4/K,SOy reference
electrode) and a common noise, oe(r). Values of o up to
2.0 mV are applied; inherent noise in the potential signal is
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less than 0.02 mV. In each experiment data are acquired,
beginning approximately after 100 oscillations to assure
stationarity, at 200 Hz. Further details of the experiments
are given in Ref. [19].

The coupling strength between the two electrodes is var-
ied with one series (R,) and two parallel (R,) resistors
[19]. By keeping the total resistance Riq = Rs + R, /2
constant and changing the series resistance fraction, £ =
Rs/R:o, the coupling strength can be varied (no added
coupling for & = 0, and maximal added coupling for & =
1). In a typical experiment PS sets in at about &,, = 0.08
without added noise. The transition to PS is sharp [20]
which is a characteristic of systems with low levels of noise
as can be seen in Fig. 1. CS can be observed at a much
larger coupling strength of approximately g, = 0.8 [19].

We first fix the coupling strength at ¢ = 0.06, i.e., just
below gps. The chaotic attractors of the two elements
(not shown) are similar, but there is a small frequency
mismatch (AQ) = 0.005 Hz). The two oscillators are
not phase synchronized, as can be seen by the observed
phase slip in Fig. 4(a). (The phases were calculated
using the Hilbert-transform approach [13].) The analysis
of the time series of the two oscillators shows that the
phase slip occurs when both oscillators approach the
neighborhood of an unlocked period-3 UPO [Fig. 4(b)].
The coincidence of the approach of unlocked UPOs and
the phase slip confirms the numerical predictions about
the dynamics close to but below &ps.

Noise-enhanced PS can be demonstrated at a somewhat
lower coupling strength: & = 0.04. During the time of
the experiment (about 200 oscillations) there are two phase
slips between the oscillators [see Fig. 5(a)] corresponding
to a frequency difference of 0.012 Hz. As can be seen
in Figs. 5(a)—5(c) the first phase slip can be attributed to
the unlocked period-4 UPOs. The synchronization time
71 during the phase slip is much shorter than that for
e = 0.06. We see that the phase slips occur more fre-
quently and develop more quickly than at the stronger cou-
pling strengths. Moreover, the second phase slip cannot
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FIG. 4. Two (¢ = 0.06) chaotic electrodes just below &y, =
0.08. Ry, = 33002, Vo = 1.280 V. (a) Phase difference be-
tween the two chaotic oscillators vs time. (b) The difference
between the next return values of the current maxima (AX; =
|X, — X,—3|, where X,, is the nth maximum) of the two oscil-
lators (solid line: oscillator 1; dashed line: oscillator 2) as a
function of time.
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FIG. 5. Two coupled (¢ = 0.04) chaotic oscillators without
[left panel, (a)—(c)] and with [right panel, (d)—(f)] small
amounts of common zero-mean Gaussian white noise (standard
deviation of 0.3 mV measured at 200 Hz). Top row: phase
difference between the two oscillators vs time. Middle and
bottom rows: AX,; = |X, — X,—4| (middle: oscillator 1,
bottom: oscillator 2), vs time. R, = 500 , V, = 1.350 V.

be clearly linked to UPOs. These observations are also in
agreement with the numerical calculations obtained further
from gp.

By adding a small amount of zero-mean Gaussian
white noise (the standard deviation is 0.3 mV measured
at 200 Hz) to the (common) potential of the electrodes,
we get a qualitatively different synchronization behavior.
With this small noise, the deterministic nature of the
electrodissolution process is still dominant; the recon-
structed attractors (not shown) resemble those without
noise. However, the phase slips are eliminated and the
phase difference fluctuates around zero [Fig. 5(d)]. The
oscillators do not have as long a time of residence close to
UPOs [Figs. 5(e) and 5(f)] as in the noise-free case. The
absence of phase slips during the 200 oscillations of the
experiment is consistent with the model calculations which
predict lengths of the PS epochs on the order of a thousand
oscillations.

Experiments have also been carried out with weaker
added coupling, & = 0.02 and 0. No phase synchroniza-
tion was obtained with noise up to an intensity at which
the oscillators exhibited (noisy) periodic dynamics. With
smaller electrode spacing and thus greater inherent cou-
pling (4 mm rather than 18 mm as above), the added noise
is able to achieve phase synchronization of the oscillators
with less added coupling, ¢ = 0.02.

We have demonstrated both theoretically and experi-
mentally that noise can play a very constructive role in
the enhancement of phase synchronization of weakly cou-
pled chaotic oscillators. Our finding is of significance for
understanding the effect of fluctuations on synchronization
in chemical, biological, and ecological systems. As an ex-
ample of the latter, a combination of migration (weak cou-
pling) and environmental fluctuations may be responsible
for synchronization of populations [21].
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