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We discuss the emergence of a collective phase locked state in an open cNaimidfrectionally weakly
coupled nonidentical chaotic oscillators. Such a regime is characterized by a Lyapunov spectrum where
N—1 exponents that were zero in the uncoupled regime assume negative values as the coupling strength
increases. The dynamics of such collective state is studied, and a comparison is drawn with the case of phase
synchronization of a pair of coupled chaotic oscillators. In particular, it is shown that a full phase synchronized
state cannot be constructed without at least partial correlation in the chaotic amplitudes.

DOI: 10.1103/PhysReVE.65.055208 PACS nuni)er05.45.Xt, 05.45.Jn

Synchronization of coupled chaotic oscillators has re-
ceived a growing interest in the past years. Several types of
synchronized motions have been studied, namely, complete
or identical synchronizatiofil], generalized synchronization
[2], phase locking(PL) [3], and lag synchronizatiop4].

yi=wiX;tayy,

21=f+21(X1—C),

While transitions among different types of synchronized re- X=—oyi—zte(X-17X),
gimes have been describptl, recently attempts to construct ,
unifying formalisms encompassing these phenomena have Yi=wiXjtay;,
been mad¢5].
In this paper, we describe the emergence of phase locked zi=f+z(x,—c), 1)
states in the collective behavior of a chain of weakly coupled
chaotic oscillators, and we characterize the main features of=2, . . . N representing the index of the oscillator. In Egs.

such a behavior, discussing analogies and differences wit(l), a=0.15,f=0.4, andc=28.5 are fixed parameters, while
the case of synchronized motions emerging in a pair ofhe frequenciesv; of the N oscillators increase linearly by
coupled chaotic oscillators. the rule
PL of two periodic oscillators has been object of attention
since the 17th century6]. This phenomenon corresponds to _ . WNT W1
the appearance of a given parametrically stable limit cycle wi=oy+(—1) N—1 " )
within a torus. PL requires that anym2phase shift in one
oscillator must be accompanied by a correspondingvherew;=0.985 (wy=1.0165) is the frequency of the first
(m/n)2 phase shift in the othemf,ne \). More recently, (the las} oscillator in the chain. Due to the unidirectional
the above concept has been extended to that of phase symature of the coupling, we will catb; the driving frequency
chronization of chaotic systems, describing a processf the chain. We notice that unidirectional coupling allows
through which a weak interaction between two chaotic oscil-one to have a dominant frequency, with respect to which one
lators having different rhythms mutually adjusts their phasesan estimate synchronization features. Furthermore, unidi-
in the course of the time, thus producing a collective dynamitectional coupling schemes are suitable for investigating
cal state. Here, the locking condition was said to|pg  transient phenomena along the chain, which have relevance
—(m/n) g,/ <const (p; , being the phases of the two oscil- in some applied fields, such, e.g., neuroscigidg¢and earth
latorg, indicating a locking of the chaotic phases in thescience[12]. In the following we will concentrate our study
course of the time. Since its theoretical propol| this  to the caseN=11.
phenomenon has been discovered to be ubiquitous in nature A convenient way to detect the emergence of phase syn-
[7]. Furthermore, this phenomenon has been largely investishronization phenomenon consists in monitoring the tempo-
gated in controlled laboratory experimefn&, as well as in  ral evolution of phase differences among different oscillators
infinite dimensional or space extended chaotic systérhs [A(pij(t)5|goi(t)— (pj(t)|] and verifying thatA ¢;;(t) fulfills
In the following, we will describe phase locked collective the locking conditiorjAgoij|< const. The election of param-
states in an open chain of unidirectional coupled chaotic oseters of system 1 determines that the attractor, where the
cillators. The system under study is composedNafoupled trajectory evolves, is phase coherent, and then it is possible
nonidentical three dimensional Bsler oscillatord10], de- to define the phase of each chaotic oscillator @ét)
scribed by =arctanfy;(t)/x(t)] and the corresponding amplitude as
. Ai(t)z\/xzi (t)+y2i (t). In order to detect a collective phase
X1=—w1Y1—Z1, synchronization state in the chain, we have monitored the
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FIG. 1. Temporal evolution of the phase differencés;, FIG. 2. Temporal evolution of the phase differencég;,
=|¢;(t)—@41(t)] at £=0.0015 (@ and at £=0.015 (b). i =|¢;(t)— @4(t)]. i=2,...,11lincreases from bottom to top curve
=2,...,11lincreases from bottom to top curve in the figure. Thein the figure. Initially, the system is prepared in the unsynchronized
inset of (b) highlights the 2r phase jumps in the evolution of regime (=0.0015). Att=5000 the coupling is changed to
A g - =0.06. As a result, all oscillators mutually lock their phases.

phase difference between each coupled oscillator and the first
oneA ¢;4(t) at different coupling values. -
At very small coupling strengths, all oscillators evolve in
an unsynchronized manner, as is demonstrated in Fa&y, 1
where we report the phase differenceg;; vs time fore

,...,11) as functions of the coupling strength The
results are shown in Fig. 3w;) are obtained as time aver-
ages(over periods much larger than the oscillating perjods
of the derivatives of the instantaneous phasgs). Figure 3

: Igxhibits clearly that the process through which the system
reaches a completely PL state consists in phase locking pro-

uasiperfectly on straight lines whose slopes correspond to ; : : .
?he mpean freyquency d?fferenc —(w >E<w )| Aspa cesses between successive oscillators in the chain and the
&wi; = [(w; 1

consequence, each chaotic oscillator evolves with a diﬁ‘erenqr've osplllqtor: Such phase Iockmgs oceur at increasing
thythm, and no phase locking is produced. values, indicating that one can inspect different dynamical

As the coupling increases, systéfr) experiences a tran- regimes in-our chain, nqmely, a phase unsynchronized re-
sition toward a collective state, wherein some oscillators (glme (6<0.0075), a partial PL regime characterized by an

—23,4,5) display phase locking with the drive frequencyincreasmg number of phase locked oscillators (0.60¢5

w1, Whereas all the other oscillators evolve in a phase unsyr‘B< Oéoif)?légt?\(/jeaef/l:)lllulzlanr%gfmi Exggigggbsgarﬁ;ﬂg? all
chronized regiméFig. 1(b), for e =0.015. Notice that here y P

the oscillatori=6 is located at the borderline of phase syn—OSCIIIatorS in the chain.
chronization, displaying 2 jumps between successive pla-
teaus of constant phase differeriteset of Fig. 1b)]. The
appearance of 2 phase slips at the transition between an
unsynchronized and a phase locking regime was indeed cor
sidered as a speciality of phase synchronized phenomen08: 1
[3].

In order to give evidence of PL in our chain, we per-
formed a long simulation trial, in which the system was pre- 0.02 -
pared in the unsynchronized regime=0.0015). The results
are shown in Fig. 2. Initially, all oscillators evolve in a phase
unsynchronized mannefleft part of the curves At t
=5000 time units, a sudden change in the coupling value is
realized, and we set=0.06 in systenil). The effect is that,
after a very short transient time, all oscillators begin evolv-

0.04

ing in a phase locked regime, and consequently all phase 0] T T T T T

differences converge to constant valugght part of the 0.02 & 0.04 0.06

curves. This indicates that the dynamics of systéhhcould FIG. 3. Difference in the mean frequenayw;,=|(w;)— ()|

support a global PL regime for a sufficiently high coupling of the chaotic oscillator¢vertical axi$ vs the coupling strength

value. (horizontal axi$. The process through which the system reaches a
Another independent check of the above is to monitor thecompletely phase synchronized state is realized via successive lock-

differences in the mean frequendyw;,=|{w;)—{w4)|(i ing processes of the oscillators’ phases to the drive phase.
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FIG. 4. Lyapunov exponents in the spectrum vs the coupling'g'5 0625 € ' 0.05

strengthe. First largest 11 Lyapunov exponents in the spectrum.

The error bars account for the residual fluctuations in the values of FIG. 6. Lyapunov exponents in the spectrum vs the coupling

the corresponding Lyapunov exponents. strengthe. The three largest negative exponents in the Lyapunov
spectrum(23rd to 25th. The error bars account for the residual

Next we characterize more quantitatively the observedluctuations in the values of the corresponding Lyapunov exponents.
synchronization scenario. In a pair of coupled chaotic oscil-
lators it is possible to determine the transition to a PL regimeesidual fluctuations in the Lyapunov exponents at that time.
studying the changes of Lyapunov spectrum as a function din the uncoupled casesE0), the Lyapunov spectrum is
the coupling. This regime appears at coupling values whereinonstituted byN= 11 positive exponents\("), N zero expo-

a zero exponent passes to a negative value at the same timents ¢°), andN negative exponents\('). Figure 4 reports

at which all exponents that were positive at no coupling rethe modification in the values of the largé$texponents in
main positive[3]. The above fact indicates that the systemthe spectrum, as the coupling strength increases. There, one
has globally adjusted the phases of the oscillators, while alelearly sees that all exponents remain positive in the range
most no correlation in the amplitudes is built. In the presen0<e=<0.027. At larger couplings, one exponent passes to a
case, the Lyapunov spectrum at0 is constituted byN  negative value. This implies that no amplitude correlations
positive,N zero, and\ negative exponents, where tNezero  are built within the system fos <0.027.

exponents are associated with the phases of the chaotic os- In Fig. 5 we report the values af° (exponents that were
cillators. 0 in the uncoupled cageas the coupling strength increases.

Figures 4, 5, and 6 show how the Lyapunov spectrum i<One can easily appreciate the fact that successive exponents
modified by increasing the coupling strength. Lyapunov expass from zero to a negative value, easncreases, untik
ponents have been calculated over a running time of about0.027. From the considered coupling scheme, the first os-
55000 oscillations of the systems, and error bars account fatillator comes out to be uncoupled, therefore we expect to
have a positive Lyapunov exponent in the spectrum that is
insensitive toe (see Fig. 4, as well as a zero Lyapunov
exponent that finally represents the dominant phase imposed
by the driving oscillator. This is an important fact that indi-
cates the presence of our system in a regime<£0
<0.027) where successive oscillators lock their phases with
the drive phase without building appreciable correlations in
the corresponding chaotic amplitudes. In the inset, a zoom is
shown in the range €£<0.02, with the purpose of high-
lighting how the zero Lyapunov exponents in the spectrum
passes sequentially to negative values.

In Fig. 6 we report the values of the three largest negative
exponents in the Lyapunov spectrum, showing that the cor-
responding values are not changed in sign, as the coupling
increases.

The behavior of the Lyapunov spectrum helps us to un-

FIG. 5. Lyapunov exponents in the spectrum vs the couplingderstand quantitatively the scenario of synchronization
strengthe. Second largest 11 Lyapunov exponents in the spectrumémerging in our system. For sufficiently small coupling
The inset shows a zoom in the range:§<0.02. The error bars strength, the oscillators evolve in an unsynchronized way,
account for the residual fluctuations in the values of the correspondsee Fig. 1 for e=0.0015). At intermediate coupling
ing Lyapunov exponents. strengthgsee Fig. 1 foe =0.015), the system displays again

0

A,O
-0.05

-0.1

. T .
0 0.025 € 0.05

055208-3



RAPID COMMUNICATIONS

VALLADARES, BOCCALETTI, FEUDEL, AND KURTHS PHYSICAL REVIEW E65 055208R)

N positive Lyapunov exponents in the spectrum, whereasf chaotic oscillators. In this latter case, indeed, either com-
some of the exponents that were originally zero have passegtlete phase synchronization appears before the settings of
to negative valuegsee Fig. 5. As a result, the collective amplitude correlation, or a direct transition to complete or
dynamics of systeril) displays no correlation in the chaotic generalized synchronization takes place without any interme-
amplitudes of the oscillators, but partial locking in the diate phase locking regime. At variance, in the case studied
phases. here, a complete phase locked regime cannot be realized over

complete PL regimeFig. 2 ate=0.06). We recall that a " the chaotic amplitudes. On this basis, we highlight that the

direct cross check in the coupling values between Fig. 3 anab.ove limit for phase synthon.ization in a chain of chaotic
Fig. 5 is not possible, since it has been shown that a stabldNits represents a counterintuitive effect that could not have

PL regime sets in for coupling strengths slightly larger thanbeen predicted on the basis of the known results on phase

the ones at which a Lvapunov exoonent passes from zero ﬁynchronization in pairs of coupled chaotic oscillators. We
) yap P P nally remark that the observed scenario has been studied for
a negative valué3].

However, by comparing Fig. 3 with Figs. 4 and 5, it is a purely unidirectional coupling scheme. This leaves open

4 d th i the interesting problem of to what extent the phenomena
easy to understand that systel) cannot realize a COM- "~ described here can emerge in chains of bidirectionally but

prletely PII,' state WEF‘OW having a:} Ie?st pahrtial corrlelation Nasymmetrically coupled chaotic units, which can be the case
the amplitudes. This is due to the fact that thevalue at many practical situations.

which the last oscillator locks its phase with the drive (

=0.052 in Fig. 3 corresponds to a situation where at least The authors acknowledge many fruitful and illuminating

one originally positive Lyapunov exponent has passed to @liscussions with F. T. Arecchi, K. Josic, D. Maza, A. Pik-

negative valug(see Fig. 4, thus indicating the settings of ovsky, A. Politi, M. G. Rosenblum, and J. W. Shuai that led

amplitude correlation in at least a pair of chaotic oscillatorsto the ideas discussed in this Rapid Communication. Work
in the chain. This fact differentiates our observation from thewas partly supported by the European Contract No. HPRN-
scenario of synchronization phenomena occurring in a pai€CT-2000-00158.
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