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Collective phase locked states in a chain of coupled chaotic oscillators
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We discuss the emergence of a collective phase locked state in an open chain ofN unidirectionally weakly
coupled nonidentical chaotic oscillators. Such a regime is characterized by a Lyapunov spectrum where
N21 exponents that were zero in the uncoupled regime assume negative values as the coupling strength
increases. The dynamics of such collective state is studied, and a comparison is drawn with the case of phase
synchronization of a pair of coupled chaotic oscillators. In particular, it is shown that a full phase synchronized
state cannot be constructed without at least partial correlation in the chaotic amplitudes.
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Synchronization of coupled chaotic oscillators has
ceived a growing interest in the past years. Several type
synchronized motions have been studied, namely, comp
or identical synchronization@1#, generalized synchronizatio
@2#, phase locking~PL! @3#, and lag synchronization@4#.
While transitions among different types of synchronized
gimes have been described@4#, recently attempts to construc
unifying formalisms encompassing these phenomena h
been made@5#.

In this paper, we describe the emergence of phase loc
states in the collective behavior of a chain of weakly coup
chaotic oscillators, and we characterize the main feature
such a behavior, discussing analogies and differences
the case of synchronized motions emerging in a pair
coupled chaotic oscillators.

PL of two periodic oscillators has been object of attent
since the 17th century@6#. This phenomenon corresponds
the appearance of a given parametrically stable limit cy
within a torus. PL requires that any 2p phase shift in one
oscillator must be accompanied by a correspond
(m/n)2p phase shift in the other (m,nPN ). More recently,
the above concept has been extended to that of phase
chronization of chaotic systems, describing a proc
through which a weak interaction between two chaotic os
lators having different rhythms mutually adjusts their pha
in the course of the time, thus producing a collective dyna
cal state. Here, the locking condition was said to beuw1
2(m/n)w2u,const (w1,2 being the phases of the two osc
lators!, indicating a locking of the chaotic phases in t
course of the time. Since its theoretical proposal@3#, this
phenomenon has been discovered to be ubiquitous in na
@7#. Furthermore, this phenomenon has been largely inve
gated in controlled laboratory experiments@8#, as well as in
infinite dimensional or space extended chaotic systems@9#.

In the following, we will describe phase locked collectiv
states in an open chain of unidirectional coupled chaotic
cillators. The system under study is composed ofN coupled
nonidentical three dimensional Ro¨ssler oscillators@10#, de-
scribed by
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ẏ15v1x11ay1 ,

ż15 f 1z1~x12c!,

ẋi52v i yi2zi1«~xi 212xi !,

ẏi5v ixi1ayi ,

żi5 f 1zi~xi2c!, ~1!

i 52, . . . ,N representing the index of the oscillator. In Eq
~1!, a50.15, f 50.4, andc58.5 are fixed parameters, whil
the frequenciesv i of the N oscillators increase linearly by
the rule

v i5v11~ i 21!
vN2v1

N21
, ~2!

wherev150.985 (vN51.0165) is the frequency of the firs
~the last! oscillator in the chain. Due to the unidirection
nature of the coupling, we will callv1 the driving frequency
of the chain. We notice that unidirectional coupling allow
one to have a dominant frequency, with respect to which
can estimate synchronization features. Furthermore, un
rectional coupling schemes are suitable for investigat
transient phenomena along the chain, which have releva
in some applied fields, such, e.g., neuroscience@11# and earth
science@12#. In the following we will concentrate our stud
to the caseN511.

A convenient way to detect the emergence of phase s
chronization phenomenon consists in monitoring the tem
ral evolution of phase differences among different oscillat
@Dw i j (t)[uw i(t)2w j (t)u# and verifying thatDw i j (t) fulfills
the locking conditionuDw i j u, const. The election of param
eters of system 1 determines that the attractor, where
trajectory evolves, is phase coherent, and then it is poss
to define the phase of each chaotic oscillator asw i(t)
5arctan@yi(t)/xi(t)# and the corresponding amplitude a
Ai(t)[Axi

2(t)1yi
2(t). In order to detect a collective phas

synchronization state in the chain, we have monitored
©2002 The American Physical Society08-1
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phase difference between each coupled oscillator and the
oneDw i1(t) at different coupling values«.

At very small coupling strengths, all oscillators evolve
an unsynchronized manner, as is demonstrated in Fig. 1~a!,
where we report the phase differencesDw i1 vs time for «
50.0015. The observed phase difference evolutions a
quasiperfectly on straight lines whose slopes correspon
the mean frequency differencesDv i1[u^v i&2^v1&u. As a
consequence, each chaotic oscillator evolves with a diffe
rhythm, and no phase locking is produced.

As the coupling increases, system~1! experiences a tran
sition toward a collective state, wherein some oscillatorsi
52,3,4,5) display phase locking with the drive frequen
v1, whereas all the other oscillators evolve in a phase uns
chronized regime@Fig. 1~b!, for «50.015#. Notice that here
the oscillatori 56 is located at the borderline of phase sy
chronization, displaying 2p jumps between successive pl
teaus of constant phase difference@inset of Fig. 1~b!#. The
appearance of 2p phase slips at the transition between
unsynchronized and a phase locking regime was indeed
sidered as a speciality of phase synchronized phenome
@3#.

In order to give evidence of PL in our chain, we pe
formed a long simulation trial, in which the system was p
pared in the unsynchronized regime («50.0015). The results
are shown in Fig. 2. Initially, all oscillators evolve in a pha
unsynchronized manner~left part of the curves!. At t
55000 time units, a sudden change in the coupling valu
realized, and we set«50.06 in system~1!. The effect is that,
after a very short transient time, all oscillators begin evo
ing in a phase locked regime, and consequently all ph
differences converge to constant values~right part of the
curves!. This indicates that the dynamics of system~1! could
support a global PL regime for a sufficiently high couplin
value.

Another independent check of the above is to monitor
differences in the mean frequencyDv i1[u^v i&2^v1&u( i

FIG. 1. Temporal evolution of the phase differencesDw i1

[uw i(t)2w1(t)u at «50.0015 ~a! and at «50.015 ~b!. i
52, . . . ,11increases from bottom to top curve in the figure. T
inset of ~b! highlights the 2p phase jumps in the evolution o
Dw61.
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52, . . .,11) as functions of the coupling strength«. The
results are shown in Fig. 3.^v i& are obtained as time aver
ages~over periods much larger than the oscillating period!
of the derivatives of the instantaneous phasesw i(t). Figure 3
exhibits clearly that the process through which the syst
reaches a completely PL state consists in phase locking
cesses between successive oscillators in the chain and
drive oscillator. Such phase lockings occur at increasing«
values, indicating that one can inspect different dynami
regimes in our chain, namely, a phase unsynchronized
gime («,0.0075), a partial PL regime characterized by
increasing number of phase locked oscillators (0.0075,«
,0.052), and a full PL regime for«.0.052, characterized
by a collective evolution of the instantaneous phases of
oscillators in the chain.

FIG. 2. Temporal evolution of the phase differencesDw i1

[uw i(t)2w1(t)u. i 52, . . . ,11increases from bottom to top curv
in the figure. Initially, the system is prepared in the unsynchroni
regime («50.0015). At t55000 the coupling is changed to«
50.06. As a result, all oscillators mutually lock their phases.

FIG. 3. Difference in the mean frequencyDv i1[u^v i&2^v1&u
of the chaotic oscillators~vertical axis! vs the coupling strength«
~horizontal axis!. The process through which the system reache
completely phase synchronized state is realized via successive
ing processes of the oscillators’ phases to the drive phase.
8-2
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Next we characterize more quantitatively the observ
synchronization scenario. In a pair of coupled chaotic os
lators it is possible to determine the transition to a PL regi
studying the changes of Lyapunov spectrum as a functio
the coupling. This regime appears at coupling values whe
a zero exponent passes to a negative value at the same
at which all exponents that were positive at no coupling
main positive@3#. The above fact indicates that the syste
has globally adjusted the phases of the oscillators, while
most no correlation in the amplitudes is built. In the pres
case, the Lyapunov spectrum at«50 is constituted byN
positive,N zero, andN negative exponents, where theN zero
exponents are associated with the phases of the chaoti
cillators.

Figures 4, 5, and 6 show how the Lyapunov spectrum
modified by increasing the coupling strength. Lyapunov
ponents have been calculated over a running time of ab
55 000 oscillations of the systems, and error bars accoun

FIG. 4. Lyapunov exponents in the spectrum vs the coup
strength«. First largest 11 Lyapunov exponents in the spectru
The error bars account for the residual fluctuations in the value
the corresponding Lyapunov exponents.

FIG. 5. Lyapunov exponents in the spectrum vs the coup
strength«. Second largest 11 Lyapunov exponents in the spectr
The inset shows a zoom in the range 0,«,0.02. The error bars
account for the residual fluctuations in the values of the correspo
ing Lyapunov exponents.
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residual fluctuations in the Lyapunov exponents at that tim
In the uncoupled case («50), the Lyapunov spectrum is
constituted byN511 positive exponents (l1), N zero expo-
nents (l0), andN negative exponents (l2). Figure 4 reports
the modification in the values of the largestN exponents in
the spectrum, as the coupling strength increases. There,
clearly sees that allN exponents remain positive in the rang
0,«&0.027. At larger couplings, one exponent passes t
negative value. This implies that no amplitude correlatio
are built within the system for«&0.027.

In Fig. 5 we report the values ofl0 ~exponents that were
0 in the uncoupled case!, as the coupling strength increase
One can easily appreciate the fact that successive expon
pass from zero to a negative value, as« increases, until«
.0.027. From the considered coupling scheme, the first
cillator comes out to be uncoupled, therefore we expec
have a positive Lyapunov exponent in the spectrum tha
insensitive to« ~see Fig. 4!, as well as a zero Lyapuno
exponent that finally represents the dominant phase impo
by the driving oscillator. This is an important fact that ind
cates the presence of our system in a regime (0,«
,0.027) where successive oscillators lock their phases w
the drive phase without building appreciable correlations
the corresponding chaotic amplitudes. In the inset, a zoom
shown in the range 0,«,0.02, with the purpose of high
lighting how the zero Lyapunov exponents in the spectr
passes sequentially to negative values.

In Fig. 6 we report the values of the three largest nega
exponents in the Lyapunov spectrum, showing that the c
responding values are not changed in sign, as the coup
increases.

The behavior of the Lyapunov spectrum helps us to
derstand quantitatively the scenario of synchronizat
emerging in our system. For sufficiently small couplin
strength, the oscillators evolve in an unsynchronized w
~see Fig. 1 for «50.0015). At intermediate coupling
strengths~see Fig. 1 for«50.015), the system displays aga
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FIG. 6. Lyapunov exponents in the spectrum vs the coupl
strength«. The three largest negative exponents in the Lyapun
spectrum~23rd to 25th!. The error bars account for the residu
fluctuations in the values of the corresponding Lyapunov expone
8-3
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N positive Lyapunov exponents in the spectrum, wher
some of the exponents that were originally zero have pas
to negative values~see Fig. 5!. As a result, the collective
dynamics of system~1! displays no correlation in the chaot
amplitudes of the oscillators, but partial locking in th
phases.

Finally at large coupling strength, the system evolves i
complete PL regime~Fig. 2 at «50.06). We recall that a
direct cross check in the coupling values between Fig. 3
Fig. 5 is not possible, since it has been shown that a st
PL regime sets in for coupling strengths slightly larger th
the ones at which a Lyapunov exponent passes from zer
a negative value@3#.

However, by comparing Fig. 3 with Figs. 4 and 5, it
easy to understand that system~1! cannot realize a com
pletely PL state without having at least partial correlation
the amplitudes. This is due to the fact that the« value at
which the last oscillator locks its phase with the drive«
.0.052 in Fig. 3! corresponds to a situation where at lea
one originally positive Lyapunov exponent has passed t
negative value~see Fig. 4!, thus indicating the settings o
amplitude correlation in at least a pair of chaotic oscillat
in the chain. This fact differentiates our observation from
scenario of synchronization phenomena occurring in a
r-
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of chaotic oscillators. In this latter case, indeed, either co
plete phase synchronization appears before the setting
amplitude correlation, or a direct transition to complete
generalized synchronization takes place without any inter
diate phase locking regime. At variance, in the case stud
here, a complete phase locked regime cannot be realized
the whole chain, without implying at least partial correlatio
in the chaotic amplitudes. On this basis, we highlight that
above limit for phase synchronization in a chain of chao
units represents a counterintuitive effect that could not h
been predicted on the basis of the known results on ph
synchronization in pairs of coupled chaotic oscillators. W
finally remark that the observed scenario has been studied
a purely unidirectional coupling scheme. This leaves op
the interesting problem of to what extent the phenome
described here can emerge in chains of bidirectionally
asymmetrically coupled chaotic units, which can be the c
in many practical situations.
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