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We demonstrate the effect of coherence resonance in a heterogeneous array of coupled Fitz Hugh–
Nagumo neurons. It is shown that coupling of such elements leads to a significantly stronger coherence
compared to that of a single element. We report nontrivial effects of parameter heterogeneity and spatial
independence of noise on array-enhanced coherence resonance; especially, we find that (i) the coherence
increases as spatial correlation of the noise decreases, and (ii) inhomogeneity in the parameters of the
array enhances the coherence. Our results have the implication that generic heterogeneity and background
noise can play a constructive role to enhance the time precision of firing in neural systems.
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Noise-induced effects in nonlinear systems, especially
stochastic resonance (SR) [1] have drawn great research
interests. The frontier of this interest has shifted to spa-
tiotemporal systems recently [2,3]. One of the most inter-
esting phenomena is array-enhanced stochastic resonance
(AESR) [3], where the response of a bistable noisy os-
cillator to an external periodic signal is further optimized
by coupling it locally to an array of identical oscillators.
Potential symmetry is found to enhance SR in extended
bistable systems [4]. Another generalization of SR to spa-
tiotemporal systems is doubly stochastic resonance [5].

There is also great interest in the resonantlike phenome-
non of the coherent motion induced purely by noise with-
out an external signal [6–8], called coherence resonance
(CR). Pure spatially independent noise can induce trav-
eling waves [9], global oscillations, CR [10], and noise-
enhanced phase synchronization [11] in excitable media.
We have recently demonstrated that, very similar to AESR,
the coherence can also be significantly enhanced when
the noisy excitable elements are coupled and subjected to
independent local noise. This behavior is called array-
enhanced coherence resonance (AECR) [12].

In spatially extended systems, two further ingredients
may have significant effects on the system’s behavior:
(i) noise correlation among the elements, and (ii) spatial
heterogeneity in parameters of different elements. In par-
ticular, in neuroscience, heterogeneity is generic because
neurons are never identical. Moreover, they also receive
synaptic inputs from a large number of other neurons.
These inputs exhibit randomlike behavior and might be
highly correlated among a piece of neurons [13]. Most
of the previous investigations considered the effect of spa-
tially independent noise on parameter homogeneous me-
dia. The purpose of this contribution is, therefore, to study,
in the context of AECR and noise-induced coherence of
firing activity in neural systems, the following question:
What is the most efficient for AECR, to couple the ele-
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ments into a homogeneous or heterogeneous chain, and
subject them to spatially correlated or independent noise?
We will mainly show that the coherence of the spatiotem-
poral behavior of chain can be significantly enhanced by
independent noise and heterogeneity.

We demonstrate these nontrivial effects of disorder in
a chain of N locally coupled Fitz Hugh–Nagumo (FHN)
neurons, which is a paradigmatic model of excitable sys-
tems, nerve pulses, CR [7], or the firing activity of elec-
troreceptor cells of the electric fish [14]. The coupled
system reads

e �xi � xi 2 x3
i �3 2 yi 1 g�xi11 1 xi21 2 2xi� , (1)

�yi � xi 1 ai 1 Dji , (2)

where e � 0.01, ai is the parameter of the ith element, g
is the coupling strength, and D is the intensity of the noise
ji . Periodic boundary condition x0 � xN is employed in
our simulations.

For a single FHN neuron, if jaj . 1, the system has
only a stable fixed point corresponding to its quiescent
state, while for jaj , 1 a limit cycle occurs. The quiescent
neuron (jaj slightly larger than 1.0) is excitable because it
produces a firing pulse when perturbed away from the fixed
point by external stimuli.

To study the effects of spatial heterogeneity, we compare
a homogeneous chain (HC) where all ai take the same
value a0, with an inhomogeneous chain (IHC) where ai is
a random variable uniformly distributed in �a0 2 da,a0 1

da�. We fix a0 � 1.05, and set the heterogeneity degree
da # a0 2 1 so that all the cells are in the subthreshold
regime.

We introduce noise correlation among the cells in the
following way: For simplicity, in a network consisting of
a small number of neurons, highly correlated, randomlike
synaptic inputs might be represented by a Gaussian noise
common to all neurons [15]. The thermal fluctuations,
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or ion channel activity, however, give rise to spatially
independent local noise. In our model, the noise consists
of two components, ji�t� �

p
R e�t� 1

p
1 2 R hi�t�,

where e�t�, a Gaussian noise with �e�t�e�t 2 t�� � d�t�,
is common to all elements, and hi is the local Gaussian
noise with �hi�t�hj�t 2 t�� � di,jd�t�. Since �ji�t� 3

jj�t 2 t�� � �R 1 �1 2 R�di,j�d�t�, the control pa-
rameter R measures the noise correlation between a pair
of cells. Usually, spatial correlation of noise in extended
systems is considered by a correlation length. The effects
presented in the following are similar when the noise
correlation is introduced by a correlation length [16].

In a single excitable FHN neuron subjected to noise, the
firing activity becomes most coherent for a certain noise
intensity [7]. When coupled into an array, the firing of a
neuron may propagate in the chain to excite its neighboring
neurons. This mutual excitation may make some neurons
fire in a synchronized fashion and reduce the fluctuations
in pulse intervals.

To characterize the behavior in the chain, we introduce
a phase [17] of the dynamics in each cell,

fi�t� � 2p
t 2 t

i
k

t
i
k11 2 t

i
k

1 2pk , (3)

where t
i
k is the time of the kth firing of the ith cell. We

understand synchronization between two noisy cells as the
appearance of peaks in the distribution of the cyclic relative
phase Fi,j � �fi 2 fj�mod2p [18]. Deviation of this
distribution from a uniform one characterizes the strength
of synchronization. We quantify this deviation by s

2
i,j,

which is the variance of the actual phase distribution di-
vided by that of a uniform one. Choosing a reference cell
n0 in the chain, the spatial average,

s2
syn �

1
N 2 1

X
jfin0

s2
n0,j , (4)

provides a measure of the synchronization strength in the
chain. s2

syn � 0 means perfect global synchronization,
and s2

syn � 1 indicates no synchronization in the chain.
To measure the temporal coherence of the noise-

induced firing of a neuron, we examine the distribution of
the pulse interval Ti

k � t
i
k11 2 t

i
k . The sharpness Si of

this distribution,

Si � �Ti
k�t

. q
Var�Ti

k� �i � 1, 2, . . . , N� , (5)

measures the coherence of the firing events. Here �?�t

denotes average over time. This quantity is of biological
significance because it is related to the timing precision of
the information processing in neural systems [19]. We also
compute the coherence factor S of the chain based on the
distribution of pulse intervals of all N cells. S is defined
similar to Eq. (5), but here the average is performed over
both time and space. In the HC, there is Si � S for all the
cells, while, in the IHC, Si fluctuates around S due to the
heterogeneity. Larger S is related to stronger coherence in
the chain.
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The results of our numerical experiments are common
for lattices of different size N , e.g., N � 50, 100, 200. For
N � 100, Fig. 1(a) exhibits clearly the feature of AECR
where S reaches a maximal value at an optimal noise inten-
sity Dopt � 1021.5 and the coherence of the chain is much
higher than that of the single element. Dopt shifts slightly
to smaller values with decreasing R, and it is important
to emphasize that these values are much smaller than that
of the single element as a result of mutual excitation in the
chain. The temporal coherence is also related to spatial co-
herence in the chain. Figure 1(b) displays the typical phe-
nomenon of noise-enhanced phase synchronization [11]
indicated by a minimal s2

syn at a noise intensity close to
the optimal one for S. Spatial phase synchronization is re-
lated to the coherence of the mean-field X � �1�N �

P
xi of

the chain, which also displays the feature of CR [16]. The
most interesting phenomenon here is that the correlation
of noise has a stronger influence on temporal coherence
than on spatial coherence: The temporal coherence in-
creases rapidly with a decreasing noise correlation R over
a broad range of noise intensity D, while, around Dopt,
the synchronization degree is not degraded very much by
decreasing R. As a result, spatiotemporal coherence is en-
hanced enormously by spatially independent noise. The
common noise component e�t� introduces a long-range in-
teraction in the chain. However, its effect is to decrease
the coherence, as is different to the effect of the coupling g
which increases the coherence significantly both in AESR
[3] and AECR [12] (and see Fig. 4 below). For global
noise (R � 1), s2

syn never reaches zero due to the spatial
heterogeneity. There the maximal coherence S 	 7.0 is
rather close to S 	 5.3 for the uncoupled single element
with a � a0, showing that spatial coupling of such ele-
ments subjected to global noise only weakly improves the
coherence. Actually, this weak improvement is due to the
spatial heterogeneity. The underlying mechanism will be
discussed later.

Next we demonstrate the important role of spatial
heterogeneity on AECR. We compare a HC (da � 0)
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FIG. 1. Coherence S (a) and synchronization degree s2
syn

(b) as functions of the noise intensity D for different values
of noise correlation R in a chain with N � 100 cells, with
the heterogeneity degree da � 0.05 and coupling strength
g � 1021.3. When R is varying from R � 1 (global noise) to
R � 0 (local noise) with a step 0.1, both S and s2

syn increase on
the whole. The dashed line in (a) is the result for an uncoupled
single FHN neuron with a0 � 1.05, plotted for a comparison
with the chain.
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with an IHC (da � 0.05) subjected to local noise
(R � 0). The coupling strength g � 1021.3 is the same
as in Fig. 1, and the noise intensity D � 1021.5 is chosen
close to Dopt of the IHC in Fig. 1. As shown by the
average pulse interval �Ti

k�t in Fig. 2(a), the IHC fires
more frequently than the HC. In spite of the heterogene-
ity, the IHC has achieved a regime of frequency locking
with the same value of �Ti

k�t for all its cells. The variances
of the pulse intervals Var�Ti

k�, however, fluctuate strongly,
but it is important to emphasize that their values are
significantly smaller than those of the HC. As a result,
the coherence factors Si [Eq. (5)] of all cells in the IHC
are larger than those in the HC [Fig. 2(b)]. Furthermore,
the coherence S increases monotonically with increasing
heterogeneity degree da (Fig. 3).

Now we compare more systematically the coherence
of the HC and IHC in the parameter space of coupling
strength g and noise intensity D for local noise R � 0.
As seen in Figs. 4(a) and 4(b), for rather weak coupling g,
both the HC and IHC have a coherence very close to that
of the uncoupled single element with parameter a0. AECR
sets in for strong enough coupling, i.e., when the noise-
induced pulses of a cell are able to excite neighboring
cells in the chain. The coherence decreases again for very
strong coupling and large enough noise. Now we analyze
in more detail the appearance of the valley, the peak, and
the plateau in Fig 4(c) which shows DS � SIHC 2 SHC,
the difference between the coherence factors of the IHC
and HC. (i) Valley: In the IHC, those cells with ai rather
above the critical point a � 1.0 are more difficult to ex-
cite by coupling or noise than those closer to a � 1.0.
For quite weak coupling, the former cells may not be ex-
cited by their neighboring cells; and they can give rise
only to rather sparse and irregular pulses in the presence
of relatively weak noise. While in the HC, mutual exci-
tation has enhanced its coherence with the same coupling
strength and noise intensity, resulting in a valley of DS.
(ii) Peak: When moving to strong enough coupling, the
former cells in the IHC become excitable by the latter cells
in their neighborhood which generate frequent and rather
regular pulses even at a weaker noise level. The whole
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FIG. 2. Comparison of IHC (empty circles, da � 0.05) and
HC (filled circles, da � 0.0). (a) Average of pulse interval Ti

k ;
(b) Coherence factor Si of the cells.
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IHC now achieves frequency locking to this quicker and
more coherent firing activity, and a peak of DS in the re-
gion of stronger coupling and weaker noise is seen. With
an increasing heterogeneity degree, more cells are getting
closer to a � 1.0, resulting an enhanced coherence shown
in Fig. 3. (iii) Plateau: With further increasing of the cou-
pling, quick diffusion dominates the firing process in the
chain and the heterogeneity becomes unimportant. The
whole lattice becomes more rigid, and both the HC and
IHC tend to act as a single element with decreasing tempo-
ral coherence. When too strong noise dominates the firing
activity, one again sees no significant differences between
the HC, the IHC, and the single element. The above-
described behavior is similar for spatially correlated noise,
i.e., R fi 0.

Actually, the competition between pulse propagation in-
duced by coupling and pulse excitation induced by noise
also underlies the mechanism of enhanced coherence by
spatially independent noise. In the HC subjected to global
noise, the whole chain acts as a single uncoupled element
without an enhancement of the coherence. If the noise has
an independent local component, which generates firing
events independently at some different cells and destroys
perfect global synchronization, a cell which is not excited
by noise may be excited by its neighboring cells. As a
whole, the coherence is enhanced by mutual excitation.
For smaller noise correlation, independent firing can be
invoked by a weaker noise, so that Dopt in the chain shifts
to slightly smaller values with decreasing R [Fig. 1a]. Pa-
rameter heterogeneity destroys perfect global synchroniza-
tion and introduces mutual excitation even in the presence
of global noise, thus the coherence can be improved as
shown in Fig. 1(a). The most efficient optimization of the
coherence by coupling occurs in the IHC with local noise.

In conclusion, we have demonstrated various nontrivial
noise-induced behavior in a chain of coupled FHN neu-
rons, especially array-enhanced coherence resonance and
noise-enhanced synchronization. The parameter hetero-
geneity and spatially independent noise in the chain are
found to play a decisive role in creating an efficient AECR.
A detailed description of the mechanism and an extension
from 1D chains to 2D lattices will be presented in a forth-
coming paper [16]. We expect that similar properties can
be observed in AESR where the chain is subjected to exter-
nal periodic driving. We have studied here a system with
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FIG. 3. Coherence factor S of the IHC as a function of the
heterogeneity degree da.
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FIG. 4. Comparison of the coherence factors of the HC and
IHC with respect to the coupling strength g and the noise inten-
sity D. (a) S of the HC; (b) S of the IHC with heterogeneity
da � 0.05; and (c) the difference DS � SIHC 2 SHC.

homogeneous coupling strength. It has been shown that
a selective coupling can enhance SR in extended bistable
systems [20]. Since selective coupling also affects the
competition between pulse propagation and noise-induced
excitation, it may also play a nontrivial role in AECR,
which is under study.

Our finding may be of importance in neuroscience,
where generic heterogeneity and spatially uncorrelated
noise due to thermal fluctuation or ion channel activities
may play an active role to increase the order and timing
precision of an ensemble of interacting neurons in biologi-
cal information processing. To make a stronger connection
to neurobiology, future models should incorporate more
biologically realistic ingredients. In particular, we will
study the case where noise is colored both in time and
space, e.g., the noise generated by a neural network [21]
and the FHN neurons are coupled as a small-world network
[22] whose connectivity topology is placed somewhere
between a regular and a complete random connectivity.
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