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Symbolic dynamics of event-related brain potentials
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We apply symbolic dynamics techniques such as word statistics and measures of complexity to nonstation-
ary and noisy multivariate time series of electroencephalogf&mB€) in order to estimate event-related brain
potentials(ERP. Their significance against surrogate data as well as between different experimental conditions
is tested. These methods are validated by simulations using stochastic dynamical systems with time-dependent
control parameters and compared with traditional ERP-analysis techniques. Continuous EEG data are cut into
epochsaccording to stimuli events presented to the subjects. These ensembles of time series can be considered
as ensembles of trajectories given by some dynamical systems. We employ a statistical mechanics approach
motivated by the Frobenius-Perron equation and apply it to coarse-grained symbolic descriptions of the dy-
namics. We develop time-dependent measures of complexity founded on running cylinder sets and show that
these quantities are able to distinguish simulated data obtained by different control parameters as well as
experimental data between different experimental conditions. As a first finding, our approach restores the
well-known ERP components and it reveals additionally qualitative changes in the EEG that cannot be detected
by means of the traditional techniques. We criticize the prerequisites of the traditional approach to ERP
analysis and propose to consider ERP instead in terms of dynamical system theory and information theory.

PACS numbs(s): 87.19.Nn, 02.50-r, 05.45.Tp

[. INTRODUCTION et al, who demonstrated that filtered noise can spuriously
exhibit low dimensiong20]. Theileret al. applied the tech-

The structural components of the brain, neurons, and theinique of surrogate data to correlation dimensions of EEG and
ionic channels situated in the cell membranes are known teeported that there is no evidence for low-dimensional chaos
be nonlinear devices. The resistivities of ionic channels aréut significance for nonlinearitj21].
generally nonlinear functions of voltage or the chemical con- More recently, the concept of pointwise dimensions has
centration of transmitter substances, and neurons fire only theen utilized and applied to EEG data, which are nonstation-
the somatic potential at the axon hillock cross a certain acary by definition: these are event-related potent{&RP),
tivity threshold[1,2]. The activity of large formations of neu- i.e., EEG recordings triggered by external events such as
rons is macroscopically measurable as the electroencephaldifferent beeps or words occurring at a monifae]. In the
gram(EEG) at the human scalp. The sources of the EEG aréeep paradignithe so-called oddball experimensubjects
assumed to be extracellular ionic currents driven by voltagare presented beeps of two different frequencies with differ-
gradients between excitatory postsynaptic potentials at thent probabilities. After averaging all EEG trials correspond-
apical dendrites and inhibitory postsynaptic potentials at théng to the rare event, there is a significant positive voltage
neurons somat@3,4]. Hence, it seems to be promising to deflection 300 ms after the stimulus, called the P300 ERP
apply nonlinear techniques of data analysis to EEG dataomponent. Molnaet al. reported a drop of the pointwise
records in order to detect qualitative changes of the braindimension as a function of time corresponding to the P300
dynamics according to Hakd®] and Kelso[6]. componen{22].

This has been attempted by several authors for different Another approach to analyzing natural data is based on
brain states such as-activity, sleep stages, epileptic sei- the concepts of symbolic dynami€23,24] and complexity
zures, diseases, and cognitive tasks by computing the correreasure§25,26. They have been successfully applied to
lation dimensior{7—-18]. But some of these findings report- physiological data such as cardiorespiratory time series
ing low-dimensional chaotic attractors have been criticized[27,28, movement contro]29—-31], or bone structurg¢32],
Layneet al. argued that EEG time series are essentially nonbut also to neuronal spike trains obtained by electrophysi-
stationary, but concepts of dynamical system theory such aslogical measuremen{83]. Symbolic dynamics is able to
attractors or fractal dimensions are only well defined for statackle nonstationarity as has been shown by Schwas,
tionary behaviof11]. Further objections are due to Osborne who applied these techniques to spectrograms obtained from
and Provenzale, who showed that colored noise also entaikstrophysical datf34], and, more recently, by Buchner and
low values of correlation dimensioi49], and due to Rapp Zebrowski, who discussed magnetic systdi®5]. In both

cases the authors deal with time-dependent measures of com-
plexity, such as Shannon entropy and algorithmic complex-
*Electronic address: peter@ling.uni-potsdam.de; also at Inst. dty, where symbolic dynamics are given either by the spectral
Physics, Nonlinear Dynamics Group, UniveisitdPotsdam, powers at certain timel4] or by vectors constructed from
D-14415 Potsdam, Germany. delay embeddingE35].
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In this study we present an approach that combines theshere s(t) is assumed to be the invariant ERP signal that
concepts of statistical mechanics of transient behavior and afhould be uncorrelated to the background EEG actitity
symbolic dynamics to analyze ensembles of ERP time seriesather unrealistic assumptipand that obeys
We show that the information theoretic notions of cylinder
sets and their probability measures are appropriate tools in
order to deal with ensembles of nonstationary data. The cal-

culated running cylinder entropies and word statistics arg e, there is no event-related potential in the prestimulus in-

able to capture the coherency and disorder of ERP. Largg. al at all. For each epochy (1) is a stationary and ergodic

entropy drops corrgqund W'th tra_dltlonal ERP voltage aVelsiochastic process mimicking the spontaneous EEG activity
ages just as the pointwise dimensions reported above. But g d observational noise so that the differet), 7;(t) must

bhase transifons towards hgher dsorcer that cannot be b, Stochastically independent forj and all (1) wil
P . 9 fave the same family of distribution functions,(x),
vealed by averaging voltages.
; ; - Fron (X X2)s Fen (X1, X2,X3), ete.

In order to validate our approach, we perform simulations '1:2*" 1f2013 o )
with nonlinear maps with time-dependent control param- Thg first step in the further analysis is a correqtlon of the
eters, uncertainty of initial conditions, and disturbed bybasellne because it can_not be_ assumed that the time averages
noise. We choose these conditions because it is more pla@f the processeg;(t) will vanish generally. One therefore
sible that ERP data are given by nonstationary stochastie®mputes the averages of the prestimulus intervals
dynamical systems rather than by deterministic signals dis-

s(t)=0 for t<O, (2

turbed by purely observational stationary and ergodic noise. 1 ro
The organization of the paper is as follows. In the second Bi=lim ?J’ xj(t)dt. 3)
section we briefly report the technique and requirements of T =T

the traditional approach to analyze ERP data. In the third ) ]
section we present our data-analysis technique, which idccording to Eq.(2), this leads to the random numbers
based on the statistical mechanics of transient dynamics and

provides the basic concepts of symbolic dynamics and mea- 1 (o
sures of complexity. The fourth section is devoted to results Bi=lim —f ni(t)dt. 4
of our simulations of noisy and nonstationary dynamical sys- T -T

tems. Finally, we analyze data from a language-processin )
ERP experiment and compare the traditional approach oNéxt, one subtracts these baseline values from the corre-
ERP analysis with results of our techniques. sponding ERP epochs,

IIl. TRADITIONAL ANALYSIS OF ERP DATA L) =X ()~ Bi=s(t)+ni(t)—B;.

Continuous EEG data are multivariate time series re- .
corded as real-valued matrice§; < R, 1<i<K+1, 1< From these processes one computes(émepirica) means
=L, whereK is the number of recording electrodes at the
subject’s scalp(the additional channeK+1 contains the N 1 N
trigger codeswhich mark the stimuli events in timandL is L(t)= —2 Li(H)=s(t)+ —E [7i(t)—Bi]
the number of total recording samples. After digital filtering N=1 Ni=1

of this data set in certain pass bands and after manual rejec—bt - tochasti in. Th |
tion of artifacts, i.e., cutting eye blinks, saccades, voItage0 aming a stochaslic process again. these mean values are

drifts, or electromyograms scattered into the EEG, the congStimators of the expectation values

tinuous EEG is split int@pochsaccording to the time marks
given by the trigger codes in chanr€h- 1. Each epoch is a 1 N

short time series consisting of arestimulus interval E(Z(t))=E| s(t)+ NZ [7i(t)—Bi]]| =s(1),
[—T.,0] and apoststimulus interval0,T,], wheret=0 is =1
centered at the stimulus event. These epochs are collecte

into ensembles corresponding to different experimental coan"Ch makes use of the stationarity obtainigz(t))

ditions, say xicl(t), chz(t), where i,j (1<i=N°.1<] =g;, of the fact that the processes(t) are identically dis-

c R ) ) ] tributed, which yieldse;=e, and finally of the ergodicity
<N®) are the epoch indices amnds the(discrete time index property providinge;=e=E(3;) due to Birkhoff's ergodic
ranging from—T to T,,. N°1,N°2 are the numbers of epochs theorem(see, e.g.[39], p. 313.

for both ens_e'mbles. The indices and c, refer to experi- In order to improve the signal-to-noise rai®NR, [40])
mental conditions. _ of the ERP signab(t), one needs many trials per condition

_ Inorder to explain the next steps of data analysis, we shall\q per subject and many subjects per experiment. The num-
give a brief theoretical description of the methi®-38. ey of trials is just the ensemble size of measurement epochs
The classical approach of ERP data analysis requires tha} The improvement in SNR with increasing ensemble size

each ERP epocki(t) is a realization of a stochastic process ;¢ given by N [38] when the signas(t) remains invariant

[84], from trial to trial. But this assumption is also never met in
real EEG data: there are changes in amplitude as well as in
Xi(t)=s(t)+ 5;(1), (1) latency time(e.g., the signal onset timdrom trial to trial,
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e.g., caused by habituation, learning, or changes in attentiosubject to subject and realizations of independent and iden-

[41-43,4Q. Thus, it is more realistic to describe the signal tically distributed stationary and ergodic stochastic processes

content of EEG at least by the ansffz] 7i(t). These conditions are usually not met in real ERP data
[41-43,40,4% The signals(t) at least jitters in time, and

(5) correlations between the signal and the background EEG and
within the background EEG across trials provide a deterio-

in order to counter the latency jitter problem, whe(¢) is ration of the signal-to-noise ratio. Thus, averaging of signals
the invariant signal as before but it is randomly shifted inthat are not time-locked according to the stimulus yields a
time by some discrete stochastic processwith mean damping of wave forms. Note that anséiz states that there
E(7)=0 and varianc®?(r,) = 03_ As before, one assumes is no impact of the noise on the dynamics. It is assumed to be
that all -, are independent and identically distributed. Notepurely observational noise. Next, we develop a data-analysis
that, if s(t) is analytic, we may expand it into a Taylor se- technigue that overcomes these strong assumptions.
ries, Our approach to ERP data analysis is related to ideas of
Kelso and Baar, who consider brain activity in terms of
synergeticswhere experimental manipulations acentrol-
parametersof the system that undergopbase transitionst
ﬁritical parameter valugl6,53—59. Bagar also suggests de-
scribing the coherency of brain activity by entropy as an
order parameterlike the magnetization in ferromagnets
([52], p. 193. Thus, we are going to describe event-related
1 N potentials in terms of dynamical system theory and propose a
E(Nz si(t)) =s(t)+ %é(t)af. way to compute measures of complexity from the EEG data
=1 reflecting qualitative changes or phase transitions of brain

si(t)=s(t+7)

s(t+7)=s(t)+5(t) 7+ 38(t) 72+ -+ . (6)

For the expectation value of the empirical mean, we get the
in second order

The latency jitter, therefore, smears the ERP signal out in thgynamlcs depending on experimental conditions considered

course of time and makes the SNR wof4&,38,45. as control parameters, . : .
; . . In the following subsections we discuss the theoretical
Finally, the averaged epochs of all subjects will be aver-

aged again in order to obtain teand averagaf the whole issues of statistical mechanics of deterministic and stochastic

experiment. Since one assumes stochastic independence da/fnammal systems exhibiting transient behavior. We derive

. ; . n evolution equation of their probability measures in the
the single trial epochs, the subject averages are approxztate space, the Frobenius-Perron equation, and show how

tmhggerlé/mG?_'ues; (':Zn tﬁllestrlta:r:(ejdaj\ecrcaorg;nga;o btgetrecgtnet &aL “rgllgh_ese probability measures can be related to a coarse-grained
: ' 9 9 y c?escription of the dynamical system by means of cylinder

sical statistical tests, such as runningests or multivariate sets. Then. we aoblv classical measures of complexity. such
analyses of variancdVANOVA ) in order to decide whether y ’ PPl . ; piexity, S
as Shannon and Regi entropies, to time-dependent probabil-

means are significantly different between channels, tim fty distributions of words given by a symbolic dynamics,

windows, subjects, and experimental conditi¢B8]. Note . . S
. : X : . . Finally, we provide statistical tests — surrogate data and a
that the analysis of variance requires stationarity of vari- .

2 H . .
ances. This approach yields typical wave forms of average&mnmg){ test—in order to_ deqde Whgther changes in the
voltages which are classified according to their polarity an omplexity measures are significant either agaln_st the null
latency time(generally the time points of extremal vallies yp_otheses of B_e_rnoulh processes or between different ex-
such as N10@a negative peak after 100 ms that indicates aoerlmental conditions.
shift of the subject’s attention towards the stimyJu300(a
positive peak after 300 ms indicating surpjiseand
language-processing-related components such as N400 In order to explain the physical ideas of our approach, we
(negativity after 400 ms arising from semantically implau-will discuss noisy one-dimensional and time discrete dy-
sible wordg or P600(positive wave after 600 ms elicited by namical systems due to Crutchfield and PacK&®i57. A
unexpected grammatical properli¢d46—-48,4,49,50 These deterministic dynamical system, like the logistic map ;
averaged voltage waves can be subjected to further statisticalrx,(1—x,), x,[0,1], r €[0,4], is a pair ,®,), whereX
analyses such as principal component analysis for revealing the state spacesometimes called phase sppead®, :X
superimposed subcomponents and their factorial loads.,X is a map that assigns to a stateat a certain timé its
[51,46,38,4, or techniques from linear system analysis insuccessox, .. The logistic map lives in the unit intervg,
order to compute transient response frequency characteristigs as its state space and the map is just givendhyx)

B. Statistical mechanics of transient dynamics

of the neural tissug52]. =rx(1—Xx), wherer is the control parameter of the system.
Since ERP data are nonstationary by definitiotherwise
[ll. SYMBOLIC DYNAMICS OF ERP DATA there would be no average voltage deflections in the course

of time), we need a statistical formalism of transient behav-
ior of dynamical systems. This can be provided by a statis-
It is important to summarize the prerequisites of the traical description of initial conditions even if the system is
ditional ERP averaging technique: the EEG epochs are sugsurely deterministic. Let us prepare an ensemble of initial
posed to be superpositions of an event-related sigftal  conditions according to a probability measysg. In the
that should be invariant from trial to trial and also from following, we shall assume the measure to be absolutely con-

A. The dynamical approach to event-related potentials
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tinuous, so there is a probability density functipg(x) de- C. Symbolic dynamics
fined on the state space and the measure of d&&X is Next, we shall introduce symbolic dynamics of transient
given by behavior. A coarse-grained description of the dynamics that

lets “robust” properties such as periodicity of the system
investigated invariant can be gained by a partition covering
#o(A)ZJ po(x)dX. (7)  the state space of the dynamical systg0,23. Let {A,|i
A =1,2,...]} be a family ofl pairwise disjunct subsets cov-

Now let the system evolve. What is the image of theset ©fing the whole state spack i.e., Ui=1A=X, ANA|
under the action of the map, after timet? In the determin- =&, i#]j. The index seA={1,2, ... ]} of the partition can
istic case, the imag8=®}(A), where ®! is recursively be interpreted as @inite) alphabet of letters; =i. The ex-
defined by iterating the maph(=®o®!™!), must have the pressiorA” refers to the set of all bi-infinite strings of letters
same probability asA. Therefore, it holds thatug(A)  s=---a_ & a; a; ' from A Given a time-discrete and in-
= u(PL(A)) with u, as the probability measure after tihe  vertible deterministic dynamic®, [85] we construct a map
This identity can be reformulated as m:X—A” that assigns initial conditiong,e X to infinite
symbol stringsse AZ by the rule m(xp) =S, if X;=®!(xo)
Mt(B)=Mo(‘DFt(B)) ®) EAip teZ. Thus,w. maps initial conditionsg in the st.ate
space onto symbolic strings regarded as coarse-grained tra-
for any measurable subsBC X with qu—t(B):(CDD—l(B) jeptories starting ak'o. A .sequenc.:e5eA.Z _ig called .a.dmis—
as the preimage oB after timet. This is the Frobenius- sible by the dynamice, if there is an initial c_ond|t|on><o_
Perron equation of the dynami¢§8]. One can also intro- <X Mapped onta by . The theory of symbolic dynamics

duce a Frobenius-Perron operator acting on the probabilit eals W't_h sets of ac_imlss!ble seq_ue_nEeSA - Note that_ t_he
density functions by ap7 might not be invertible. Ifr is invertible, the partition

is called generic and every string of symbols corresponds to
exactly one initial condition generating[58].
. Nevertheless, we can apply the map? at subsets oh?,
Pt(X):(an}Po)(X)If dy 6(x=®;(¥))po(Y)- (9  namely at strings of finite length, looking for their preimages
in X. In order to do this, we introduce now the basic notions

This operator mediates the mdy), acting on the states, to a of this paper.
function at the space of probability distribution densities.
Next, we are going to introduce some external noise into the
system that influences the dynamics by giving the equation
of motion [a, .. & li={seA s 1=a;,, k=1,...n}
(13

LetteZ, neN, andail,...aineA. The set

Xtr1) = Pr(X) + Eera,s (10 is called n-cylinder at time t. The symbol sequence

. . . =(a;,...,a; ) A" is calledn-word, where A" denotes the
where &; is a discrete stochastic process. For the sake of ( 1 'n) c

PN tA"1X A of n-tuples of symbols.
simplicity, let us assumé, to be a Markov process. Theg, SetAA s . .

is completely described by its transition probability density ' MS dif'”'t'on QF’e‘Tf b(?Ck to McMillafB1], thOLf‘gh he did
functionsf(t,xq;t,,X,) determining the probability for ob- not use the term “cylinder set.” For recent references, see
taining the state, at timet, given the state, at timet;. [56-58,23. For an instructive exampl_e, consider t_he set of
Note that we assume neither stationarity nor ergodicity oftll books ever printed. Then the CX!'ndEb,?Ok]l?o IS the
this process. In analogy 59,57, a Frobenius-Perron op- subset of all books having the word “book” beginning with

erator of this noisy dynamics can be constructed if we set the 100th letter. Not_e_that this cylinder is different from the
set [bookK],5 containing all books that have the word

“book’” beginning with the 250th letter. Since cylinders are
subsets ofA” of infinite strings coinciding in adiscrete
Pt+1(X):J dy p(Y) f(t, @, (y);t+1X). (1D time interval{t,t+1, ... t+n—1}, we can determine their
preimages under the deterministic dynangs,
This leads by recursion to the evolution equation of the den-

Sty pr, 7 Nla,, a0 ) ={xe X|x e A Axee @ AN

A -ntloa
pt(x)=f d'y po(y1) F(0.D(y1);1y>) XA, 19
where(I),‘l denotes the preimages of a set.
Xf(1,D,(y5);2y3) - f(t—1,D,(yp);t,x). (12 Finally, let us endow the state space with a probability
measureu of initial conditions again. Due to the Frobenius-
In order to include nonstationarity of the dynamics, we alsoPerron equation, we obtain a family of measusgattached
allow the control parametarto depend on time: r=r(t). to each point in timd.
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LetteZ, nelN, and aj ... €A as before. The mea-
sure

p(ailv"'1ain|t):1ut([ailv"'1ain]t)

is calledword probabilityof the n-word (a; ,...,a; ) e A" at

time t. The distribution of all word probabilities for a given
lengthn is calledword statistics According to the example
given above, the measure of the cylinflbook] o is just the
cardinality of this set normalized to the total amount of
books ever printed. Again, the measures of the [d®18Kk] ;g
and[ booK],s5q are certainly different.

acteristic function of the cylinde{rail, ...,ain]t considered as
a subset o,

10 xem Y& ,...a )
(16)
0: Xe& Wﬁl([ail,...,ain]t).
For a stochastic nonlinear dynamics such as(&@), the
maps i, 1 are no longer defined and the distinction be-
tween admissible and nonadmissible sequences will be ge

erally destroyed. However, the fluctuations change the wor

probabilities. Hence, we take a rather pragmatic point o

view regarding the cylinder sets as generated by a dynamics
which is assumed to be deterministic, while their probabili-

ties have been changed due to the impact of n@ssmilar
consideration has been made by Tang and Tfady). Do-
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"p(ail,...,ain|t)=k:2w pep(ai,...a [t+k).  (18)

Thus, the coarse graining transforms a noisy nonlinear dy-
namics with uncertainty about initial conditions in state
space as well as in onset time into a nonstationary symbolic
stochastic process described by attword statistics
T)(ail,...,ain|t) or in other words into an information source

in the sense of information theof$2,61].

D. Measures of complexity

The most important quantities of information theory intro-
duced by Shannon and Wea\é2] are entropy and rate of
information transmission. These are calleldssical com-
plexity measures in order to distinguish them from recent
complexity measures such as machine complexity or renor-
malized entropy[25,27]. In the following we describe how
measured ensembles of time series from a dynamical system
can be transformed into a symbolic dynamics in order to
estimate word statistics and to calculate entropies.

We have introduced a symbolic dynamics of a dynamical
system by providing a partition of the state spateFor
experimental data the state space is generally unknown and
has to be reconstructed from measured time series by embed-
ding technique$63]. This could be done also as a first step
for obtaining a symbolic dynamics of the system investigated
[35]. But symbolic dynamics does not need the application
of these methods, since every partition of the set of measure-

nent values yields a partition of the state space automati-
ally. For proof, see Appendix Al.

Let us consider two ensembles of time sexg4t) ,xfz(t)
of the dynamical systemX,®,) obtained by a real-valued
observableh by x°*'®(t)=h(y{®*°2(t)), wherei,j (1=i
<N°,1<j<N%) are the ensemble indices anhis the (dis-

ing so, we can apply the Frobenius-Perron equation obtainectete time index.N°,N° are the cardinalities of both en-

for the noisy dynamicg12) in order to compute the word
probabilities(15),

p(ail.---,aiHIt)=deJ d'y po(y1)

XE(0.D(y1);1y2) - f(t=1,D (yp);t,x)

7

sembles. The indices; and c, refer to different depen-
dences of the control parameter on time, séft), r°(t).

In our notationxi(cl‘cz)(t) means eithex;(t) or x2(t). The
yi(°1'°2)(t) e X are ensembles of trajectories in the state space
for conditionsc, andc,, respectively. After choosing a par-
tition S, i=1,2,...] of the setH=h(X) leading to a par-
tition of X (see Appendix A}, we decide whether the values
x(°°2(t) belong to the sets; in order to assign a symbol

ai(.ckl’cz). Thus, the ensembles of time series will be mapped
(N

onto ensembles of symbolic sequences

To this end, we supposed a deterministic dynamics to com-

EC1={s/!|s;te A", 1<i<N°} (19

introduced noise in order to determine the probabilities of

these maps under the influence of fluctuations.

To describe effects such as the latency jitter of ERP ep-

ochs, we introduce a further random variabi¢hat is dis-
cretely distributed according t{t,p,)|t € Z} with vanishing
meanE(7) and finite varianceD?(7). By means ofr, we
shift initial conditionsx, in time tox(=X,. In order to de-

termine the measures of cylinder sets from shifted initial T:k;

E°z:{sjc2|sf2 e Al 1<j<N°}, (20)
wherel is the length of the time series, i.e., the number of
samples. Each string s s a sequence

i
(Cl’cz)ai(.c‘jz’CZ)---ai(.cijL’CZ) of L letters from the alphabe.

conditions, we have to convolute the word statistics with thelhe cylinder setg13) will be defined for measured data as

distribution p, leading to

fcj.ycz):{seE(C1’62)|St+|—l:ak|l |:1, e !n}

[akl, e ,akn]
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and the word probabilities will be estimated by the countingas autoregressive proces§e8]. They posses the same linear

measures of the ensembleSt,E°t as the relative frequen- characteristics, such as autocorrelation function or power

cies, spectrum, as the real data and serve, therefore, as null hy-
potheses about the nature of the real processes. We apply this
technique on the symbolic dynamics by shuffling the order of

Cq1,C
5(61,62)(31(1, e 'aknlt) = ml[a,,- "'akn]i H) symbols within each sequenslgl’cz) randomly many times.
This provides realizations of Bernoulli processes. Computing
|[ak1,...,akn]£cl'cz))| and averaging the runnir@e., time-dependeptylinder en-
= N(CL.c2) , (2D tropies for the surrogates yields an estimate of the cylinder
entropies of the uncorrelated stochastic symbolic process ob-
where “|-|” denotes the set theoretic cardinality function. tained by the shuffling procedure. As a measure of signifi-

Next, we shall quote the definitions of Shannon’s andc@nce, Theileet al. give the quantity
Renyi's entropies. The Shannon entrop[é&] of ordern at
time t of the ensemble&(°1-°2) will be accommodated as

SD:QD_QH, (25)
SH
(€1.C2) 4y _ $7tc1.c2)
H, (t) (@ ;,ak pri2 (akl"”’akn“) where Qp refers to an(arbitrarily chosep statistic of the
' data. We shall use the Shannon anaRentropies hereQ,,
% |095(c1'°2)(ak1,---,akn|t)- 22 stands for the same statistics estimated from the surrogates,

Qp stands for their empirical mean M)S}_;Qy , andsy
The quantities stands for their empirical standard deviatio(1/M
—1)2h_1(Qu_—Qu)*)"? for an ensemble ol surrogates

[21]. The measure of significance so introduced can be seen
as similar to thet-scores of the classicattest. S;=2 is
assumed to indicate significance about the 95% confidence
level [69] provided the data are Gaussian distributed.

In order to compare the two ensemblg$t,E®2 corre-
sponding to different control parameters or experimental
1 tere) . conditions, we apply they?-test to .th.e word 2statistics

mlog . ,.Z,ak pered(ay,,....ax |t) pPoi(ay - A [1),p%%(ay .. - .8 |t) obtaining thex?-scores

! " (24) and their error probabilities as functions of time according to

[[70], p. 622. Finally, we encounter the problem of latency
are calledn-order R'ef]yi entropiesdepending on the param- jitter. In our theoretical framework given above and in the
eterq [64]. The base of the logarithm in the formulas abovesimulations, we introduced latency jitter as an uncertainty of
is arbitrary. But it is recommended to use either the loga.0bservation time. The symbol sequences forming the cylin-
rithm dualis Id=log, which measures information content in der sets will thus be shifted in time according to some dis-
binary digits(bits) or (what we shall dpthe log, wherel is  crete random variable; . For strings obtained by simulated
the cardinality of the letter alphabet. This choice has thedor measured time series, we use a sliding window technique
advantage that relative entropy will always be normalized tecollecting all word frequencies that belong to a window of
the rang€g0,1]. width D at timet,
Entropy is a measure of uncertainty of a given probability

distribution. It reaches its maximum valuel for uniformly

, —n(c1.c2)
He2)(t)=H 2 (t)/n (23

measure the information per letter and are callelhtive
entropies The quantities

(C1,€2) 4y
ln:clz “(H=

(c1.¢2)
distributed events. It takes its minimum O if there is only one £ (61.60) - s |[akl’---vakn]t 12
certain event with probability 1. For uniform distributions all P @y, - 'akn|t)_r:t2A (D-n+t )N’
q Renyi entropies have the same valgd.. Estimating prob- (26)

abilities from relative frequencies might be deceptive, espe-

cially in the case of small samples. Entropies will be systemwhereA=(D —n+1)/2. In the next section, we will discuss
atically underestimated, if the number of possible wdftls ~ how the sliding window measures influence the entropies
of the order of the ensemble sike Several solutions to this and the word statistics. The sliding window method is also
problem have been proposed in the literati66,66,34,6T.  useful in order to improve the quality of probability esti-

In our analyses, this issue has only minor importance, bemates and hence to improve the significance of yRdest
cause we need only short worde=1,...,4) andsmall  petween conditions.

alphabets I(=2,3) while the grand ensembles of ERP data
have cardinalities about =300—1000.

Whether changes in entropy are significant or not can be
tested using the method of surrogate data suggested by In order to validate our technique, we analyze control data
Theiler et al. [21]. Surrogate data are time series that havegiven by stochastic dynamical systems with transient, non-
been generated artificially either by phase randomization o$tationary behavior, and uncertainty about initial conditions
the measuremen{21] or by linear stochastic models, such as well as about observation times. We have chosen a noisy

IV. SIMULATIONS
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logistic map because its symbolic dynamics is well under- **
stood and it is easy to obtain a binary partition of its state
space by the critical valug,=0.5[71,56,72,60,2B In this
section, we generate ensembles of time series from a stocha ss|
tically disturbed logistic map by preparing initial conditions
randomly in some intervdl0,P]. We varied systematically 3r
the impact of noiser, and allowed the control parameter usl
to depend continuously on time ranging between fixed limits &
[r,R]. Additionally, we introduced uncertainty about the ob- Vv
servation time by shifting the latency of the change of the
control parametet, randomly with variancerf. These free 8¢
parameters of the model,R,o,0,, might be related to the
unknown parameters of ERP recordings, hamely experimen
tal conditions, the many degrees of freedom given by the os}
spontaneous activity of the brain, and at least to latency jit-

0 , ,
ter. o 50 100 150 200 250 300
time t

2k

A. Changin ntrol parameter .
ging controf parameters FIG. 1. Dependency of mean control parameter on time for an

In our simulations we generate ensemblesldiime series  ensemble of logistic maps without noise 4=0,0,=0) but with
each consisting df points in time by iterating a noisy logis- control parameter varying in the randge=4.0, r=3.0 [see Eqg.
tic map X 1=rx(1—%;)+ &1, Where x,€[0,1], r,; (27)]. The nonstationarity happens arour100.
€[0,4], and ¢; are independent identically and uniformly
distributed random numbers with zero mean and standargy, a pinary partition of the unit interval0,1]=A,NA;,

deviationo,. An important point in our simulation is that A,=[0,0.5], andA,=10.5,1] [23]. Furthermore, we created

the control parameter depends continuously on time obeyinginary Bernoulli processes of the same ensemble size and the
same number of samples in order to compare their entropies

R |t—to|>d, and word statistics with those given by the logistic map. We
did three numerical experiments{(a) with different maxima
re= Eco{w 1+ ﬂ” E lt—to|=<d and minima of the control parameter but without any noise
2 d 2 0 ’ and any latency jitter(tb) varying only the dispersion of the

27 noise leaving the range of the control parameter and the la-
tency invariant, andc) investigating the impact of latency
whereR is the maximum and the minimum value of the jitter on ensemble averages and symbolic dynamics using a
control parameter, . ty is the latency time of the simulated fixed range of the control parameter and no noise of the
time series and @ is its duration. The latency timg was  dynamics.
allowed to jitter according tty+ 7, wherer was a uniformly In the first series of simulations, we chose the parameters
distributed random number with zero mean and standard def the model a?N=230, L=300,P=0.001,R=4.0,0;=0,
viation o ,. Figure 1 shows an example of the dependency of=0, andr €{3.0,3.8,3.85,3.95 The maximumR=4 corre-
the mean control parameté@veraged over all simulated tri- sponds to fully developed chaos, while for=3.0 the map
alg for the case where.=0, i.e., without any latency jitter. possesses an unstable fixed pointx#&t=2. At values be-
This function causes the logistic map to become nonstationawveenr,,~3.569® ... (the Feigenbaum attracjoand R
ary atto—d until to+d. We used a latency,=100 and as =4.0, the map shows very complicated behavior changing
the duration of the transient regimel2 30. Thus, the fol- from chaotic bands to periodic windows and back to chaotic
lowing figures should show some conspicuous behaviobands(see, e.g.[72]). Figure 2 showsa) the averaged time
aroundt=100 where something is going on. series(x(t)) and(b) the symbolic dynamics for the setting
The ensembles have been generated by chodsingial R=4.0,r=3.0, 0,=0, ando,=0 with the change of the
conditions randomly and uniformly distributed in an interval control parameter shown in Fig. 1. Black pixels denote the
[0,P], whereP stands for the precision of the preparation of symbol “0” ( x;e[0,0.5]) and white pixels denote the sym-
initial conditions. We ran simulations fod=30, which isa  bol “1” ( x,e ]0.51]). Both Figs. Za) and Zb) show clearly
typical size of a single subject ERP ensemble, andNor the change of the dynamics aroutnd100. At the very be-
=1000 as a typical size of a grand ERP ensemble of alginning, the systems behavior is transient while it settles at
subjects collected together. The sample size was allays the chaotic attractor foR=4.0. In the averaged time series
=300. In the former we chosB=0.001 wheno,=0 and (&) this nonstationarity is given by a fast, almost exponential
P=0.01 wheno#0. In the latterP=0.2 was chosen for all increase ofx(t)). In the symbolic dynamics, this transient
values ofo. behavior is indicated by a black vertical stripe, while the
For comparison between our symbolic dynamics techstates evolve ilhy=[0,0.5]. At time t=85, the control pa-
nigue and the traditional averaging approach of ERP, weameter starts to depend on time, and the systems become
calculated the ensemble averages of the simulated time smenstationary. This is indicated by the averages beginning to
ries. The symbolic dynamics has been performed using thescillate until the control parameter becomes constarit at
critical pointx.= 0.5 of the logistic map as the dividing point =115. In the symbolic dynamics, the transient regime is a
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FIG. 3. One-word statistics of the ensemble of logistic maps.
Parameter settings:N=30, L=300, P=0.001, R=4.0, r=3.0,

o - ™ = o o o0 0:=0, ando,=0. Parameters are the same as Fig. 2.

01

vious that for diminishing distanceR—r the phase transi-
tion at timet=285 becomes harder to recognize in the aver-
ages.

But in contrast, Fig. 5 reveals that there is a change of the
dynamics visible in the running cylinder entropigshown
are Shannon entropiegj€1) for word lengthn=2, Fig.
5(a)]. Though also vanishing for—R, the distinction re-
mains significant by means of surrogate dffag. 5(b)],
where M =1000 surrogates have been generated. There are
some further peaks of the significances at later times at 150
and 250. These could be explained by the fact that the logis-
tic map is not fully chaotic for a parameter value 3.8 and
therefore significantly different from the Bernoulli process
represented by the surrogates.

Using the y-test to compare the data from the logistic
map with those from the Bernoulli process fails for small
ensembles because tlyé-test demands at least five occur-
rences of each word. Thus, we collected words within sliding
windows according to Eq26). This has been done for dif-

FIG. 2. Time series from the logistic map) Ensemble aver- ferent word lengths in different windows. We present the
ages, (b) symbolic dynamics. Black pixel, “0” %,€[0,0.5]); results of the four-word statistics in sliding windows of
white pixel, “1” (x,€]0.51]). Parameter settingsN=30, L lengthD =20 samples in Fig. 6.
=300, P=0.001,R=4.0,r=3.0, 0,=0, ando,=0. The nonsta-
tionarity happens arounid= 100.

||I I*J
!

M

1

091

white vertical stripe, because the fixed pokit= % belongs sk
to A;=]0.5,1]. Figure 2 illustrates the differences of aver-

aging time series and symbolic dynamics. One could expec
that, by lowering the amplitude of the change in control pa- éo.e.
rameterR—r, the jump of the averaged states will decrease
and eventually be hidden by the chaotic dynamics. This will §°°[
not happen in the symbolic dynamics unless the fixed point§o.}
leaves the interval;=]0.5,1]. E

For the same example, Fig. 3 gives the statistics of words °*[
of length 1, i.e., the distribution of symbols over time. As in o2}
the visualizatiorjFig. 2(b)], the word statistics reveal clearly
the phase transition from chaotic to periodic behavior at time
t=285. The large white stripe in Fig.(®) corresponds to a o = - - = = 0
degeneration of the word distribution where only the time t
“word” “1” remains.

Next, we shall tune the control parameter towards the F|G. 4. Ensemble averages of time series of the logistic map for
fully developed chaotic regime. We present the ensemblgninimal value of the control parametar=3.8. N=30, L =300,
averages of the time series generated by the logistic map f®@=0.001,R=4.0, 0,=0, and ¢,=0. Again, the nonstationarity
minimal control parameter settings=3.8 (Fig. 4). It is ob-  happens arount= 100.

0.7

01
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(a) time time
8 FIG. 6. Significance] —l0g;o(Perro)] Of the x?-test between
7 word statistics of symbolic dynamics of the logistic map and Ber-
6L noulli process in sliding windowsr =3.8, word length: n=4,
© sliding window lengthD =20, N=30, L=300, P=0.001,R=4.0,
§ 5T 0:=0, ando,=0.
g 4r
c
2 3t changes in control parameter and, in the presence of noise, it
ol is also sensitive to the noise level. In the following, we in-
ik crease the standard deviation of noise accordingoto
! ] i g A €{0.0005,0.001,0.002,0.0021,0.0022,0.00R 21Figure 8
0 ) Liils L NREALY _ . . .
0 50 100 150 200 250 300 shows the fourth-order Shannon entropies for the simulations
(b) time

with (a) 0,=0.0, (b) 0,=0.001,(c) 6,=0.002, and(d) o,
=0.002 21, while Fig. 9 presents thé—significances of the
four-word statistics between logistic maps for time-
dependent and fixed values of the control parameters of the
gates[Eq. (25)] of the symbolic dynamics in comparison to a Ber- S8Me ensemble size. The parameter of the control condition

noulli process. Solid, logistic map; dashed, Bernoulli process. Worc!1as been fixed. tcR=r=3.569 99. While dynamica_l noise
length: n=2, q=1.0. (a),(b) r=23.8, N=30, L =300, P=0.001, destroys any distinction in the averaged time series at the

R=4.0, 5,=0, and o,=0. Note the nonstationarity arount critical valuer.,, the symbolic dynamics remains a reliable
=100. detector of phase transitions even in the presence of noise.
The only impact of noise on the running entropies is that the

Finally, we show the Shannon entropies obtained fronflifferences of the dynamics before and after the nonstation-

these word statistics in a sliding window. Figure 7 shows thely regime [oscillations at timet=150, Fig. &a)] are

result forr = 3.8. In contrast to the running cylinder entropies Smeared out.

that drop in the periodic regime of the dynamics, the entro-

pies of the sliding window cylinders increase at the begin- C. Changing latency jitter

ning and at the end of the phase transition while they drop in Finally, we study the impact of latency jitter on symbolic

between. This increase in entropy is explained by the facfynamics of simulated data and measures of complexity. We

that the dynamical behavior becomes richer when the sliding e ateq 30 time series per condition for the control parameter
window crosses the onset of the phase transition: On the left

the dynamics remain chaotic but on the right side of the
window the dynamics become periodic. Between both peaks,
these entropies drop when the sliding window is entirely 0.65 |
contained within the transient regime of the dynamics. This
is the case in the simulation because the sliding window
length D=20 is smaller than the durationd230 of the
nonstationarity.

The pattern shown in Fig. 7 should be the same even if
there is an uncertainty in latency. This will be addressed in
Sec. IVC.

FIG. 5. Running normalized Shannon cylinder entropiegs.
(22) and(23)] (a) and their significance&) from M = 1000 surro-

0.7

06|

0.55

Entropy H(4,1)

05t

0.45

0.4

B. Changing noise level 0 50 100 :_50 200 250 300
me
Next, we study simulations wheifé= 1000 initial condi-
tions in the rangg0,0.2 have been prepared. We chdge FIG. 7. Shannon entropies€ 1) of the word statistics of sym-
=3.569 99, the parameter value near the Feigenbaum attragolic dynamics of the logistic map in sliding windows=3.8,
tor, andr =3.4 in the periodic regime again. At the Feigen-word length: n=4, sliding window lengthD=20, N=30, L
baum attractor, the logistic map is very sensitive to small=300, P=0.001,R=4.0, ¢;:=0, ando,=0.
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FIG. 8. Running Shannon cylinder entropies of the symbolic dynamics of the noisy logistic map for different additive noise strength in

Entropy H{4,1)

(@)

Entropy H{4,1)

(b)

SYMBOLIC DYNAMICS OF EVENT-RELATED BRAIN . ..

0.6 | 1
04 1 1
02 r
o I I I I I
0 50 100 150 200 250
time

0.6 4
04 1 1
02 r
o I I I I I
0 50 100 150 200 250
time

300

Entropy H(4,1)

©

Entropy H(4,1)

(d)

0.6

04t

02t

200

0.6 |
04|

02

0

150 200 250
time

50 100

300

5527

comparison to a Bernoulli process. Solid, logistic map; dashed, Bernoulli process. Word length; q=1.0. (@) 0,=0.0, (b) o,
=0.001,(c) o= 0.002,(d) 0:=0.002 21.(a)—(d) N=1000,L=300,P=0.02,R=3.56999,r=3.4, ando,=0.

FIG. 9. Significancg —log;o( Perrod ] Of the x? test between word statistics of symbolic dynamics of the noisy logistic map for different
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additive noise strength against the undisturbed logistic map with constant control paramBter3.569 99. Word length: n=4. (a) o,
=0.0, (b) 0,=0.001,(c) 0,=0.002,(d) 0,=0.002 21.(a)—(d) N=1000,L=300,P=0.02,R=3.56999r=3.4, 0,=0.
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FIG. 10. Shannon entropies|€ 1) of the four-word statistics of the symbolic dynamics of the logistic map with varying latency jitter
in sliding windows.(a) o,=0, (b) 0,=2, (¢) 0,=6, (d) o,=10. (a)—(d) Sliding window lengthD =20, R=4.0,r=3.8, N=30, L=300,
P=0.001,R=4.0, ando;=0.

valuesR=4.0,r=3.8, and increased the standard deviation 35
of latency jitter according te-.<{0,1, . . . 15,2@Q. First, we
show the Shannon entropies of four-words collected in a T
sliding window of lengthD =20 (Fig. 10 for (a) o,=0, (b) & 25¢
o,=2,(c) 0,=6, and(d) o,=10, whereas Fig. 11 presents % o0 |
the x? significances of these four-word statistics between the %
logistic map and a Bernoulli process fta) o.=5 and(b) g 7
o,.=10. 5 10

The phase transition of the dynamics remains significant 2 sl
for small as well as for large dispersions of latency time even
if there is no difference visible in the ensemble averages. For 0 : =L AN
a latency jitter ofo,=20 we obtained significance better 0 %0 100 1.50 200 250 300
than the 10° confidence level. The spurious peaks at times (@) fime
t=50 and about=260 can be neglected by choosing a sig- 16
nificance threshold smaller than 10 14l

Our numerical experiments with a noisy logistic map
and four freely controlled parameterskRoy, 7 12y
o, — mimicking some properties of ERP data, such as dif- § 197
ferent experimental conditions, spontaneous brain activity, % 8t
and latency jitter, have shown that symbolic dynamics and- 8 |
measure of complexity are able to distinguish transient re- 2 4l
gimes of behavior from stationary dynamics much better £
than averages of time series can do. Also symbolic dynamics 2f M/JJ\
provide many parameters such as different partitions, word 0 ' : = :
lengths, sliding windows, and values of Rayi entropies. () 0 %0 100 t:i(; 200 250 300

These parameters must be appropriately chosen in order to
obtain the best result of data analysis. We varied these pa- FIG. 11. Significancd —10g;o(Perro)] Of the y?test between
rameters quite arbitrarily to illustrate the dependence of reword statistics of the symbolic dynamics of the logistic map with
sults from these choices. For example, Figs. 5 and 8 demowarying latency jitter and Bernoulli process in sliding windows.
strate the impact of the word length on running entropies an@_=5, (b) o,=10. (a),(b) Sliding window lengthD =20, R=4.0,

it seems to be the case that longer words will provide better=3.8, N=30, L=300, P=0.001,R=4.0, ands;:=0.
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FIG. 12. Single subject voltage
averages for thevere condition
(solid lines compared to the
CONTROL-VERB condition (dotted.
Lower panels: potential (uV)
against time(s), t=0: stimulus
onset time. Upper panelstest er-
ror probabilities (logarithmic
scalg. The ungrammaticality ef-
fect, P60Q(positive peak after 600
ms), is marked by arrows. For
channel labeling see text.

<0.001

0.011 Legend:
i CONTROL (n=25)
=OTwy — VERB (n=21)

-25

-0.2 02 04 06 08 10
25

5.0

results than shorter words. But for strong noise or small enFour channels were used for measuring EOG artifacts. ERP
semble sizes the opposite holds, as we saw for data obtaineldta have been digitally band-pass-filtered at 0.2—29 Hz after
from different ERP experiments. However, we have shownmanual artifact rejection. 150 sentences, 30 sentences for
that nonstationary dynamics can be detected from ensemblegich condition, organized in five blocks, were visually pre-
of coarse-grained time series even if there are very smallented to subjects word by word but in randomized order
changes in the control parameters and the system is sensitigth a presentation time and interstimulus interval of 400
against changes in initial conditions as well as changes iy, At the end of each sentence, subjects had to indicate
control parameter. This applies also in the presence of dyyhether or not a target word had occurred in the preceding
namical (and not only observationahoise. In addition, by  gentence. The experiment was performed in two runs, the
using sliding windows, our method is able to track uncer-gqt \yithout and the second including distractor sentences in
tainty about the time when changes of the control parameter&der to mislead subjects about the purpose of the study. We
happen. report here the data analysis of 16 subjdtt female aged
19-25, mean age 21.78 years. The subjects were volunteers,
students of the University of Potsdam, native speakers of
A. Setup German but not familiar with the purpose of the study. The
sentences presented to the subjects were initially ambiguous

In this section we shall compare the traditional ERP aviqierogative sentences. The point of disambiguatioe.,
eraging technique with our methods based on symbolic dy-

X . i where the meaning becomes cleaas either at the verb or
namics for ERP data acquired in the Potsdam Language Prat the second article. For details, see Appendix A 27&4;
cessing Laboratory. We performed a language-processi

) X . . ) N9 introduction into language-related brain activity can be
experiment in which subjects were seated in front of a mon

| .
found in[48,4,49.
tor for stimulus presentation. They were wired with the EEG ound in| J

amplifier device by a 32-channel electrocap. The EEG data
have been recorded in 25 channels according to the interna-
tional 10-20 system at a sampling rate of 250 Hz with the First, we discuss the results of traditional averaging analy-
ScanAmps/NeuroScan recording system against reference is and symbolic dynamics obtained from the data of a single
the left mastoid bone and grounded by the electrode Fpzubject. Digitally band pass filtering, epoching, averaging,

V. ANALYSIS OF EXPERIMENTAL DATA

B. Single subject analysis
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FIG. 13. Single subject symbolic dynamics of
the cONTROL-VERB condition. Statically encoded
after transform to a uniform distribution. Black
pixel, 0" (r;e[0,0.5]); white pixel, “1” (r;
€]0.51]).

FIG. 14. Single subject symbolic dynamics of
the VvERB condition. Statically encoded after
transform to a uniform distribution. Black pixel,
“0” (r;e[0,0.5); white pixel, “1” (r,
€]0.51]).
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FIG. 15. Running Shannon en-
tropies for the VERB condition
(solid lineg compared to the
CONTROL-VERB condition (dotted
for single subject data. Panels:
normalized Shannon entropy of
one word fi=1;0=1.0) in bit/
sample against time (s),
t=0: stimulus onset time.

FIG. 16. Significance of the
Shannon entropy for theoNTROL-
VERB condition of single subject
data by means oM =100 surro-
gates simulating a Bernoulli pro-
cess. Panels: Significance mea-
sureSp (unit o) against time(s),
t=0: stimulus onset time.
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FIG. 17. Significance of the
Shannon entropy for thevers
condition of single subject data by
means of M=100 surrogates
simulating a Bernoulli process.
Panels: Significance measusy
(unit o) against time(s), t=0:
stimulus onset time.

FIG. 18. Significance
[ —10910(Perrod] Of the Xz'teSt be-
tween one-word statistics of the
VERB condition against the
CONTROL-VERB condition of single
subject data in sliding windows of
lengthD =20 ms.
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FIG. 19. Voltage grand aver-
ages for the/ers condition (solid
lines compared to thecONTROL-
VERB condition (dotted. Lower
panels: potential («V) against
time (s), t=0: stimulus onset
time. Upper panels: t-test error
probabilities (logarithmic scalg
The ungrammaticality effect,
P600(positive peak after 600 ms
is marked by arrows.

0.014 Legend:
i CONTROL (n=16)
=OTw — VERB (n=16)

-02 02 04 06 08 10

and visualization of ERP data have been performed using thgentation. This is known as the P600 ERP compo(jeusi-

EEP (event related potential evaluation packageftware tivity after 600 m$ and has been related to reanalysis pro-
developed by the Max Planck Institute for Cognitive Neuro-cesses achieved by the human language-processing system
science[74]. We present first the voltage averages of thedealing with local ungrammaticalitig€8].

VERB condition in comparison to itSONTROL-VERB condi- Next, we apply our newly developed techniques based on
tion. Figure 12 shows a’83-channel subarray consisting of symbolic dynamics on these data. Figures 13 and 14 present
the electrodes BL, Fz, and BR in the first row; WL, Cz, andthe corresponding single subject symbolic dynamics of the
WR in the second row; and P3, Pz, and P4 in the last. TheONTROL-VERB and theVERB condition, respectively. Ac-
labels Fz, Cz, P3, Pz, and P4 are due to the naming convenerding to our discussion in Sec. Il D, a partition of the state
tion of the international 10-20 system, where the first symbokpace or a corresponding partition of the range of the observ-
denotes the cortical lobd§, frontal; T, temporal;O, occipi-  ables that are generated by the dynamical system is needed
tal; P, parieta) or the vertexC, centra). The second symbol in order to obtain a symbolic dynamics. Either one encodes
is either “z’ (midline) or a number. Odd numbers corre- the values of time series into symbols by a certain binning
spond to the left hemisphere and even numbers to the rightthis method is calledtatic encoding or one encodes dif-
The labels BL, BR and WL, WR denote language-specificferences between succeeding samples as estimators of local
cortical areagB, Broca’'s; W, Wernicke’'s aregsat the left  slopes(this is calleddynamic encoding[25]. We decided to

(L) or right (R) hemisphere. In the electrode array shown byuse static encoding after we had transformed each voltage
Fig. 12, two diagrams are assigned to each channel: At thepoch to a uniformly distributed time series by a ranking
bottom, the time course of the averaged voltages is showprocedure. Ranking, an additional step of preprocessing, has
[86]. The solid line represents the experimental conditionseveral advantages in signal analysis because it corresponds
(VErB) while the dotted line indicates the signal of the con-to a nonlinear but smooth and invertible mapping of data

trol condition (CONTROL-VERB). The latter has been gained due to their distribution functiorfr. Relative rank numbers

by averaging over 21 trial epochs, the former by averaging;=R;/L depending on time are then obtained by the trans-
over 25 trials for the subject chosen here. At the top we shoviorm r,=F(x,). Since the maf is a homeomorphism, rank-

the confidence levels of a runnitgest performed pointwise ing does not disturb the topological properties of state space
at each sampling point between both conditions. Significanand thus leaves basic quantities such as Lyapunov exponents
time regions are indicated by error probabilities above theor Kolmogorov entropies invaria#5]. A numerical prob-
a=0.01(99%) threshold. Obviously, tivers condition dif-  lem linked to ranking methods arises when some values oc-
fers significantly from theCONTROL-VERB condition by a cur several times in the data set. Using sorting algorithms
huge positive voltage deflection about 600 ms after verb preleads to consecutive rank numbers for the same value of
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FIG. 20. Running normalized
Renyi entropies for the/Ers con-
dition (solid lines compared to
the coNTROL-VERB condition (dot-
ted of the grand ensemble. Pan-
els: Rewyi entropy of one word
(n=1;9g=10.0) in bit/sample
against time(s), t=0: stimulus
onset time. The ungrammaticality
effect, P600(positive peak after
600 mg, is marked by arrows.
Additionally, the attention shift
indicator (N100) is marked by
arrows.

12 bit/sample

1.0 Legend:
------- CONTROL (n=366)
N — VERB (n=354)
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data. Pompe recommends solving this problem of “tied Next, we are going to quantify the patterns visible in Figs.
ranks” by replacing the measured valuesby some dis- 13 and 14. Our concepts of running cylinder.entro;ﬁléqs..
turbed values, +a; before doing the ranking, where<ta;  (22—(24)] are appropriate tools for quantifying vertical
<a;, =<1 ([75], p. 85. We used white noise of different stripes becaqse every vert|callband of the symbolic (_jynamlcs
variances added to the voltages to tackle this problem, bifi2" Pe considered as a family of cylinder sets. Figure 15

we found no significant differences compared to tied rankspre_sents the Sha””fi” entropies calculate_d_ from thes;_e running
: . cylinders of lengtm=1 for the VERB condition (solid line)
which have been admitted.

Performing a binary static encoding after the ranking pro_and theCONTROL-VERB condition (dotted ling, res'pectively.

) ; In order to determine whether these changes in entropy are
cedure according to the m?d'@ﬁ(xmefb =.O'5] of each ep- significant or not, we computed the average Shannon entro-
och separately as the decision point yields a symbolic S&5ias from an ensemble ol = 100 surrogate data according
quence containing the same number of “0F€0.5) and {5 Eq,.(25) generated by shuffling the symbols of each epoch
“1" ( r>0.5). Thus, ranking maximizes the entropy of eachjn time. Figures 16 and 17 show these results for the
sequence. However, the visualized data in Figs. 13 and 14onTrROL-VERB condition and thevere condition, respec-
show distinct patterns of more or less vertical stripes. Thejvely.

P600 ERP component is again clearly visible as a wide white Figures 15 and 17 demonstrate a highly significant en-
band occurring mainly at 600 ms in the channels BL, Fz, andropy drop in thevERB condition around 600 ms after stimu-
Cz (Fig. 14). The static encoding strategy provides, there-lus presentation, whereas the entropy curve remains flat in
fore, an interface between ERP voltage averages and synhe CONTROL-VERB condition in this time domain. There are
bolic dynamics techniques that allows for comparisons bealso some significant events in both conditions in channels
tween both methods. Simple static encodings by assignin®L, BR, and WR at time 100—200 ms as well as in channels
e.g., “0” to negative and “1” to positive voltage deflections P3 and P4 in the 300-ms time period shown in Figs. 15, 16,
have already been proposed in the early 1970s by Lehmarand 17. The early event is the N100 attention shift mentioned
[76]. Counting symbol occurrences from all epochs at a cerin Sec. Il. The electrodes P3 and P4 are situated near the
tain point in time[in our terms one-word statistics, see Eq. primary visual cortex, so they indicate optical information
(21)] is well known as polarity histograms in the ERP litera- processing at time 300 ms.

ture [41]. However, simple static encoding of voltages re- Cylinder measures are the appropriate tool for studying
quires some baseline correction. patterns such as vertical stripes. But as mentioned above, the
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} N100 } P600 § N100
WL Cz WR

FIG. 21. Significance
[ —100;0( Perrod ] Of the x? test be-
tween one-word statistics of the
VERB condition against the
T P600 CONTROL-VERB con_ditiorj _of th_e
grand ensemble in sliding win-
dows of lengthD =20 ms. Again,
P600 and N100 are marked by ar-
rows.
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symbolic dynamics of ERP are meandering bands rather thashift ERP marker we mentioned before. In contrast to the
vertical stripes due to the latency jitter. Thus, we need someoltage averages, this event becomes significant in the sym-
measures of “stripiness.” These are provided by word stabolic dynamics between both conditions.

tistics collected in sliding windows and their corresponding  Figure 21 shows the correspondigg-error probabilities
entropies given by Eq26). For single subject investigations, of one-word statistics collected in 20-ms sliding windows. It
collecting words in sliding windows is also necessary in or-comes out that both the P600 as well as the very early en-

der to fulfill the requirements of thg?-test, where at least tropy drop are significantly better than the foconfidence
five events should be counted into one bin. Finally, Fig. 18¢,,a|.

shows the result of thg?-test comparing theers condition So far we have been only interested in the dynamics at

against the control condition by their one-word statistics in &6 sites. The behavior of ERP over the whole scalp can
;Igdo'gg :N'Tdotw ;f IEO .mi' tTtheﬂI]evglfgf confidence for the be shown using brain-mapping techniques. We shall present
at electrode =z 1s better than brain maps of Reyi entropy (i=1,0=10) differences be-
tween theveERB and theCONTROL-VERB condition at single
instances of time and their corresponding significance maps

At the end of this study we compare the results of theobtained by they?-test of one-word statistics collected in
grand average analysis and the grand ensemble analysis 28-ms sliding windows. Figure 28 shows the P600 at time
the symbolic dynamics gained from all 16 subjects together616 ms as a left frontal distributed blackifiihe VERB con-
Figure 19 gives the voltage grand averages ofvites con-  dition has been subtracted from tlh®NTROL-VERB condi-
dition (solid lineg and thecoNTRoOL-VERB condition (dotted  tion; hence, the entropy drop is shown blackigure 2Zb)
lines). Only the P600 ERP component appears to be highlghows the significance map of the windowetltest. Figure
significant by means of the runnirigest. 23 gives a legend of the brain map.

Figure 20 presents the ‘Rg entropy comparison for Let us take a look at the other experimental conditions
word lengthn=1 andq=10.0. TheVveRrs condition is plot-  that have been tested in the language-processing ERP experi-
ted solid and thecoNTROL-VERB condition dotted, again. ment. Figure 24 shows the voltage grand averages for the
This entropy plot shows not only the P600 component butRTICLE (solid line) against theCONTROL-ARTICLE (dotted
also an early entropy drop symmetrically distributed at thecondition in a 3x3 array. By means of the runningtest
frontal sites BL, Fz, Cz, and BR. This is the N100 attention(upper panglthere are no later events that turn out to be

C. Grand ensemble analysis
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FIG. 23. Map legend of the electrode array.

0.616 s VI. DISCUSSION

In this study we have criticized the prerequisites of the
EEEEERRRRRY T traditional ERP averaging technique based on stationary and
—0.40 entropy diff. +0.40 ergodicity properties and int_ertrial_ inc_iepeljdence of back-
& ground EEG as well as on intertrial invariance of the as-
sumed ERP signal. Due to these unrealistic assumptions, we
have proposed an alternative approach of ERP time series
analysis resting on statistical mechanics of dynamical sys-
tems and mainly on symbolic dynamics and measures of
complexity. We have validated this ansatz by simulations of
transient noisy nonlinear dynamics and applied it to real ERP
data given by a language-processing ERP experiment. Our
method reproduces well-known ERP components such as the
P600 of syntactic reanalysis as highly significant entropy
drops. We tested data for significance using either the
method of surrogates in order to distinguish patterns in the
symbolic dynamics indicated by changes in entropies from

0.616 s Bernoulli processes, or by means of a nonparameffitest.
Thus, we should not assume that data were Gaussian distrib-
[(TTTTT I uted or had stationary variances as is necessary for applying
+0.00 —Iog(prob) +14.00 t tests or a_malyses of varianc_e. Employing‘atest requires _
b) statistical independence of trial epochs, of course. But this

can be approximately fulfilled by the experimental design,
FIG. 22. (a) Rényi entropy difference map of theers condition €9+ .t?y randomlzqtlon pf stimuli concerning experimental
subtracted fromCONTROL-VERE condition of the P600 ERP of the conditions or by using distractor sentences.

grand ensemble n(=1;q=10.0). (b) Significance map We not only regained the well-known ERP component
[ — 10016 Perro) ] OF the windowedy>-test of one-word statistics in a P800, _bUt we also fou_nd a very early entropy dreprre-
sliding 20-ms window. sponding to a modulation of the attention shift N100 ERP

that is highly significant in our analysis but not in the com-

significant atp<<0.01. Both curves are close together at al-parison of mean voltage differences. Thus, our method is
most all times. Note, there is a very late effect at 800 ms irmore sensitive to qualitative changes in the ongoing EEG
channels Fz and Cz where the voltage averages ofthe than the averaging technique. While classical ERP compo-
TICLE condition vanish. In the traditional ERP terminology, nents are reflected by drops in entropy of the experimental
there is no ERP component, because the voltage averagendition relative to the control condition, the second part of
curve does not possess a peak in this time range. the study shows increasing relative entropies that also be-

We present brain maps of R@ entropy differencesr(  come significant. There are no counterparts to these events in
=1,0=10) of theARTICLE and thecONTROL-ARTICLE condi-  the traditional ERP paradigm at all.
tion and their corresponding significance map at two in- These findings together with the theoretical basis of our
stances of time. Figure 25 shows these maps at time 210 nmsethod suggest viewing ERP components as information
after stimulus onset. Figure @b reveals an increase in en- sources of a given entropy rat62] rather than a particular
tropy at posterior sites WL and WR represented by whitesignal hidden by some noisy background that must be ex-
areas, which becomes more significant at \Wiig. 25b)].  tracted from the data. Since symbols and words formed by
The late effect is given at time 830 ms in Figs.(@6and  strings of symbols of a symbolic dynamics correspond to
26(b). The vanishing voltage average corresponds to an erregions of the phase space, periods of time of low cylinder
tropy increase distributed at the left anterior ar@dsctrodes entropy can be seen as bottlenecks in the state space in anal-
F3 and BL. Thus, we have proven that there is more struc-ogy to channeling in the case of intermittency. On the other
ture in ERP data than could be discovered by averaging volthand, periods of time of increased cylinder entropy are peri-
ages. Our technigues resting on symbolic dynamics and meads where a greater volume of phase space is available to the
sures of complexity provide access to these hidden structurelynamics. This interpretation agrees further with the results
in the data. reported in[22] concerning the dynamics of pointwise di-
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FIG. 24. Voltage grand aver-
ages for theARrTICLE condition
(solid lineg compared to the
CONTROL-ARTICLE condition (dot-

: - ted. Lower panels: potentigjV)
1 P3 1 PZ 7 P4 against time(s), t=0: stimulus

onset time. Upper panelsit-test
error probabilities (logarithmic
scalg.

0017 Legend:
" —— ARTICLE (n=16)
Sorw e CONTROL (n=16)
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mensions. Molnaet al. showed that the P300 ERP compo- text of ERP studief§52,77—81. A further issue is the role of
nent found in the oddball experime(see the Introductions  spatiotemporal correlations of ERP. These could be investi-
reflected by a drop in pointwise correlation dimension. Ourgated using the notions of conditional entropy and mutual
approach has the advantage that it requires only counting afformation in the framework of symbolic dynamifs2,75.
words and computing entropies and significances. It neither
demands the application of embedding techniques nor em-
ploys least-square fits to almost linear scaling regions. ACKNOWLEDGMENTS
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One central issue is the interpretation of ERP in terms of
brain dynamics. The traditional averaging technique assumes
the ERP’s to be deterministic signals generated by the brain Assume we have dtime discret¢ dynamical system
as responses to certain stimuli or cognitive events. Dat&X,®,) together with an observable X— R that maps states
analysis is thus the job of improving the signal-to-noise ratioonto real numbers. Lét(X)=HCR be the image oK under
[38]. Alternatively, we can view ERP’s as indicators of re- the action of h. Now, we choose a partitiorS, i
organization in the ongoing spontaneous EEG activity. By=1,2, ... ] of H and determine the preimages of the sgts
using methods of spectral analysis, one can show that the X: A;=h"(S). According to a basic theorem of set
distributions of phase spectral values of ERP epochs are ditheory for any magd:X—Y holds,
ferent between experimental conditions, while distributions . . .
of amplitudes are nd38]. Also symbolic dynamics neglects = (AnB)=f"*(A)Nf *(B), (A1)
some information about amplitudes but it restores informa-
tion about timing. Hence, the question of synchronization
and phase locking of neuronal oscillators arises in the con- f"YAUB)=f"Y(A)U YB) (A2)

1. Proof of the partitioning lemma
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L T R
-0.10 entropy diff. +0.10

—-0.15 entropy diff. +0.17
(a)

(@)

0.210 s 0.8308
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(;0-00 —log(prob) +3.00 +0.00 -log(prob) +9.00
(b)
FIG. 25. (a) Renyi entropy difference map of therTicLE con- FIG. 26. (a) Renyi entropy difference map of therTICLE con-

dition subtracted frontoNTROL-ARTICLE condition of the left early  dition subtracted fronCONTROL-ARTICLE condition of the late en-

entropy rise of the grand ensemble=(1,;q=10.0). (b) Signifi-  tropy rise of the grand ensembla=£1;q=10.0). (b) Significance

cance maff —100;o(Perro) ] Of the windowedy?-test of one-word  map[ —log;( Perro) ] Of the windowedy?-test of one-word statistics
statistics in a sliding 20-ms window. in a sliding 20-ms window.

for all A,BCY. Hence we compute firsBjNA;ANA, presented to the subjects were initially ambiguous interroga-
=h"}(S)Nh~Y(S)=h"}(SNS)=4, if i#]j. And sec- tive sentences. The point of disambiguation was either at the
ond h™(H)=h"%(U{=1S)=U}=1h"%(S)=U}|=1A;  verb(veErs condition or at the second articl@RTICLE con-
=X. dition). The control sentences were not ambiguous at these
points. Table | shows examples of the German sentences, an
English paraphrase, and the correct English translation. The
critical words where ERP measurement took place are
The ERP experiment was performed using 30 structurallyrinted in italics.
equivalent sentences for each condition and five conditions Interrogative sentences in German are usually expected to
total. We report here the results of two experimental condibe of subject-verb-object ordéexamples: CONTROL-VERB,
tions: VERB and ARTICLE against their corresponding control cONTROL-ARTICLE). But object-verb-subject order is also
conditionsCONTROL-VERB and CONTROL-ARTICLE. As men-  possible (examples: VERB and ARTICLE). The first two
tioned before, the sentences were presented word by wokdords in the sentences, “welche Frau,” are ambiguous with
showing the stimuli for 400 ms followed by a break of 400 respect to nominative or accusative case and are always the
ms, too. The sampling of ERP epochs started 200 ms beforeame. Subjects expect the sentences to be of the frequent
the critical word occurred and finished 1000 ms after. Thussubject-verb-object structure. There are two ways for disam-
at timet=0 ms the critical words appeared. The sentencesiguating such sentences: either by the number feature, i.e.,

2. The language-processing experiment
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TABLE |. Example sentences of the language-processing ERP experiment. Critical (mbveie ERP
measurements happeare printed in italics.

Condition Example Paraphrase Translation
VERB welche Frausahen which woman(ac- which men saw
die Manner? cusative singular the woman?

saw (plural) the men
(nominative pluraf?

CONTROL-VERB welche Frausah which woman(nomina- which woman saw
den Mann? tive singulay saw (sin- the man?
gulan the men(ac-
cusative singula®

ARTICLE welche Frau sah which woman(ac- which man saw
der Mann? cusative singularsaw the woman?
(singulay the man
(nominative singulaf

CONTROL-ARTICLE welche Frau sah which woman(nomina- which woman saw
denMann? tive singulay saw (sin- the man?
gulan the man(ac-
cusative singulg®

subject-noun and verb must agree in numbgngular or  of structure and meaning caused by the violation of expecta-
plural), or by the case feature, i.e., the subject-noun has thgon.
nominative case, whereas the object-noun bears the accusa-In the ARTICLE condition the additional information is
tive case. provided by the article “der” that is nominative case marked
In the VERB condition the disambiguating information (an accusative case marked article would be “derAs in
comes at the verb that does not agree with the subject-nouhe VERB condition, the sentence must be reanalyzed, but
in number: the subject noun “Frau” is singular, the verb there is no significant event in voltage ERP averages. We
“sahen” is plural. The sentence seems to be ungrammaticahow that in theARTICLE condition the entropy increases
at that point and a reanalysis of the structure built so far mustompared with thecONTROL-ARTICLE condition (for further
take place. The P600 ERP component indicates this revisioreading, se¢73]).
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