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Symbolic dynamics of event-related brain potentials
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We apply symbolic dynamics techniques such as word statistics and measures of complexity to nonstation-
ary and noisy multivariate time series of electroencephalograms~EEG! in order to estimate event-related brain
potentials~ERP!. Their significance against surrogate data as well as between different experimental conditions
is tested. These methods are validated by simulations using stochastic dynamical systems with time-dependent
control parameters and compared with traditional ERP-analysis techniques. Continuous EEG data are cut into
epochsaccording to stimuli events presented to the subjects. These ensembles of time series can be considered
as ensembles of trajectories given by some dynamical systems. We employ a statistical mechanics approach
motivated by the Frobenius-Perron equation and apply it to coarse-grained symbolic descriptions of the dy-
namics. We develop time-dependent measures of complexity founded on running cylinder sets and show that
these quantities are able to distinguish simulated data obtained by different control parameters as well as
experimental data between different experimental conditions. As a first finding, our approach restores the
well-known ERP components and it reveals additionally qualitative changes in the EEG that cannot be detected
by means of the traditional techniques. We criticize the prerequisites of the traditional approach to ERP
analysis and propose to consider ERP instead in terms of dynamical system theory and information theory.

PACS number~s!: 87.19.Nn, 02.50.2r, 05.45.Tp
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I. INTRODUCTION

The structural components of the brain, neurons, and t
ionic channels situated in the cell membranes are know
be nonlinear devices. The resistivities of ionic channels
generally nonlinear functions of voltage or the chemical c
centration of transmitter substances, and neurons fire on
the somatic potential at the axon hillock cross a certain
tivity threshold@1,2#. The activity of large formations of neu
rons is macroscopically measurable as the electroencep
gram~EEG! at the human scalp. The sources of the EEG
assumed to be extracellular ionic currents driven by volt
gradients between excitatory postsynaptic potentials at
apical dendrites and inhibitory postsynaptic potentials at
neurons somata@3,4#. Hence, it seems to be promising
apply nonlinear techniques of data analysis to EEG d
records in order to detect qualitative changes of the bra
dynamics according to Haken@5# and Kelso@6#.

This has been attempted by several authors for diffe
brain states such asa-activity, sleep stages, epileptic se
zures, diseases, and cognitive tasks by computing the c
lation dimension@7–18#. But some of these findings repor
ing low-dimensional chaotic attractors have been criticiz
Layneet al. argued that EEG time series are essentially n
stationary, but concepts of dynamical system theory suc
attractors or fractal dimensions are only well defined for s
tionary behavior@11#. Further objections are due to Osbor
and Provenzale, who showed that colored noise also en
low values of correlation dimensions@19#, and due to Rapp
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et al., who demonstrated that filtered noise can spuriou
exhibit low dimensions@20#. Theiler et al. applied the tech-
nique of surrogate data to correlation dimensions of EEG
reported that there is no evidence for low-dimensional ch
but significance for nonlinearity@21#.

More recently, the concept of pointwise dimensions h
been utilized and applied to EEG data, which are nonstat
ary by definition: these are event-related potentials~ERP!,
i.e., EEG recordings triggered by external events such
different beeps or words occurring at a monitor@22#. In the
beep paradigm~the so-called oddball experiment!, subjects
are presented beeps of two different frequencies with dif
ent probabilities. After averaging all EEG trials correspon
ing to the rare event, there is a significant positive volta
deflection 300 ms after the stimulus, called the P300 E
component. Molna´r et al. reported a drop of the pointwis
dimension as a function of time corresponding to the P3
component@22#.

Another approach to analyzing natural data is based
the concepts of symbolic dynamics@23,24# and complexity
measures@25,26#. They have been successfully applied
physiological data such as cardiorespiratory time se
@27,28#, movement control@29–31#, or bone structure@32#,
but also to neuronal spike trains obtained by electroph
ological measurements@33#. Symbolic dynamics is able to
tackle nonstationarity as has been shown by Schwarzet al.,
who applied these techniques to spectrograms obtained
astrophysical data@34#, and, more recently, by Buchner an
Zebrowski, who discussed magnetic systems@35#. In both
cases the authors deal with time-dependent measures of
plexity, such as Shannon entropy and algorithmic compl
ity, where symbolic dynamics are given either by the spec
powers at certain times@34# or by vectors constructed from
delay embeddings@35#.
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In this study we present an approach that combines
concepts of statistical mechanics of transient behavior an
symbolic dynamics to analyze ensembles of ERP time se
We show that the information theoretic notions of cylind
sets and their probability measures are appropriate too
order to deal with ensembles of nonstationary data. The
culated running cylinder entropies and word statistics
able to capture the coherency and disorder of ERP. La
entropy drops correspond with traditional ERP voltage av
ages just as the pointwise dimensions reported above. Bu
the other hand, measures of complexity are able to de
phase transitions towards higher disorder that cannot be
vealed by averaging voltages.

In order to validate our approach, we perform simulatio
with nonlinear maps with time-dependent control para
eters, uncertainty of initial conditions, and disturbed
noise. We choose these conditions because it is more p
sible that ERP data are given by nonstationary stocha
dynamical systems rather than by deterministic signals
turbed by purely observational stationary and ergodic no

The organization of the paper is as follows. In the seco
section we briefly report the technique and requirements
the traditional approach to analyze ERP data. In the th
section we present our data-analysis technique, which
based on the statistical mechanics of transient dynamics
provides the basic concepts of symbolic dynamics and m
sures of complexity. The fourth section is devoted to res
of our simulations of noisy and nonstationary dynamical s
tems. Finally, we analyze data from a language-proces
ERP experiment and compare the traditional approach
ERP analysis with results of our techniques.

II. TRADITIONAL ANALYSIS OF ERP DATA

Continuous EEG data are multivariate time series
corded as real-valued matricesXi j PR, 1< i<K11, 1< j
<L, whereK is the number of recording electrodes at t
subject’s scalp~the additional channelK11 contains the
trigger codeswhich mark the stimuli events in time! andL is
the number of total recording samples. After digital filterin
of this data set in certain pass bands and after manual re
tion of artifacts, i.e., cutting eye blinks, saccades, volta
drifts, or electromyograms scattered into the EEG, the c
tinuous EEG is split intoepochsaccording to the time mark
given by the trigger codes in channelK11. Each epoch is a
short time series consisting of aprestimulus interval
@2T,0# and apoststimulus interval@0,Tp#, where t50 is
centered at the stimulus event. These epochs are colle
into ensembles corresponding to different experimental c
ditions, say xi

c1(t), xj
c2(t), where i , j (1< i<Nc1,1< j

<Nc2) are the epoch indices andt is the~discrete! time index
ranging from2T to Tp . Nc1,Nc2 are the numbers of epoch
for both ensembles. The indicesc1 and c2 refer to experi-
mental conditions.

In order to explain the next steps of data analysis, we s
give a brief theoretical description of the method@36–38#.
The classical approach of ERP data analysis requires
each ERP epochxi(t) is a realization of a stochastic proce
@84#,

xi~ t !5s~ t !1h i~ t !, ~1!
e
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wheres(t) is assumed to be the invariant ERP signal th
should be uncorrelated to the background EEG activity~a
rather unrealistic assumption! and that obeys

s~ t !50 for t,0, ~2!

i.e., there is no event-related potential in the prestimulus
terval at all. For each epoch,h i(t) is a stationary and ergodi
stochastic process mimicking the spontaneous EEG act
and observational noise so that the differenth i(t),h j (t) must
be stochastically independent foriÞ j and all h i(t) will
have the same family of distribution functionsFt(x),
Ft1 ,t2

(x1 ,x2), Ft1 ,t2 ,t3
(x1 ,x2 ,x3), etc.

The first step in the further analysis is a correction of t
baseline because it cannot be assumed that the time ave
of the processesh i(t) will vanish generally. One therefore
computes the averages of the prestimulus intervals

b i5 lim
T→`

1

T E
2T

0

xi~ t !dt. ~3!

According to Eq.~2!, this leads to the random numbers

b i5 lim
T→`

1

T E
2T

0

h i~ t !dt. ~4!

Next, one subtracts these baseline values from the co
sponding ERP epochs,

z i~ t !5xi~ t !2b i5s~ t !1h i~ t !2b i .

From these processes one computes the~empirical! means

z~ t !5
1

N (
i 51

N

z i~ t !5s~ t !1
1

N (
i 51

N

@h i~ t !2b i #

obtaining a stochastic process again. These mean value
estimators of the expectation values

E„z~ t !…5ES s~ t !1
1

N (
i 51

N

@h i~ t !2b i # D 5s~ t !,

which makes use of the stationarity obtainingE„h i(t)…
5ei , of the fact that the processesh i(t) are identically dis-
tributed, which yieldsei5e, and finally of the ergodicity
property providingei5e5E(b i) due to Birkhoff’s ergodic
theorem~see, e.g.,@39#, p. 313!.

In order to improve the signal-to-noise ratio~SNR, @40#!
of the ERP signals(t), one needs many trials per conditio
and per subject and many subjects per experiment. The n
ber of trials is just the ensemble size of measurement epo
N. The improvement in SNR with increasing ensemble s
is given byAN @38# when the signals(t) remains invariant
from trial to trial. But this assumption is also never met
real EEG data: there are changes in amplitude as well a
latency time~e.g., the signal onset time! from trial to trial,
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e.g., caused by habituation, learning, or changes in atten
@41–43,40#. Thus, it is more realistic to describe the sign
content of EEG at least by the ansatz@44#

si~ t !5s~ t1t i ! ~5!

in order to counter the latency jitter problem, wheres(t) is
the invariant signal as before but it is randomly shifted
time by some discrete stochastic processt i with mean
E(t i)50 and varianceD2(t i)5st

2. As before, one assume
that all t i are independent and identically distributed. No
that, if s(t) is analytic, we may expand it into a Taylor s
ries,

s~ t1t i !5s~ t !1 ṡ~ t !t i1
1
2 s̈~ t !t i

21¯ . ~6!

For the expectation value of the empirical mean, we get t
in second order

ES 1

N (
i 51

N

si~ t !D 5s~ t !1 1
2 s̈~ t !st

2.

The latency jitter, therefore, smears the ERP signal out in
course of time and makes the SNR worse@41,38,45#.

Finally, the averaged epochs of all subjects will be av
aged again in order to obtain thegrand averageof the whole
experiment. Since one assumes stochastic independen
the single trial epochs, the subject averages are appr
mately Gaussian distributed according to the central li
theorem. Hence, the grand averages can be treated by
sical statistical tests, such as runningt-tests or multivariate
analyses of variance~MANOVA ! in order to decide whethe
means are significantly different between channels, t
windows, subjects, and experimental conditions@38#. Note
that the analysis of variance requires stationarity of va
ances. This approach yields typical wave forms of avera
voltages which are classified according to their polarity a
latency time~generally the time points of extremal values!,
such as N100~a negative peak after 100 ms that indicate
shift of the subject’s attention towards the stimulus!, P300~a
positive peak after 300 ms indicating surprise!, and
language-processing-related components such as N
~negativity after 400 ms arising from semantically impla
sible words! or P600~positive wave after 600 ms elicited b
unexpected grammatical properties! @46–48,4,49,50#. These
averaged voltage waves can be subjected to further statis
analyses such as principal component analysis for revea
superimposed subcomponents and their factorial lo
@51,46,38,4#, or techniques from linear system analysis
order to compute transient response frequency character
of the neural tissue@52#.

III. SYMBOLIC DYNAMICS OF ERP DATA

A. The dynamical approach to event-related potentials

It is important to summarize the prerequisites of the t
ditional ERP averaging technique: the EEG epochs are
posed to be superpositions of an event-related signals(t)
that should be invariant from trial to trial and also fro
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subject to subject and realizations of independent and id
tically distributed stationary and ergodic stochastic proces
h i(t). These conditions are usually not met in real ERP d
@41–43,40,45#. The signals(t) at least jitters in time, and
correlations between the signal and the background EEG
within the background EEG across trials provide a dete
ration of the signal-to-noise ratio. Thus, averaging of sign
that are not time-locked according to the stimulus yields
damping of wave forms. Note that ansatz~1! states that there
is no impact of the noise on the dynamics. It is assumed to
purely observational noise. Next, we develop a data-anal
technique that overcomes these strong assumptions.

Our approach to ERP data analysis is related to idea
Kelso and Bas¸ar, who consider brain activity in terms o
synergeticswhere experimental manipulations arecontrol-
parametersof the system that undergoesphase transitionsat
critical parameter values@6,53–55#. Başar also suggests de
scribing the coherency of brain activity by entropy as
order parameter like the magnetization in ferromagne
~@52#, p. 193!. Thus, we are going to describe event-relat
potentials in terms of dynamical system theory and propos
way to compute measures of complexity from the EEG d
reflecting qualitative changes or phase transitions of br
dynamics depending on experimental conditions conside
as control parameters.

In the following subsections we discuss the theoreti
issues of statistical mechanics of deterministic and stocha
dynamical systems exhibiting transient behavior. We der
an evolution equation of their probability measures in t
state space, the Frobenius-Perron equation, and show
these probability measures can be related to a coarse-gra
description of the dynamical system by means of cylind
sets. Then, we apply classical measures of complexity, s
as Shannon and Re´nyi entropies, to time-dependent probab
ity distributions of words given by a symbolic dynamic
Finally, we provide statistical tests — surrogate data an
runningx2 test — in order to decide whether changes in t
complexity measures are significant either against the
hypotheses of Bernoulli processes or between different
perimental conditions.

B. Statistical mechanics of transient dynamics

In order to explain the physical ideas of our approach,
will discuss noisy one-dimensional and time discrete d
namical systems due to Crutchfield and Packard@56,57#. A
deterministic dynamical system, like the logistic mapxt11
5rxt(12xt), xtP@0,1#, r P@0,4#, is a pair (X,F r), whereX
is the state space~sometimes called phase space! andF r :X
→X is a map that assigns to a statext at a certain timet its
successorxt11 . The logistic map lives in the unit interval@0,
1# as its state space and the map is just given byF r(x)
5rx(12x), wherer is the control parameter of the system
Since ERP data are nonstationary by definition~otherwise
there would be no average voltage deflections in the cou
of time!, we need a statistical formalism of transient beha
ior of dynamical systems. This can be provided by a sta
tical description of initial conditions even if the system
purely deterministic. Let us prepare an ensemble of ini
conditions according to a probability measurem0 . In the
following, we shall assume the measure to be absolutely c
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tinuous, so there is a probability density functionr0(x) de-
fined on the state space and the measure of a setA,X is
given by

m0~A!5E
A
r0~x!dx. ~7!

Now let the system evolve. What is the image of the seA
under the action of the mapF r after timet? In the determin-
istic case, the imageB5F r

t (A), where F r
t is recursively

defined by iterating the map (F r
t 5F r+F r

t21), must have the
same probability asA. Therefore, it holds thatm0(A)
5m t„F r

t (A)… with m t as the probability measure after timet.
This identity can be reformulated as

m t~B!5m0„F r
2t~B!… ~8!

for any measurable subsetB,X with F r
2t(B)5(F r

t )21(B)
as the preimage ofB after time t. This is the Frobenius-
Perron equation of the dynamics@58#. One can also intro-
duce a Frobenius-Perron operator acting on the probab
density functions by

r t~x!5~LF
r
t r0!~x!5E dy d„x2F r

t ~y!…r0~y!. ~9!

This operator mediates the mapF r
t , acting on the states, to

function at the space of probability distribution densitie
Next, we are going to introduce some external noise into
system that influences the dynamics by giving the equa
of motion

x~ t11!5F r~xt!1j t11 , ~10!

where j t is a discrete stochastic process. For the sake
simplicity, let us assumej t to be a Markov process. Then,j t
is completely described by its transition probability dens
functions f (t1 ,x1 ;t2 ,x2) determining the probability for ob
taining the statex2 at time t2 given the statex1 at time t1 .
Note that we assume neither stationarity nor ergodicity
this process. In analogy to@59,57#, a Frobenius-Perron op
erator of this noisy dynamics can be constructed if we se

r t11~x!5E dy r t~y! f „t,F r~y!;t11,x…. ~11!

This leads by recursion to the evolution equation of the d
sity r t ,

r t~x!5E dty r0~y1! f „0,F r~y1!;1,y2…

3 f „1,F r~y2!;2,y3…¯ f „t21,F r~yt!;t,x…. ~12!

In order to include nonstationarity of the dynamics, we a
allow the control parameterr to depend on time: r 5r (t).
ty
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C. Symbolic dynamics

Next, we shall introduce symbolic dynamics of transie
behavior. A coarse-grained description of the dynamics t
lets ‘‘robust’’ properties such as periodicity of the syste
investigated invariant can be gained by a partition cover
the state space of the dynamical system@60,23#. Let $Ai u i
51,2, . . . ,I % be a family ofI pairwise disjunct subsets cov
ering the whole state spaceX, i.e., ø i 51

I Ai5X, AiùAj

5B, iÞ j . The index setA5$1,2, . . . ,I % of the partition can
be interpreted as a~finite! alphabet of lettersai5 i . The ex-
pressionAZ refers to the set of all bi-infinite strings of letter
s5¯ai 21

ai 0
ai 1

ai 2
¯ from A. Given a time-discrete and in

vertible deterministic dynamicsF r @85# we construct a map
p:X→AZ that assigns initial conditionsx0PX to infinite
symbol stringssPAZ by the rulep(x0)5s, if xt5F r

t (x0)
PAi t

, tPZ. Thus,p maps initial conditionsx0 in the state
space onto symbolic strings regarded as coarse-grained
jectories starting atx0 . A sequencesPAZ is called admis-
sible by the dynamicsF r if there is an initial conditionx0
PX mapped ontos by p. The theory of symbolic dynamics
deals with sets of admissible sequencesS,AZ. Note that the
mapp might not be invertible. Ifp is invertible, the partition
is called generic and every string of symbols correspond
exactly one initial condition generating it@58#.

Nevertheless, we can apply the mapp21 at subsets ofAZ,
namely at strings of finite length, looking for their preimag
in X. In order to do this, we introduce now the basic notio
of this paper.

Let tPZ, nPN, andai 1
,...ai n

PA. The set

@ai 1
, . . . ,ai n

# t5$sPAZust1k215ai k
, k51, . . . ,n%

~13!

is called n-cylinder at time t. The symbol sequencew
5(ai 1

,...,ai n
)PAn is calledn-word, whereAn denotes the

setAn213A of n-tuples of symbols.
This definition goes back to McMillan@61#, though he did

not use the term ‘‘cylinder set.’’ For recent references, s
@56–58,25#. For an instructive example, consider the set
all books ever printed. Then the cylinder@book#100 is the
subset of all books having the word ‘‘book’’ beginning wit
the 100th letter. Note that this cylinder is different from th
set @book#250 containing all books that have the wor
‘‘book’’ beginning with the 250th letter. Since cylinders ar
subsets ofAZ of infinite strings coinciding in a~discrete!
time interval$t,t11, . . . ,t1n21%, we can determine thei
preimages under the deterministic dynamicsF r ,

p21~@ai 1
,...,ai n

# t!5$xtPXuxtPAi 1
`xtPF r

21~Ai 2
!`

¯`xtPF r
2n11~Ai n

!%, ~14!

whereF r
21 denotes the preimages of a set.

Finally, let us endow the state space with a probabi
measurem0 of initial conditions again. Due to the Frobeniu
Perron equation, we obtain a family of measuresm t attached
to each point in timet.
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Let tPZ, nPN, and ai 1
,...,ai n

PA as before. The mea
sure

p~ai 1
,...,ai n

ut !5m t~@ai 1
,...,ai n

# t!

5E dx r t~x!x@ai 1
,...,ai n

#t~x! ~15!

is calledword probabilityof the n-word (ai 1
,...,ai n

)PAn at
time t. The distribution of all word probabilities for a give
lengthn is calledword statistics. According to the example
given above, the measure of the cylinder@book#100 is just the
cardinality of this set normalized to the total amount
books ever printed. Again, the measures of the sets@book#100
and @book#250 are certainly different.

In the definition above,x@ai 1
,...,ai n

#t(x) refers to the char-

acteristic function of the cylinder@ai 1
,...,ai n

# t considered as
a subset ofX,

x@ai 1
,...,ai n

#t~x!5H 1: xPp21~@ai 1
,...,ai n

# t!

0: x¹p21~@ai 1
,...,ai n

# t!.
~16!

For a stochastic nonlinear dynamics such as Eq.~10!, the
mapsp,p21 are no longer defined and the distinction b
tween admissible and nonadmissible sequences will be
erally destroyed. However, the fluctuations change the w
probabilities. Hence, we take a rather pragmatic point
view regarding the cylinder sets as generated by a dynam
which is assumed to be deterministic, while their probab
ties have been changed due to the impact of noise~a similar
consideration has been made by Tang and Tracy@24#!. Do-
ing so, we can apply the Frobenius-Perron equation obta
for the noisy dynamics~12! in order to compute the word
probabilities~15!,

p~ai 1
,...,ai n

ut !5E dxE dt y r0~y1!

3 f „0,F r~y1!;1,y2…¯ f „t21,F r~yt!;t,x…

3x@ai 1
,...,ai n

#t~x!. ~17!

To this end, we supposed a deterministic dynamics to c
pute the characteristic functionsx@ai 1

,...,ai n
# t
(x) and then we

introduced noise in order to determine the probabilities
these maps under the influence of fluctuations.

To describe effects such as the latency jitter of ERP
ochs, we introduce a further random variablet that is dis-
cretely distributed according to$(t,pt)utPZ% with vanishing
meanE(t) and finite varianceD2(t). By means oft, we
shift initial conditionsx0 in time to x085xt . In order to de-
termine the measures of cylinder sets from shifted ini
conditions, we have to convolute the word statistics with
distributionpt leading to
f

-
n-

rd
f
cs
-

ed

-

f

-

l
e

p̃~ai 1
,...,ai n

ut !5 (
k52`

`

pkp~ai 1
,...,ai n

ut1k!. ~18!

Thus, the coarse graining transforms a noisy nonlinear
namics with uncertainty about initial conditions in sta
space as well as in onset time into a nonstationary symb
stochastic process described by alln-word statistics
p̃(ai 1

,...,ai n
ut) or in other words into an information sourc

in the sense of information theory@62,61#.

D. Measures of complexity

The most important quantities of information theory intr
duced by Shannon and Weaver@62# are entropy and rate o
information transmission. These are calledclassical com-
plexity measures in order to distinguish them from rec
complexity measures such as machine complexity or ren
malized entropy@25,27#. In the following we describe how
measured ensembles of time series from a dynamical sys
can be transformed into a symbolic dynamics in order
estimate word statistics and to calculate entropies.

We have introduced a symbolic dynamics of a dynami
system by providing a partition of the state spaceX. For
experimental data the state space is generally unknown
has to be reconstructed from measured time series by em
ding techniques@63#. This could be done also as a first ste
for obtaining a symbolic dynamics of the system investiga
@35#. But symbolic dynamics does not need the applicat
of these methods, since every partition of the set of meas
ment values yields a partition of the state space autom
cally. For proof, see Appendix A 1.

Let us consider two ensembles of time seriesxi
c1(t),xj

c2(t)
of the dynamical system (X,F r) obtained by a real-valued
observableh by xi

(c1 ,c2)(t)5h„yi
(c1 ,c2)(t)…, where i , j (1< i

<Nc1,1< j <Nc2) are the ensemble indices andt is the~dis-
crete! time index.Nc1,Nc2 are the cardinalities of both en
sembles. The indicesc1 and c2 refer to different depen-
dences of the control parameter on time, sayr c1(t), r c2(t).
In our notation,xi

(c1 ,c2)(t) means eitherxi
c1(t) or xi

c2(t). The

yi
(c1 ,c2)(t)PX are ensembles of trajectories in the state sp

for conditionsc1 andc2 , respectively. After choosing a par
tition Si , i 51,2, . . . ,I of the setH5h(X) leading to a par-
tition of X ~see Appendix A 1!, we decide whether the value
xi

(c1 ,c2)(t) belong to the setsSj in order to assign a symbo

ai ;kt

(c1 ,c2) . Thus, the ensembles of time series will be mapp

onto ensembles of symbolic sequences

Ec15$si
c1ust

c1PAL,1< i<Nc1% ~19!

Ec25$sj
c2usj

c2PAL,1< j <Nc2%, ~20!

whereL is the length of the time series, i.e., the number
samples. Each string si

(c1 ,c2) is a sequence

ai ;k1

(c1 ,c2)ai ;k2

(c1 ,c2)
¯ai ;kL

(c1 ,c2) of L letters from the alphabetA.

The cylinder sets~13! will be defined for measured data a
@ak1

,...,akn
# t

(c1 ,c2)
5$sPE(c1 ,c2)ust1 l 215akl

, l 51, . . . ,n%
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and the word probabilities will be estimated by the count
measures of the ensemblesEc1,Ec1 as the relative frequen
cies,

p̄~c1 ,c2!~ak1
,...,akn

ut !5m t~@ak1
,...,akn

# t
~c1 ,c2!

!

5
u@ak1

,...,akn
# t

~c1 ,c2!)u

N~c1 ,c2! , ~21!

where ‘‘u•u’’ denotes the set theoretic cardinality function.
Next, we shall quote the definitions of Shannon’s a

Rényi’s entropies. The Shannon entropies@62# of ordern at
time t of the ensemblesE(c1 ,c2) will be accommodated as

Hn
~c1 ,c2!

~ t !52 (
~ak1

,...,akn
!

p̄~c1 ,c2!~ak1
,...,akn

ut !

3 log p̄~c1 ,c2!~ak1
,...,akn

ut !. ~22!

The quantities

H ~c1 ,c2!~ t !5Hn
~c1 ,c2!

~ t !/n ~23!

measure the information per letter and are calledrelative
entropies. The quantities

I n;q
~c1 ,c2!

~ t !5
1

12q
log (

ak1
,...,akn

p̄~c1 ,c2!~ak1
,...,akn

ut !q

~24!

are calledn-orderRényi entropiesdepending on the param
eterq @64#. The base of the logarithm in the formulas abo
is arbitrary. But it is recommended to use either the lo
rithm dualis ld[ log2 which measures information content
binary digits~bits! or ~what we shall do! the logI , whereI is
the cardinality of the letter alphabet. This choice has
advantage that relative entropy will always be normalized
the range@0,1#.

Entropy is a measure of uncertainty of a given probabi
distribution. It reaches its maximum value11 for uniformly
distributed events. It takes its minimum 0 if there is only o
certain event with probability 1. For uniform distributions a
q Rényi entropies have the same value11. Estimating prob-
abilities from relative frequencies might be deceptive, es
cially in the case of small samples. Entropies will be syste
atically underestimated, if the number of possible wordsI n is
of the order of the ensemble sizeN. Several solutions to this
problem have been proposed in the literature@65,66,34,67#.
In our analyses, this issue has only minor importance,
cause we need only short words (n51, . . . ,4) andsmall
alphabets (I 52,3) while the grand ensembles of ERP da
have cardinalities aboutN5300– 1000.

Whether changes in entropy are significant or not can
tested using the method of surrogate data suggested
Theiler et al. @21#. Surrogate data are time series that ha
been generated artificially either by phase randomization
the measurements@21# or by linear stochastic models, suc
d

-

e
o

-
-

e-

e
by
e
of

as autoregressive processes@68#. They posses the same line
characteristics, such as autocorrelation function or po
spectrum, as the real data and serve, therefore, as nul
potheses about the nature of the real processes. We appl
technique on the symbolic dynamics by shuffling the order
symbols within each sequencesi

(c1 ,c2) randomly many times.
This provides realizations of Bernoulli processes. Comput
and averaging the running~i.e., time-dependent! cylinder en-
tropies for the surrogates yields an estimate of the cylin
entropies of the uncorrelated stochastic symbolic process
tained by the shuffling procedure. As a measure of sign
cance, Theileret al. give the quantity

SD5
QD2QH

sH
, ~25!

where QD refers to an~arbitrarily chosen! statistic of the
data. We shall use the Shannon and Re´nyi entropies here.QH
stands for the same statistics estimated from the surrog
QH stands for their empirical mean (1/M )(m51

M QHm
, andsH

stands for their empirical standard deviation„(1/M
21)(m51

M (QHm
2QH)2

…

1/2 for an ensemble ofM surrogates
@21#. The measure of significance so introduced can be s
as similar to thet-scores of the classicalt-test. SD>2 is
assumed to indicate significance about the 95% confide
level @69# provided the data are Gaussian distributed.

In order to compare the two ensemblesEc1,Ec2 corre-
sponding to different control parameters or experimen
conditions, we apply thex2-test to the word statistics
pc1(ak1

,...,akn
ut),pc2(ak1

,...,akn
ut) obtaining thex2-scores

and their error probabilities as functions of time according
@@70#, p. 622#. Finally, we encounter the problem of latenc
jitter. In our theoretical framework given above and in t
simulations, we introduced latency jitter as an uncertainty
observation time. The symbol sequences forming the cy
der sets will thus be shifted in time according to some d
crete random variablet i . For strings obtained by simulate
or measured time series, we use a sliding window techni
collecting all word frequencies that belong to a window
width D at time t,

p̂~c1 ,c2!~ak1
,...,akn

ut !5 (
r 5t2D

t1D u@ak1
,...,akn

# t
~c1 ,c2!u

~D2n11!N~c1 ,c2! ,

~26!

whereD5(D2n11)/2. In the next section, we will discus
how the sliding window measures influence the entrop
and the word statistics. The sliding window method is a
useful in order to improve the quality of probability est
mates and hence to improve the significance of thex2 test
between conditions.

IV. SIMULATIONS

In order to validate our technique, we analyze control d
given by stochastic dynamical systems with transient, n
stationary behavior, and uncertainty about initial conditio
as well as about observation times. We have chosen a n
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logistic map because its symbolic dynamics is well und
stood and it is easy to obtain a binary partition of its st
space by the critical valuexc50.5 @71,56,72,60,23#. In this
section, we generate ensembles of time series from a stoc
tically disturbed logistic map by preparing initial condition
randomly in some interval@0,P#. We varied systematically
the impact of noisesj and allowed the control parameterr t
to depend continuously on time ranging between fixed lim
@r,R#. Additionally, we introduced uncertainty about the o
servation time by shifting the latency of the change of
control parametert0 randomly with variancest

2. These free
parameters of the model,r ,R,sj ,st , might be related to the
unknown parameters of ERP recordings, namely experim
tal conditions, the many degrees of freedom given by
spontaneous activity of the brain, and at least to latency
ter.

A. Changing control parameters

In our simulations we generate ensembles ofN time series
each consisting ofL points in time by iterating a noisy logis
tic map xt115r txt(12xt)1j t11 , where xtP@0,1#, r t
P@0,4#, and j t are independent identically and uniform
distributed random numbers with zero mean and stand
deviationsj . An important point in our simulation is tha
the control parameter depends continuously on time obe

r t5H R: ut2t0u.d,

R2r

2
cosFpS 11

t2t0

d D G1
R1r

2
: ut2t0u<d,

~27!

whereR is the maximum andr the minimum value of the
control parameterr t . t0 is the latency time of the simulate
time series and 2d is its duration. The latency timet0 was
allowed to jitter according tot01t, wheret was a uniformly
distributed random number with zero mean and standard
viation st . Figure 1 shows an example of the dependency
the mean control parameter~averaged over all simulated tr
als! for the case wherest50, i.e., without any latency jitter
This function causes the logistic map to become nonstat
ary at t02d until t01d. We used a latencyt05100 and as
the duration of the transient regime 2d530. Thus, the fol-
lowing figures should show some conspicuous beha
aroundt5100 where something is going on.

The ensembles have been generated by choosingN initial
conditions randomly and uniformly distributed in an interv
@0,P#, whereP stands for the precision of the preparation
initial conditions. We ran simulations forN530, which is a
typical size of a single subject ERP ensemble, and foN
51000 as a typical size of a grand ERP ensemble of
subjects collected together. The sample size was alwayL
5300. In the former we choseP50.001 whensj50 and
P50.01 whensjÞ0. In the latter,P50.2 was chosen for al
values ofsj .

For comparison between our symbolic dynamics te
nique and the traditional averaging approach of ERP,
calculated the ensemble averages of the simulated time
ries. The symbolic dynamics has been performed using
critical pointxc50.5 of the logistic map as the dividing poin
-
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for a binary partition of the unit interval@0,1#5A0ùA1 ,
A05@0,0.5#, andA15]0.5,1] @23#. Furthermore, we create
binary Bernoulli processes of the same ensemble size and
same number of samples in order to compare their entro
and word statistics with those given by the logistic map. W
did three numerical experiments:~a! with different maxima
and minima of the control parameter but without any no
and any latency jitter,~b! varying only the dispersion of the
noise leaving the range of the control parameter and the
tency invariant, and~c! investigating the impact of latenc
jitter on ensemble averages and symbolic dynamics usin
fixed range of the control parameter and no noise of
dynamics.

In the first series of simulations, we chose the parame
of the model asN530, L5300, P50.001,R54.0, sj5st
50, andr P$3.0,3.8,3.85,3.95%. The maximumR54 corre-
sponds to fully developed chaos, while forr 53.0 the map
possesses an unstable fixed point atx* 5 2

3 . At values be-
tween r `'3.569 99 . . . ~the Feigenbaum attractor! and R
54.0, the map shows very complicated behavior chang
from chaotic bands to periodic windows and back to chao
bands~see, e.g.,@72#!. Figure 2 shows~a! the averaged time
series^x(t)& and ~b! the symbolic dynamics for the settin
R54.0, r 53.0, sj50, andst50 with the change of the
control parameter shown in Fig. 1. Black pixels denote
symbol ‘‘0’’ ( xtP@0,0.5#) and white pixels denote the sym
bol ‘‘1’’ ( xtP#0.5,1]). Both Figs. 2~a! and 2~b! show clearly
the change of the dynamics aroundt5100. At the very be-
ginning, the systems behavior is transient while it settles
the chaotic attractor forR54.0. In the averaged time serie
~a! this nonstationarity is given by a fast, almost exponen
increase of̂ x(t)&. In the symbolic dynamics, this transien
behavior is indicated by a black vertical stripe, while t
states evolve inA05@0,0.5#. At time t585, the control pa-
rameter starts to depend on time, and the systems bec
nonstationary. This is indicated by the averages beginnin
oscillate until the control parameter becomes constantt
5115. In the symbolic dynamics, the transient regime i

FIG. 1. Dependency of mean control parameter on time for
ensemble of logistic maps without noise (sj50,st50) but with
control parameter varying in the rangeR54.0, r 53.0 @see Eq.
~27!#. The nonstationarity happens aroundt5100.
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white vertical stripe, because the fixed pointx* 5 2
3 belongs

to A15]0.5,1]. Figure 2 illustrates the differences of ave
aging time series and symbolic dynamics. One could exp
that, by lowering the amplitude of the change in control p
rameterR2r , the jump of the averaged states will decrea
and eventually be hidden by the chaotic dynamics. This w
not happen in the symbolic dynamics unless the fixed p
leaves the intervalA15]0.5,1].

For the same example, Fig. 3 gives the statistics of wo
of length 1, i.e., the distribution of symbols over time. As
the visualization@Fig. 2~b!#, the word statistics reveal clearl
the phase transition from chaotic to periodic behavior at ti
t585. The large white stripe in Fig. 2~b! corresponds to a
degeneration of the word distribution where only t
‘‘word’’ ‘‘1’’ remains.

Next, we shall tune the control parameter towards
fully developed chaotic regime. We present the ensem
averages of the time series generated by the logistic map
minimal control parameter settingsr 53.8 ~Fig. 4!. It is ob-

FIG. 2. Time series from the logistic map~a! Ensemble aver-
ages, ~b! symbolic dynamics. Black pixel, ‘‘0’’ (xtP@0,0.5#);
white pixel, ‘‘1’’ ( xtP#0.5,1]). Parameter settings:N530, L
5300, P50.001,R54.0, r 53.0, sj50, andst50. The nonsta-
tionarity happens aroundt5100.
ct
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vious that for diminishing distancesR2r the phase transi-
tion at timet585 becomes harder to recognize in the av
ages.

But in contrast, Fig. 5 reveals that there is a change of
dynamics visible in the running cylinder entropies@shown
are Shannon entropies (q51) for word lengthn52, Fig.
5~a!#. Though also vanishing forr→R, the distinction re-
mains significant by means of surrogate data@Fig. 5~b!#,
whereM51000 surrogates have been generated. There
some further peaks of the significances at later times at
and 250. These could be explained by the fact that the lo
tic map is not fully chaotic for a parameter valuer 53.8 and
therefore significantly different from the Bernoulli proce
represented by the surrogates.

Using thex2-test to compare the data from the logist
map with those from the Bernoulli process fails for sm
ensembles because thex2-test demands at least five occu
rences of each word. Thus, we collected words within slid
windows according to Eq.~26!. This has been done for dif
ferent word lengths in different windows. We present t
results of the four-word statistics in sliding windows
lengthD520 samples in Fig. 6.

FIG. 3. One-word statistics of the ensemble of logistic ma
Parameter settings:N530, L5300, P50.001, R54.0, r 53.0,
sj50, andst50. Parameters are the same as Fig. 2.

FIG. 4. Ensemble averages of time series of the logistic map
minimal value of the control parameter:r 53.8. N530, L5300,
P50.001, R54.0, sj50, and st50. Again, the nonstationarity
happens aroundt5100.
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Finally, we show the Shannon entropies obtained fr
these word statistics in a sliding window. Figure 7 shows
result forr 53.8. In contrast to the running cylinder entropi
that drop in the periodic regime of the dynamics, the ent
pies of the sliding window cylinders increase at the beg
ning and at the end of the phase transition while they dro
between. This increase in entropy is explained by the
that the dynamical behavior becomes richer when the slid
window crosses the onset of the phase transition: On the
the dynamics remain chaotic but on the right side of
window the dynamics become periodic. Between both pe
these entropies drop when the sliding window is entir
contained within the transient regime of the dynamics. T
is the case in the simulation because the sliding wind
length D520 is smaller than the duration 2d530 of the
nonstationarity.

The pattern shown in Fig. 7 should be the same eve
there is an uncertainty in latency. This will be addressed
Sec. IV C.

B. Changing noise level

Next, we study simulations whereN51000 initial condi-
tions in the range@0,0.2# have been prepared. We choseR
53.569 99, the parameter value near the Feigenbaum at
tor, andr 53.4 in the periodic regime again. At the Feige
baum attractor, the logistic map is very sensitive to sm

FIG. 5. Running normalized Shannon cylinder entropies@Eqs.
~22! and ~23!# ~a! and their significances~b! from M51000 surro-
gates@Eq. ~25!# of the symbolic dynamics in comparison to a Be
noulli process. Solid, logistic map; dashed, Bernoulli process. W
length: n52, q51.0. ~a!,~b! r 53.8, N530, L5300, P50.001,
R54.0, sj50, and st50. Note the nonstationarity aroundt
5100.
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changes in control parameter and, in the presence of nois
is also sensitive to the noise level. In the following, we i
crease the standard deviation of noise according tosj

P$0.0005,0.001,0.002,0.0021,0.0022,0.002 21%. Figure 8
shows the fourth-order Shannon entropies for the simulati
with ~a! sj50.0, ~b! sj50.001,~c! sj50.002, and~d! sj

50.002 21, while Fig. 9 presents thex2-significances of the
four-word statistics between logistic maps for tim
dependent and fixed values of the control parameters of
same ensemble size. The parameter of the control cond
has been fixed toR5r 53.569 99. While dynamical noise
destroys any distinction in the averaged time series at
critical valuer ` , the symbolic dynamics remains a reliab
detector of phase transitions even in the presence of no
The only impact of noise on the running entropies is that
differences of the dynamics before and after the nonstat
ary regime @oscillations at time t5150, Fig. 8~a!# are
smeared out.

C. Changing latency jitter

Finally, we study the impact of latency jitter on symbol
dynamics of simulated data and measures of complexity.
created 30 time series per condition for the control param

d

FIG. 6. Significance@2 log10(perror)# of the x2-test between
word statistics of symbolic dynamics of the logistic map and B
noulli process in sliding windows.r 53.8, word length: n54,
sliding window lengthD520, N530, L5300, P50.001,R54.0,
sj50, andst50.

FIG. 7. Shannon entropies (q51) of the word statistics of sym-
bolic dynamics of the logistic map in sliding windows.r 53.8,
word length: n54, sliding window lengthD520, N530, L
5300, P50.001,R54.0, sj50, andst50.
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FIG. 8. Running Shannon cylinder entropies of the symbolic dynamics of the noisy logistic map for different additive noise stre
comparison to a Bernoulli process. Solid, logistic map; dashed, Bernoulli process. Word length:n54, q51.0. ~a! sj50.0, ~b! sj

50.001,~c! sj50.002,~d! sj50.002 21.~a!–~d! N51000,L5300, P50.02,R53.569 99,r 53.4, andst50.

FIG. 9. Significance@2 log10(perror)# of thex2 test between word statistics of symbolic dynamics of the noisy logistic map for diffe
additive noise strength against the undisturbed logistic map with constant control parameterr 5R53.569 99. Word length: n54. ~a! sj

50.0, ~b! sj50.001,~c! sj50.002,~d! sj50.002 21.~a!–~d! N51000,L5300, P50.02,R53.569 99,r 53.4, st50.
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FIG. 10. Shannon entropies (q51) of the four-word statistics of the symbolic dynamics of the logistic map with varying latency
in sliding windows.~a! st50, ~b! st52, ~c! st56, ~d! st510. ~a!–~d! Sliding window lengthD520, R54.0, r 53.8, N530, L5300,
P50.001,R54.0, andsj50.
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valuesR54.0, r 53.8, and increased the standard deviat
of latency jitter according tostP$0,1, . . . ,15,20%. First, we
show the Shannon entropies of four-words collected in
sliding window of lengthD520 ~Fig. 10! for ~a! st50, ~b!
st52, ~c! st56, and~d! st510, whereas Fig. 11 presen
thex2 significances of these four-word statistics between
logistic map and a Bernoulli process for~a! st55 and ~b!
st510.

The phase transition of the dynamics remains signific
for small as well as for large dispersions of latency time ev
if there is no difference visible in the ensemble averages.
a latency jitter ofst520 we obtained significance bette
than the 1025 confidence level. The spurious peaks at tim
t550 and aboutt5260 can be neglected by choosing a s
nificance threshold smaller than 1025.

Our numerical experiments with a noisy logistic m
and four freely controlled parameters —r,R,sj ,
st — mimicking some properties of ERP data, such as d
ferent experimental conditions, spontaneous brain activ
and latency jitter, have shown that symbolic dynamics a
measure of complexity are able to distinguish transient
gimes of behavior from stationary dynamics much be
than averages of time series can do. Also symbolic dynam
provide many parameters such as different partitions, w
lengths, sliding windows, andq values of Re´nyi entropies.
These parameters must be appropriately chosen in ord
obtain the best result of data analysis. We varied these
rameters quite arbitrarily to illustrate the dependence of
sults from these choices. For example, Figs. 5 and 8 dem
strate the impact of the word length on running entropies
it seems to be the case that longer words will provide be
n
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FIG. 11. Significance@2 log10(perror)# of the x2-test between
word statistics of the symbolic dynamics of the logistic map w
varying latency jitter and Bernoulli process in sliding windows.~a!
st55, ~b! st510. ~a!,~b! Sliding window lengthD520, R54.0,
r 53.8, N530, L5300, P50.001,R54.0, andsj50.
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FIG. 12. Single subject voltage
averages for theVERB condition
~solid lines! compared to the
CONTROL-VERB condition ~dotted!.
Lower panels: potential ~mV!
against time~s!, t50: stimulus
onset time. Upper panels:t-test er-
ror probabilities ~logarithmic
scale!. The ungrammaticality ef-
fect, P600~positive peak after 600
ms!, is marked by arrows. For
channel labeling see text.
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results than shorter words. But for strong noise or small
semble sizes the opposite holds, as we saw for data obta
from different ERP experiments. However, we have sho
that nonstationary dynamics can be detected from ensem
of coarse-grained time series even if there are very sm
changes in the control parameters and the system is sen
against changes in initial conditions as well as change
control parameter. This applies also in the presence of
namical ~and not only observational! noise. In addition, by
using sliding windows, our method is able to track unc
tainty about the time when changes of the control parame
happen.

V. ANALYSIS OF EXPERIMENTAL DATA

A. Setup

In this section we shall compare the traditional ERP
eraging technique with our methods based on symbolic
namics for ERP data acquired in the Potsdam Language
cessing Laboratory. We performed a language-proces
experiment in which subjects were seated in front of a mo
tor for stimulus presentation. They were wired with the EE
amplifier device by a 32-channel electrocap. The EEG d
have been recorded in 25 channels according to the inte
tional 10-20 system at a sampling rate of 250 Hz with
ScanAmps/NeuroScan recording system against referen
the left mastoid bone and grounded by the electrode F
-
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n
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y-

-
rs

-
y-
ro-
ng
i-
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e
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Four channels were used for measuring EOG artifacts. E
data have been digitally band-pass-filtered at 0.2–29 Hz a
manual artifact rejection. 150 sentences, 30 sentences
each condition, organized in five blocks, were visually p
sented to subjects word by word but in randomized or
with a presentation time and interstimulus interval of 4
ms. At the end of each sentence, subjects had to indi
whether or not a target word had occurred in the preced
sentence. The experiment was performed in two runs,
first without and the second including distractor sentence
order to mislead subjects about the purpose of the study.
report here the data analysis of 16 subjects~15 female! aged
19–25, mean age 21.78 years. The subjects were volunt
students of the University of Potsdam, native speakers
German but not familiar with the purpose of the study. T
sentences presented to the subjects were initially ambigu
interrogative sentences. The point of disambiguation~i.e.,
where the meaning becomes clear! was either at the verb o
at the second article. For details, see Appendix A 2 or@73#;
an introduction into language-related brain activity can
found in @48,4,49#.

B. Single subject analysis

First, we discuss the results of traditional averaging ana
sis and symbolic dynamics obtained from the data of a sin
subject. Digitally band pass filtering, epoching, averagi
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FIG. 13. Single subject symbolic dynamics o
the CONTROL-VERB condition. Statically encoded
after transform to a uniform distribution. Blac
pixel, ‘‘0’’ ( r tP@0,0.5#); white pixel, ‘‘1’’ ( r t

P#0.5,1]).

FIG. 14. Single subject symbolic dynamics o
the VERB condition. Statically encoded afte
transform to a uniform distribution. Black pixel
‘‘0’’ ( r tP@0,0.5#); white pixel, ‘‘1’’ ( r t

P#0.5,1]).
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FIG. 15. Running Shannon en
tropies for the VERB condition
~solid lines! compared to the
CONTROL-VERB condition ~dotted!
for single subject data. Panels
normalized Shannon entropy o
one word (n51;q51.0) in bit/
sample against time ~s!,
t50: stimulus onset time.

FIG. 16. Significance of the
Shannon entropy for theCONTROL-

VERB condition of single subject
data by means ofM5100 surro-
gates simulating a Bernoulli pro
cess. Panels: Significance me
sureSD ~unit s! against time~s!,
t50: stimulus onset time.
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FIG. 17. Significance of the
Shannon entropy for theVERB

condition of single subject data b
means of M5100 surrogates
simulating a Bernoulli process
Panels: Significance measureSD

~unit s! against time~s!, t50:
stimulus onset time.

FIG. 18. Significance
@2 log10(perror)# of the x2-test be-
tween one-word statistics of th
VERB condition against the
CONTROL-VERBcondition of single
subject data in sliding windows o
lengthD520 ms.
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FIG. 19. Voltage grand aver
ages for theVERB condition~solid
lines! compared to theCONTROL-

VERB condition ~dotted!. Lower
panels: potential ~mV! against
time ~s!, t50: stimulus onset
time. Upper panels: t-test error
probabilities ~logarithmic scale!.
The ungrammaticality effect,
P600~positive peak after 600 ms!,
is marked by arrows.
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and visualization of ERP data have been performed using
EEP ~event related potential evaluation package! software
developed by the Max Planck Institute for Cognitive Neu
science@74#. We present first the voltage averages of t
VERB condition in comparison to itsCONTROL-VERB condi-
tion. Figure 12 shows a 333-channel subarray consisting o
the electrodes BL, Fz, and BR in the first row; WL, Cz, a
WR in the second row; and P3, Pz, and P4 in the last.
labels Fz, Cz, P3, Pz, and P4 are due to the naming con
tion of the international 10-20 system, where the first sym
denotes the cortical lobes~F, frontal; T, temporal;O, occipi-
tal; P, parietal! or the vertex~C, central!. The second symbo
is either ‘‘z’’ ~midline! or a number. Odd numbers corre
spond to the left hemisphere and even numbers to the r
The labels BL, BR and WL, WR denote language-spec
cortical areas~B, Broca’s; W, Wernicke’s areas! at the left
~L! or right ~R! hemisphere. In the electrode array shown
Fig. 12, two diagrams are assigned to each channel: At
bottom, the time course of the averaged voltages is sh
@86#. The solid line represents the experimental condit
~VERB! while the dotted line indicates the signal of the co
trol condition ~CONTROL-VERB!. The latter has been gaine
by averaging over 21 trial epochs, the former by averag
over 25 trials for the subject chosen here. At the top we sh
the confidence levels of a runningt-test performed pointwise
at each sampling point between both conditions. Signific
time regions are indicated by error probabilities above
a50.01(99%) threshold. Obviously, theVERB condition dif-
fers significantly from theCONTROL-VERB condition by a
huge positive voltage deflection about 600 ms after verb p
he
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sentation. This is known as the P600 ERP component~posi-
tivity after 600 ms! and has been related to reanalysis p
cesses achieved by the human language-processing sy
dealing with local ungrammaticalities@48#.

Next, we apply our newly developed techniques based
symbolic dynamics on these data. Figures 13 and 14 pre
the corresponding single subject symbolic dynamics of
CONTROL-VERB and theVERB condition, respectively. Ac-
cording to our discussion in Sec. III D, a partition of the sta
space or a corresponding partition of the range of the obs
ables that are generated by the dynamical system is ne
in order to obtain a symbolic dynamics. Either one enco
the values of time series into symbols by a certain binn
~this method is calledstatic encoding!, or one encodes dif-
ferences between succeeding samples as estimators of
slopes~this is calleddynamic encoding! @25#. We decided to
use static encoding after we had transformed each vol
epoch to a uniformly distributed time series by a ranki
procedure. Ranking, an additional step of preprocessing,
several advantages in signal analysis because it corresp
to a nonlinear but smooth and invertible mapping of dataxt
due to their distribution functionF. Relative rank numbers
r t5Rt /L depending on time are then obtained by the tra
form r t5F(xt). Since the mapF is a homeomorphism, rank
ing does not disturb the topological properties of state sp
and thus leaves basic quantities such as Lyapunov expon
or Kolmogorov entropies invariant@75#. A numerical prob-
lem linked to ranking methods arises when some values
cur several times in the data set. Using sorting algorith
leads to consecutive rank numbers for the same value
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FIG. 20. Running normalized
Rényi entropies for theVERB con-
dition ~solid lines! compared to
the CONTROL-VERB condition~dot-
ted! of the grand ensemble. Pan
els: Rényi entropy of one word
(n51;q510.0) in bit/sample
against time~s!, t50: stimulus
onset time. The ungrammaticalit
effect, P600~positive peak after
600 ms!, is marked by arrows.
Additionally, the attention shift
indicator ~N100! is marked by
arrows.
ed

t
b

nk

ro

s

ch

h
hi
n

re
y
be
in
s
a
e
q
a-
e

s.

l
ics
15
ning

are
tro-
g
ch

the

en-
-
t in
e
els
els
16,
ed
the
n

ing
, the
data. Pompe recommends solving this problem of ‘‘ti
ranks’’ by replacing the measured valuesxt by some dis-
turbed valuesxt1ai before doing the ranking, where 0<ai

<ai 11<1 ~@75#, p. 85!. We used white noise of differen
variances added to the voltages to tackle this problem,
we found no significant differences compared to tied ra
which have been admitted.

Performing a binary static encoding after the ranking p
cedure according to the median@F(xmed)50.5# of each ep-
och separately as the decision point yields a symbolic
quence containing the same number of ‘‘0’’ (r t<0.5) and
‘‘1’’ ( r t.0.5). Thus, ranking maximizes the entropy of ea
sequence. However, the visualized data in Figs. 13 and
show distinct patterns of more or less vertical stripes. T
P600 ERP component is again clearly visible as a wide w
band occurring mainly at 600 ms in the channels BL, Fz, a
Cz ~Fig. 14!. The static encoding strategy provides, the
fore, an interface between ERP voltage averages and s
bolic dynamics techniques that allows for comparisons
tween both methods. Simple static encodings by assign
e.g., ‘‘0’’ to negative and ‘‘1’’ to positive voltage deflection
have already been proposed in the early 1970s by Lehm
@76#. Counting symbol occurrences from all epochs at a c
tain point in time@in our terms one-word statistics, see E
~21!# is well known as polarity histograms in the ERP liter
ture @41#. However, simple static encoding of voltages r
quires some baseline correction.
ut
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Next, we are going to quantify the patterns visible in Fig
13 and 14. Our concepts of running cylinder entropies@Eqs.
~22!–~24!# are appropriate tools for quantifying vertica
stripes because every vertical band of the symbolic dynam
can be considered as a family of cylinder sets. Figure
presents the Shannon entropies calculated from these run
cylinders of lengthn51 for theVERB condition ~solid line!
and theCONTROL-VERB condition ~dotted line!, respectively.
In order to determine whether these changes in entropy
significant or not, we computed the average Shannon en
pies from an ensemble ofM5100 surrogate data accordin
to Eq.~25! generated by shuffling the symbols of each epo
in time. Figures 16 and 17 show these results for
CONTROL-VERB condition and theVERB condition, respec-
tively.

Figures 15 and 17 demonstrate a highly significant
tropy drop in theVERB condition around 600 ms after stimu
lus presentation, whereas the entropy curve remains fla
the CONTROL-VERB condition in this time domain. There ar
also some significant events in both conditions in chann
BL, BR, and WR at time 100–200 ms as well as in chann
P3 and P4 in the 300-ms time period shown in Figs. 15,
and 17. The early event is the N100 attention shift mention
in Sec. II. The electrodes P3 and P4 are situated near
primary visual cortex, so they indicate optical informatio
processing at time 300 ms.

Cylinder measures are the appropriate tool for study
patterns such as vertical stripes. But as mentioned above
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FIG. 21. Significance
@2 log10(perror)# of the x2 test be-
tween one-word statistics of th
VERB condition against the
CONTROL-VERB condition of the
grand ensemble in sliding win
dows of lengthD520 ms. Again,
P600 and N100 are marked by a
rows.
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symbolic dynamics of ERP are meandering bands rather
vertical stripes due to the latency jitter. Thus, we need so
measures of ‘‘stripiness.’’ These are provided by word s
tistics collected in sliding windows and their correspondi
entropies given by Eq.~26!. For single subject investigations
collecting words in sliding windows is also necessary in
der to fulfill the requirements of thex2-test, where at leas
five events should be counted into one bin. Finally, Fig.
shows the result of thex2-test comparing theVERB condition
against the control condition by their one-word statistics i
sliding window of 20 ms. The level of confidence for th
P600 at electrode Fz is better than 1028.

C. Grand ensemble analysis

At the end of this study we compare the results of
grand average analysis and the grand ensemble analys
the symbolic dynamics gained from all 16 subjects togeth
Figure 19 gives the voltage grand averages of theVERB con-
dition ~solid lines! and theCONTROL-VERB condition ~dotted
lines!. Only the P600 ERP component appears to be hig
significant by means of the runningt test.

Figure 20 presents the Re´nyi entropy comparison for
word lengthn51 andq510.0. TheVERB condition is plot-
ted solid and theCONTROL-VERB condition dotted, again
This entropy plot shows not only the P600 component
also an early entropy drop symmetrically distributed at
frontal sites BL, Fz, Cz, and BR. This is the N100 attenti
an
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shift ERP marker we mentioned before. In contrast to
voltage averages, this event becomes significant in the s
bolic dynamics between both conditions.

Figure 21 shows the correspondingx2-error probabilities
of one-word statistics collected in 20-ms sliding windows.
comes out that both the P600 as well as the very early
tropy drop are significantly better than the 1028 confidence
level.

So far we have been only interested in the dynamics
single sites. The behavior of ERP over the whole scalp
be shown using brain-mapping techniques. We shall pre
brain maps of Re´nyi entropy (n51,q510) differences be-
tween theVERB and theCONTROL-VERB condition at single
instances of time and their corresponding significance m
obtained by thex2-test of one-word statistics collected i
20-ms sliding windows. Figure 22~a! shows the P600 at time
616 ms as a left frontal distributed blacking~the VERB con-
dition has been subtracted from theCONTROL-VERB condi-
tion; hence, the entropy drop is shown black!. Figure 22~b!
shows the significance map of the windowedx2 test. Figure
23 gives a legend of the brain map.

Let us take a look at the other experimental conditio
that have been tested in the language-processing ERP ex
ment. Figure 24 shows the voltage grand averages for
ARTICLE ~solid line! against theCONTROL-ARTICLE ~dotted!
condition in a 333 array. By means of the runningt-test
~upper panel! there are no later events that turn out to
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significant atp,0.01. Both curves are close together at
most all times. Note, there is a very late effect at 800 ms
channels Fz and Cz where the voltage averages of theAR-

TICLE condition vanish. In the traditional ERP terminolog
there is no ERP component, because the voltage ave
curve does not possess a peak in this time range.

We present brain maps of Re´nyi entropy differences (n
51,q510) of theARTICLE and theCONTROL-ARTICLE condi-
tion and their corresponding significance map at two
stances of time. Figure 25 shows these maps at time 210
after stimulus onset. Figure 25~a! reveals an increase in en
tropy at posterior sites WL and WR represented by wh
areas, which becomes more significant at WL@Fig. 25~b!#.
The late effect is given at time 830 ms in Figs. 26~a! and
26~b!. The vanishing voltage average corresponds to an
tropy increase distributed at the left anterior areas~electrodes
F3 and BL!. Thus, we have proven that there is more str
ture in ERP data than could be discovered by averaging v
ages. Our techniques resting on symbolic dynamics and m
sures of complexity provide access to these hidden struct
in the data.

FIG. 22. ~a! Rényi entropy difference map of theVERB condition
subtracted fromCONTROL-VERB condition of the P600 ERP of the
grand ensemble (n51;q510.0). ~b! Significance map
@2 log10(perror)# of the windowedx2-test of one-word statistics in a
sliding 20-ms window.
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VI. DISCUSSION

In this study we have criticized the prerequisites of t
traditional ERP averaging technique based on stationary
ergodicity properties and intertrial independence of ba
ground EEG as well as on intertrial invariance of the a
sumed ERP signal. Due to these unrealistic assumptions
have proposed an alternative approach of ERP time se
analysis resting on statistical mechanics of dynamical s
tems and mainly on symbolic dynamics and measures
complexity. We have validated this ansatz by simulations
transient noisy nonlinear dynamics and applied it to real E
data given by a language-processing ERP experiment.
method reproduces well-known ERP components such as
P600 of syntactic reanalysis as highly significant entro
drops. We tested data for significance using either
method of surrogates in order to distinguish patterns in
symbolic dynamics indicated by changes in entropies fr
Bernoulli processes, or by means of a nonparametricx2 test.
Thus, we should not assume that data were Gaussian dis
uted or had stationary variances as is necessary for appl
t tests or analyses of variance. Employing ax2 test requires
statistical independence of trial epochs, of course. But
can be approximately fulfilled by the experimental desig
e.g., by randomization of stimuli concerning experimen
conditions or by using distractor sentences.

We not only regained the well-known ERP compone
P600, but we also found a very early entropy drop~corre-
sponding to a modulation of the attention shift N100 ER!
that is highly significant in our analysis but not in the com
parison of mean voltage differences. Thus, our method
more sensitive to qualitative changes in the ongoing E
than the averaging technique. While classical ERP com
nents are reflected by drops in entropy of the experime
condition relative to the control condition, the second part
the study shows increasing relative entropies that also
come significant. There are no counterparts to these even
the traditional ERP paradigm at all.

These findings together with the theoretical basis of
method suggest viewing ERP components as informa
sources of a given entropy rate@62# rather than a particula
signal hidden by some noisy background that must be
tracted from the data. Since symbols and words formed
strings of symbols of a symbolic dynamics correspond
regions of the phase space, periods of time of low cylin
entropy can be seen as bottlenecks in the state space in
ogy to channeling in the case of intermittency. On the ot
hand, periods of time of increased cylinder entropy are p
ods where a greater volume of phase space is available to
dynamics. This interpretation agrees further with the res
reported in@22# concerning the dynamics of pointwise d

FIG. 23. Map legend of the electrode array.



-

PRE 62 5537SYMBOLIC DYNAMICS OF EVENT-RELATED BRAIN . . .
FIG. 24. Voltage grand aver
ages for theARTICLE condition
~solid lines! compared to the
CONTROL-ARTICLE condition ~dot-
ted!. Lower panels: potential~mV!
against time~s!, t50: stimulus
onset time. Upper panels:t-test
error probabilities ~logarithmic
scale!.
o-

u
g
th
em

m
e
ed
ow
o
en
g
nd
ro
c

d

lt

o
m
ra
a
ti
e-
B
t
d
n
s
a

io
o

sti-
ual

ful
ipt.
ms

and
as
as
chaft
e

t

mensions. Molna´r et al. showed that the P300 ERP comp
nent found in the oddball experiment~see the Introduction! is
reflected by a drop in pointwise correlation dimension. O
approach has the advantage that it requires only countin
words and computing entropies and significances. It nei
demands the application of embedding techniques nor
ploys least-square fits to almost linear scaling regions.

So far, we have shown that methods of symbolic dyna
ics and measures of complexity are able to capture the w
known ERP components. Additionally, our newly develop
techniques reveal more structure hidden in the data. H
ever, there remain open questions. Using a static symb
encoding of data after performing a ranking procedure
ables us to compare the results directly with voltage avera
provided by the traditional technique. On the other ha
dynamical or mixed strategies of coarse graining may p
vide better insights into neural information processing sin
the first derivative of evoked potentials seems to be relate
the firing probability of neurons@@52#, p. 40#. However, such
results might be hard to interpret without an interface to vo
age averages.

One central issue is the interpretation of ERP in terms
brain dynamics. The traditional averaging technique assu
the ERP’s to be deterministic signals generated by the b
as responses to certain stimuli or cognitive events. D
analysis is thus the job of improving the signal-to-noise ra
@38#. Alternatively, we can view ERP’s as indicators of r
organization in the ongoing spontaneous EEG activity.
using methods of spectral analysis, one can show that
distributions of phase spectral values of ERP epochs are
ferent between experimental conditions, while distributio
of amplitudes are not@38#. Also symbolic dynamics neglect
some information about amplitudes but it restores inform
tion about timing. Hence, the question of synchronizat
and phase locking of neuronal oscillators arises in the c
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text of ERP studies@52,77–81#. A further issue is the role of
spatiotemporal correlations of ERP. These could be inve
gated using the notions of conditional entropy and mut
information in the framework of symbolic dynamics@62,75#.

ACKNOWLEDGMENTS

We would like to thank Ralf Engbert, Gu¨nter Troll, Tho-
mas Liebscher, and Kelly Sloan for stimulating and help
discussions and for a critical reading of the manuscr
Wolfgang Jansen’s support concerning numerical proble
is gratefully acknowledged. We thank Sandra Neumayer
Saskia Kohnen for their work in the laboratory as well
Bryan Jurish for fixing all computer problems. This work h
been supported by the Deutsche Forschungsgemeins
within the scientists group on conflicting rules in cognitiv
systems.

APPENDIX

1. Proof of the partitioning lemma

Assume we have a~time discrete! dynamical system
(X,F r) together with an observableh:X→R that maps states
onto real numbers. Leth(X)5H,R be the image ofX under
the action of h. Now, we choose a partitionSi , i
51,2, . . . ,I of H and determine the preimages of the setsSi
in X: Ai5h21(Si). According to a basic theorem of se
theory for any mapf :X→Y holds,

f 21~AùB!5 f 21~A!ù f 21~B!, ~A1!

f 21~AøB!5 f 21~A!ø21~B! ~A2!
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for all A,B,Y. Hence we compute firstAiùAjAiùAj
5h21(Si)ùh21(Sj )5h21(SiùSj )5B, if iÞ j . And sec-
ond h21(H)5h21(ø i 51

I Si)5ø i 51
I h21(Si)5ø i 51

I Ai

5X.

2. The language-processing experiment

The ERP experiment was performed using 30 structur
equivalent sentences for each condition and five conditi
total. We report here the results of two experimental con
tions: VERB andARTICLE against their corresponding contr
conditionsCONTROL-VERB and CONTROL-ARTICLE. As men-
tioned before, the sentences were presented word by w
showing the stimuli for 400 ms followed by a break of 40
ms, too. The sampling of ERP epochs started 200 ms be
the critical word occurred and finished 1000 ms after. Th
at time t50 ms the critical words appeared. The senten

FIG. 25. ~a! Rényi entropy difference map of theARTICLE con-
dition subtracted fromCONTROL-ARTICLE condition of the left early
entropy rise of the grand ensemble (n51;q510.0). ~b! Signifi-
cance map@2 log10(perror)# of the windowedx2-test of one-word
statistics in a sliding 20-ms window.
ly
s

i-

rd

re
,
s

presented to the subjects were initially ambiguous interro
tive sentences. The point of disambiguation was either at
verb ~VERB condition! or at the second article~ARTICLE con-
dition!. The control sentences were not ambiguous at th
points. Table I shows examples of the German sentences
English paraphrase, and the correct English translation.
critical words where ERP measurement took place
printed in italics.

Interrogative sentences in German are usually expecte
be of subject-verb-object order~examples: CONTROL-VERB,
CONTROL-ARTICLE!. But object-verb-subject order is als
possible ~examples: VERB and ARTICLE!. The first two
words in the sentences, ‘‘welche Frau,’’ are ambiguous w
respect to nominative or accusative case and are always
same. Subjects expect the sentences to be of the freq
subject-verb-object structure. There are two ways for disa
biguating such sentences: either by the number feature,

FIG. 26. ~a! Rényi entropy difference map of theARTICLE con-
dition subtracted fromCONTROL-ARTICLE condition of the late en-
tropy rise of the grand ensemble (n51;q510.0). ~b! Significance
map@2 log10(perror)# of the windowedx2-test of one-word statistics
in a sliding 20-ms window.
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TABLE I. Example sentences of the language-processing ERP experiment. Critical words~where ERP
measurements happen! are printed in italics.

Condition Example Paraphrase Translation

VERB welche Frausahen
die Männer?

which woman~ac-
cusative singular!
saw ~plural! the men
~nominative plural!?

which men saw
the woman?

CONTROL-VERB welche Frausah
den Mann?

which woman~nomina-
tive singular! saw ~sin-
gular! the men~ac-
cusative singular!?

which woman saw
the man?

ARTICLE welche Frau sah
der Mann?

which woman~ac-
cusative singular! saw
~singular! the man
~nominative singular!?

which man saw
the woman?

CONTROL-ARTICLE welche Frau sah
denMann?

which woman~nomina-
tive singular! saw ~sin-
gular! the man~ac-
cusative singular!?

which woman saw
the man?
th
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but
We
s

subject-noun and verb must agree in number~singular or
plural!, or by the case feature, i.e., the subject-noun has
nominative case, whereas the object-noun bears the acc
tive case.

In the VERB condition the disambiguating informatio
comes at the verb that does not agree with the subject-n
in number: the subject noun ‘‘Frau’’ is singular, the ve
‘‘sahen’’ is plural. The sentence seems to be ungrammat
at that point and a reanalysis of the structure built so far m
take place. The P600 ERP component indicates this revi
of

n

r-
e
sa-

un

al
st
on

of structure and meaning caused by the violation of expe
tion.

In the ARTICLE condition the additional information is
provided by the article ‘‘der’’ that is nominative case mark
~an accusative case marked article would be ‘‘den’’!. As in
the VERB condition, the sentence must be reanalyzed,
there is no significant event in voltage ERP averages.
show that in theARTICLE condition the entropy increase
compared with theCONTROL-ARTICLE condition ~for further
reading, see@73#!.
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