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Ventricular tachycardia or fibrillatioVT-VF) as fatal cardiac arrhythmias are the main factors triggering
sudden cardiac death. The objective of this study is to find early signs of sustained VT-VF in patients with an
implanted cardioverter-defibrillatoiCD). These devices are able to safeguard patients by returning their
hearts to a normal rhythm via strong defibrillatory shocks; additionally, they store the 1000 beat-to-beat
intervals immediately before the onset of a life-threatening arrhythmia. We study these 1000 beat-to-beat
intervals of 17 chronic heart failure ICD patients before the onset of a life-threatening arrhythmia and at a
control time, i.e., without a VT-VF event. To characterize these rather short data sets, we calculate heart rate
variability parameters from the time and frequency domain, from symbolic dynamics as well as the finite-time
growth rates. We find that neither the time nor the frequency domain parameters show significant differences
between the VT-VF and the control time series. However, two parameters from symbolic dynamics as well as
the finite-time growth rates discriminate significantly both groups. These findings could be of importance in
algorithms for next generation ICD’s to improve the diagnostics and therapy of VT-VF.

PACS numbgs): 87.19.Hh, 05.45.Tp, 02.50.Sk

[. INTRODUCTION of ventricular arrhythmias, or the signal-averaged electrocar-
diogram, improves the results of risk stratificatitd. Re-
Sudden cardiac death is a major public health problemc¢ent studies showed that HRV assesses the autonomic ner-
accounting for approximately 400000 deaths in the Unitedsous system dysfunction and is able to identify patients at
States annualljf1,2]. Therefore, an accurate and reliable risk of sudden cardiac deafi0,11]. However, these meth-
identification of patients who are at high risk of sudden car-ods are not developed to perform short-term predictions of
diac death is an important and challenging problem. Themnalignant ventricular arrhythmias.
main factors triggering sudden cardiac death are in most Recently Liebovitchet al. [12] discovered that the times
cases either ventricular tachycar\éT') or ventricular fibril-  between VT-VF events have a power law form, which dem-
lation (VF), which are connected with transient increases inonstrates the nonlinear properties of such cardiac arrhyth-
sympathetic tong3,4] and based on inter- and intraindi- mias. An interesting approach for a short-term prediction of
vidual different risk factor$5,6]. Ventricular tachycardia is ventricular fibrillation is described ifiL3], where it is shown
defined as three or more consecutive impulsesirtbeatsat  that conventional HRV analysis preceding a VT fails to pre-
a rate exceeding 100/min. The impulses originate in pacedict imminent VF. Another approach to predict VT-VF is
makers located distal to the bifurcation of the bundle of His,based on critical phasé¢$4], the authors found an increased
in the bundle branches, Prukinje fibers or, rarely, in thenumber of special patterns before VT-VF. Furthermore,
working myocardium of the ventricles. During ventricular Meyerfeldt et al. [15] discovered that two basic modes of
tachycardia, the heart does not pump blood as efficiently as @inset are responsible for monomorphic ventricular tachycar-
does during a normal rhythm. Ventricular fibrillation is a dia: one without beat-to-beat-interval variations occurring
particular type of reentry usually leading to very fast butimmediately prior to onset and another characterized by
completely irregular disorganized activation of the entireshort-long-short sequences and increa@dddispersion. The
myocardium of the ventricles. It is more serious than ven-QT interval is defined as the time between the beginning of
tricular tachycardia because it causes sudden cardiac deathviéntricular excitation Q wave and the end of the heart re-
not treated immediately. polarization(the end of theT wave. The QT dispersion is
Heart rate variability(HRV) parameters, calculated from determined as the difference between the maximum and
the time series of the beat-to-beat-intervals, have been usedinimum QT interval in all leads of the surface electrocar-
to predict the mortality risk in patients with structural heart diogram.
disease$7,8]. We have recently demonstrated that a multi-  All these approaches for a short-term prediction of VF/VT
variate approach with HRV parameters, including nonlineamare based on linear methods. However, the application of
methods as well as the combination of HRV measures witmonlinear methods in addition to the traditional measures of
clinical parameters like the ejection fraction, the complexityHRV seems to be more promisiri§,16—23. Nevertheless,
many nonlinear methods require rather long time series and
are not easily applicable to very short data sets as used in this
*Electronic address: wessel@fvk-berlin.de study.
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The objective of this contribution is to find early signs of — **7
VT-VF in patients with an implanted cardioverter- aw
defibrillator (ICD) to make a short-term prediction possible
and consequently to improve antiarrhythmic therapy. The
defibrillators are able to safeguard patients by returning their
hearts to a normal rhythm via strong defibrillatory shocks.
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Additionally, they store the 1000 beat-to-beat intervals im- \A‘
mediately before the onset of a life-threatening arrhythmia. W
Therefore, we apply standard HRV parameters from the time L A L

and frequency domaifill], parameters from symbolic dy-
namics[18,19, as well as the finite-time growth ratg&4] to
the data stored in the ICD. - -

The paper is organized as follows. In Sec. Il we describe gm . (b)
the data and standard techniques in the time and frequencygs00
domain. In Sec. Ill we present parameters from nonlinear =
data analysis based on symbolic dynamics and finite-time
growth rates. Section IV contains the results of the data = —7——F—¥
analysis. Finally, in Sec. V we discuss our results. n

400

FIG. 1. The last 1000 beat-to-beat intervals before a sustained
Il. DATA AND STANDARD METHODS VT (a) and the respective control time serié® from the same

The defibrillators used in this stud§PCD 7220/7221, patient.lTo analyze the dyqamicsqut before an arrhythmia, all beat-
Meditronid are able to store at least 1000 beat-to-beat interl0-Peat intervals of the VT itselfstarting at the arropat the end of
vals prior to onset of V10 msec resolutioncorresponding time series(a) are removed from the tachograms.
to approximately 15 min. We analyze these intervals in 17
chronic heart failure ICD patient®ormal sinus rhythm, no the normalized low-frequency band. These standard param-
class | or Ill antiarrhythmic druggust before the onset of a eters of HRV analysis are based on linear techniques. To
VT-VF and at a control time, i.e., without a following ar- classify dynamical changes in the time series, we are using in
rhythmic event. Time series including more than one nonsusthe following the concepts of symbolic dynamics and the
tained VT, with induced VT’s, pacemaker activity, or more finjte-time growth rates.
than 10% of ventricular premature beats are excluded from
this analysis. So that from the 17 patients, 24 tachograms,

i.e., the time series of the beat—to_-beat intervals, \_/vith a sgb— Il NONLINEAR ANALYSIS
sequent VT-VF and the respective 24 control time series
without VT-VF are considered. Note that three patients had A. Symbolic dynamics

already several VT’s. To analyze only the dynamics occur-

ring just before a VT, the beat-to-beat intervals of the VTapproach to analyze dynamic aspects of HR®,19. The

itself at the end of the time series are removed from the. . . . . .
tachograms. Figure 1 shows an example of 1000 beat—to-beé[[St step in this analysis is the transformation of the time

intervals just before a sustained \(With the following VT) Sﬁ“ﬁs tlnéo sym db(?tl ﬁe(cj]gefn ces \tlylth _sylmtf[o_lstfr:pm agiven s l:[
as well as a control tachogram of the same patient. phabet. some detailed information 1S 1ost In his process, bu

To detect early signs of a life-threatening arrhythmia, Wethe coarse dynamic behavior can be analyzed. Wackerbauer

apply a multiparametric analysis. Before starting the analysi€t &l- [26] used the methodology of symbolic dynamics for
ventricular premature beats as well as artifacts should b€ a@nalysis of the logistic map, where a generic partition is
removed from the time seri¢&5], constructing the so-called known. However, for physiological time series analysis a
normal-to-normal-beat time seri@IN). The following stan- More pragmatic approach is necessary. The transformations
dard HRV parametergl1] are calculated from all corrected into symbols have to be chosen context dependent. For this
time series: “meanNN,” the mean beat-to-beat interval ofreason, we develop complexity measures on the basis of such
the time series; “sdNN,” its standard deviation; “pNN50,” context-dependent transformations, which have a close con-
the percentage of beat-to-beat interval differences greatarection to physiological phenomena and are relatively easy
than 50 msec; and “rmssd,” the root mean square of succedo interpret.

sive beat-to-beat interval differences. Additionally, the stan- Comparing different kinds of symbol transformations, we
dard parametersVLF,” “ LF,” “ HF,” and “P” from the  found that the use of four symbols, as explained in @&y.is
frequency domain are calculatetl]. “ VLF” represents the appropriate for our purpose. The time series
power in the frequency band from 0.0033 to 0.04 HiF" X1,X2,X3, . .. Xy IS transformed into the symbol sequence
the power from 0.04 to 0.15 Hz;MF” the power from 0.15  s{,S,,S3, ...,Sy, SieA on the basis of the alphabet

to 0.4 Hz; and ‘P” the total power from 0.0033 to 0.4 Hz. ={0,1,2,3. The transformation into symbols refers to three
The spectra are estimated using the fast Fourier transforngiven levels wherg. denotes the mean beat-to-beat interval
To avoid the “leakage” effect, a Blackman-Harris window anda is a special parameter that we have chosen 0.05; we
function is applied. The following ratios are included in our tested several values af from 0.03 to 0.07; however, the
analysisVLF to P, HF to P, andLF to HF as well ad_Fn; resulting symbol sequences differed not significantly,

We have shown that symbolic dynamics is an efficient
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0: m <xi<(1+a)u do not allow estimating global Lyapunov exponents. There-
1 (1+a) <o fore, we concentrate on quantifying t_he state-dependent
si(x) = ' K ! short-term predictability through finite-time growth rates.
2 (l-a)pu <X=u Note that these differ from the finite-time Lyapunov expo-
3 0 <x<(l-a)u nents defined if32-3§ as well as the finite-time growth
rates of[24], both of which require the knowledge of the
wherei=123.... (1) tangent maps thus giving the equations governing the dy-

namics. In[36] the significant differences between these
There are several quantities that characterize such symbghlantities are discussed.
strings. In this study we analyze the frequency distribution of ~ Our finite-time growth rates are approximations based on
length three words, i.e., substrings which consist of thredhe idea of Wolfet al. [28]. Firstly, pseudophase spaces of
symbols from the alphabet, leading to a maximum of 64 the system are constructed using delay coordingBds.
different words(bins). This is a compromise of having, on Their dimension is denoted by and the fixed delay by
the one hand, some dynamical information and of having, ofNéxt, for each point in this constructed phase space

the other hand, a sufficient good statistics to estimate the=[Xk: Xkt 7 -+ - Xt (n-1)-], k=1,... N=(n=1)7 of
probability distribution. We consider the following measuresth® measured tachogram=[x; x;, ... Xy] the nearest
of complexity. neighborl is determinedl is defined as that state which

(i) The Shannon entropii, (“fwshannon” in Table ) ~ has the minimal Euclidean distance to the [[1,—1,|| de-
calculated from the distributiop of words is the classic notes the Euclidean distance of the stiqt¢o I, , i.e.,
measure for the complexity in time series:

n-1

e=1[l= E (Xu+j'r_xv+j7')2- (4)
He=— X p(w)logp(w), 2 =0
weWk,p(w)>O

‘- Then the minimal distancé, to the statd, is given by
whereW* is the set of all words of lengtk Larger values of

Shannon entropy refer to higher complexity in the corre- g — min Ne—1il, k=1,...N—=(n—1)7
sponding tachograms and lower values to lower ones. i=1,.. . N—(n-1)r

(ii) Next, we count the “forbidden words” in the distri- li-kI>(n-1)r 5
bution of words with length 3—that is the number of words (5

which never occur. A high number of forbidden words .
stands for a rather regular behavior in the time series. If thé’de the nearest neighbor by
time series is highly complex in the Shannonian sense, only —
a few forbidden words can be found. W= {Tnlll—Tml=did k=1,... N=(n=D1)r. (§)

(iii) To measure especially low variability, we introduce , )
the parameter “plvar10.” In this way successive symbols ofNote that the time lag of _thg nearest neighbor has to be at
another simplified alphabet, consisting only of symbols “0 '€ast one window length, i.eli —k|>(n—1)7 and we only
and “1,” were analyzed. Here the symbol “0” stands for a consider points as neighbors if their distance to the base
small difference between two successive betie resolu- point is less than 10% of the maximum distance between any
tion of the defibrillators used in this stugywhereas “1” ton)lnt§. Next,.we analyze the evolution of the staies
represents those cases where the difference between two s@&dl during the timeT. After theseT steps we get the states

. . N T = .
cessive beats exceeds this special limit, e =X T Xics T4 7s - - - XesT(n_1)-) and I}, respectively.

1: [X,—X,_1/=10 msec The distance between both stajés— 1| represents the di-
(3  vergence aftell evolution steps. From the original distance
of both states and the distance affesteps we calculate the

L . initaZti (n,7,T).
Words consisting only of a unique type of symigeither all ~ finite-time growth ratex ™" "
“0” or all “1” ) were counted. To get a statistically appro-

S:
" 10 |X,—X,_1/<10 msec.

priate estimate of the word distribution, we choose words of 1 =10
; . . : (n7,T)_ kKo —(n—
length six, where again at maximum 64 different types of AT ==In k=1,...N=(n=1)7. (7)
words can occur. “Plvarl0” represents the probability of the 1= 1ell
word type “000000” occurrence and is able to detect even
intermittent decreased HRV. A(k”*T'T) quantifies the local short-term predictability at the
point I,.. If thesex(""T) are greater than zero, the distance
B. Finite-time growth rates after the evolution time increases; otherwise, it decreases.

We calculate the finite-time growth rates for each point of

Lyapunov exponents of a dynamical system reflect effec;[he delay phase space, which leads to a growth rate time
(n,7,T)

tlye growt.h rates of |nf|n|_teS|maI _uncertamqes_ over an infi- seriesh Its average, the average growth raf@ T,
nite duration. However, time series analysis is restricted td
the analysis of finite-time series and thus it is difficult to N—(n—1)r

determine Lyapunov exponer®&7-31. Moreover, the 1000 AT = 1 S D ®)
beat-to-beat intervals form only a very short time series and N—(n=1)7+1 =1 k
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guantifies a global short-term predictability. The dimension TABLE Il. Parameters from symbolic dynamics and finite time
n, i.e., the length of the selected tachogram part varied frongrowth rates calculated for dimensions three, six, and nine with
3 to 9. We choose this range to cover an interval up to 9delay 7=1 and evolution timeT =1 before VT-VF and at control
which is a typical order of an autoregressive model for shorttime (five-nearest-neighbor approagh; significance; n.s., not sig-
term HRV tachogram§25]. The evolution time and the de- nNificant; p=0.05)

lay are defined a$=1,2,3 andr=1,2,3, respectively.

Additionally, to reduce random influences, we consider a VT-VF Control P
three- and a five-nearest-neighbors approach. According to Symbolic dynamics
Eq. (6) we determine the five nearest neighbbys . .. I,° forbword 32.210.5 32.1%9.3 n.s.
of the pointl, and evolve all neighbors over the evolution fwshannon 2.130.59 2.43-0.43 0.036
time T. The finite-time growth rates for the three- and thepjvario 0.12-0.18 0.04+0.05 0.032
five-nearest-neighbors approaches are derived from the aver-
age distances before and after the evolution time. Finite-time growth rates
AGLD 0.37£0.31 0.5%-0.36 n.s.
IV. RESULTS A(61D) 0.22+0.08 0.26-0.05 0.044
AL 0.11+0.03 0.13:0.02 0.030

We calculate the parameters described in the preceding
sections for both the VT-VF and the control time series and

. . The finite-time growth rates were calculated for the
test then for equality of the averaged values obtained from. ) .
single, the three-, and the five-nearest-neighbors approaches.

both groups. The statistical analysis is based on the two1-_ bl h | q dard deviati
tailed t test and the nonparametric Kolmogorov-Smirnov able 1l represents the mean values and standard deviations
of A" for the VT-VF group as well as for the control

test. . . -
. . . roup in the five-nearest-neighbors approaah=8,6,9,
Firstly, the standard parameters in the time and frequencgzl’ T=1). The parametea11) denotes the average

domain are determined. We find that none of them leads to 8rowth rate with a dimension of 3, lag 1, and evolution time
significant separation of both groug$able ). As already 1, \(611) \(.L1) respectively. For dimension three there

visible in Fig. 1, the mean beat-to-beat interval meanNN nificant diff h th th
showed a remarkable but nonsignificant difference betweeft © O signiticant difierences, wnereas the average grow

the groups rates for dimensions six and nine differed significantly in

On the contrary, two parameters of symbolic dynamicsboth groups. For evolution times=2,3 significant differ-
(“fwshannon” and :‘plvarlo” see Table )l as well as the ences disappeared for a dimension of 6. Interestingly, for all

finite-time growth rates indicate significant differences be—dImenSIonS the growth rates were larger in the group of the

h “The Sh fth ; -_control_t_achograms than in the VT-VF group.
tween both groups. The Shannon entropy of the word distr Additionally, we calculated the average growth rates for

bution “fwshannon” is significantly higher in the control diff del . —23 uti imeT = 1 d di
group, whereas the short-variability measure “plvar10” is rr:eﬁrseig:ls ?h?getlger?;-n_e ,F(;re(\jlglgyt/lozn vtllgn?ou}d,aagignhl‘i-cant
higher in the VT-VF group. Both parameters indicate a’,. ) N

'gner | group b e difference for a dimension of 6\(¢>1), p=0.016). For de-

partly decreased heart rate variability in the VT-VF groupI 3 | ed iderable b anifi
which cannot be shown with the standard deviation “sdNN '2Y > W€ only rg‘;"g”'ze a considerable but nonsignificant
difference forA'*=* (p=0.052), no further growth rates

or other variability measures from time domain. It is inter- h d sianif diff b both i . d
esting to note that the forbidden word statistics fail to distin—zrgt‘:‘ées significant differences between Dboth investigate

uish both groups. . :
g group To estimate the dependence of the results on the time
TABLE I|. Time and frequency domain parameters beforesﬁr'ef‘ Iengtha vye caICL.JIa'Fehallfparametéfsdl, T:..l) for
VT-VF and at control time |¢ significance; n.s., not significarnp, the shortened time _Se”es' the first 2, 4, and 6 (thifs cor-
=0.05). The statistical analysis is based on the two-tditedt and rgspond; to appro>.(|mately 150, 300, and 450,be_a,t3he .
on the nonparametric Kolmogorov-Smirmnavtest; the parameter fime series were disregarded. As a result all significant dif-

values are expressed as mearstandard deviation. ferences obtained from the complete time series remain
valid. This is a strong indication that heart rate variability
VT-VE Control p changes occur a few minutes before a malignant arrhythmia.
: : To get an overview of the nearest neighbors distance, we
Time domain calculated the maximum distance between any two points
meanNN 697.1155.6 756.3-149.9 n.s. (md) and for each point the distance to its nearest neighbor
sdNN 54.07-40.62 55.16:33.47 n.s. (dnn). This also was done for the five-nearest-neighbors ap-
PNN50 0.02:0.04 0.04:0.11 n.s. proach, for dimensionsi=3,...,9 andwith delay r=1.
rmssd 14.8510.30 20.5220.36 n.s. Table Il represents the mean values as well as the 95%-
confidence intervals of these distances. A ratio of 8% of both
Frequency domain distancesdnn/md may be considered as rather large; how-
VLF to P 0.54+0.16 0.52-0.17 n.s. ever, such values appear to be typical for noisy short time
LF toHF 4.18+4.07 3.36:1.42 n.s. series.
HF to P 0.04+0.04 0.05-0.04 n.s. The results of the three-nearest-neighbors approach are
LFn 0.74+0.13 0.75-0.09 n.s. similar to the five-nearest-neighbors approach. For all se-

lected delaysr=1,2,3 we got significant differences for the
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TABLE IIl. Nearest-neighbor statistics calculated for dimensiors3,6,9 and with delayr=1 (five-
nearest-neighbors approaciihe parameter valugad, the maximum distance between any two points, and
dnn, the distance to the nearest neighbor, are given as mean value and 95%-confidence (@tgrval

respectively.
n md dnn dnfmd
3 278.81(95% CI 235.00-322.63 6.15(95% CI 4.36-7.94 0.022
6 373.17(95% CI 312.92-433.41 20.11(95% CI 15.22-24.99 0.054
9 436.18(95% CI 364.14-508.21 32.86(95% CI 25.04-40.68 0.075

average finite-time growth rate@imension ning In the

between the investigated groups were found.

VT and the surrogate control time series. However, no pa-
single-nearest-neighbor approach no significant differencesameter showed significant differences between both groups
(see Table IV. This result is an indication that the differ-

To detect early signs of a life-threatening arrhythmia, weences achieved above are not artifacts due to multiple tests.
have applied a multiparametric analysis, calculatingtan- To investigate the strength of the relationship between the
dard time and frequency paramete(s) parameters from finite-time growth rates and parameters from symbolic dy-
symbolic dynamics, as well agii) the finite-time growth namics the correlation coefficients were calculated. The ab-
rates with different dimensions and delays. Analyzing thesolute value of the correlation coefficient between
significance such a large number of parameters leads to ¥™'%), n=23,6,9 and “fwshannon” was on average 0.3, be-
multiple-testing problem: If the tests are treated as indepentween \(™*1), n=3,6,9 and “plvar10” on average 0.35.
dent then the probability of rejecting a valid null hypothesisTherefore, the combined use of symbolic dynamics param-
increases with the number of tests performed. If the numbegters and finite-time growth rates may improve the identifi-
of significant differences between control and VT-VF is ancation of potentially following imminent arrhythmias. In this
artifact due to multiple testing, we would expect to find ap-study there was only a slow increase in discriminating both
proximately the same number of significant differences ingroups of time series; it has to be validated on a larger data
surrogate datg38], in which the nonlinearities are destroyed. base.

Therefore, for each time series in our study an amplitude-

adjusted surrogatg89] series was created, where the histo-

gram of the surrogate time series is the same as that of the V. DISCUSSION

original data. Moreover, the surrogate data is simply a sorted The aim of this study is to find heart rate variability
version of the original data, but the sorting procedure is perchanges just before the onset of ventricular tachycardia or
formed in a very careful way that attempts to match theyentricular fibrillation, i.e., to look for some precursorlike
autocorrelation function of the original data. Figure 2 givesactivities before this qualitative change. Two approaches
two examples of surrogate data calculated from the time S&rom nonlinear dynamics indeed exhibit significant changes
ries demonstrated in Fig. 1. All parameters introduced abovgf heart rate variability: methods of symbolic dynamics and
were tested for different mean values between the surrogaigjte-time growth rates. It is important to note that standard
linear techniques are not able to discriminate between these
both groups.

From finite-time growth rates we get significant differ-
ences between the VT-VF and the control time series only
for relative high dimensionrn(>>5). This indicates that the

intervals (ms)

(a) .
500 TABLE IV. Results of the surrogate analysis parameters from

400 symbolic dynamics and finite time growth rates calculated for di-
mensions three, six, and nine with delay 1 and evolution time
T=1 before VT-VF and at control tim@ive-nearest-neighbors ap-
proach;p, significance; n.s., not significar=0.05)

300

= VT-VF Control p

£

g wo (b) Symbolic dynamics

E w0 S forbword 34.110.1 39.9-11.0 n.s.
a0 fwshannon 244041 2.63:0.41 n.s.
- plvar10 0.03-0.04 0.010.01 n.s.

1 101 201 301 401 501 601 701 801 201 1001
n

Finite-time growth rates

FIG. 2. Amplitude adjusted surrogates of the 1000 beat-to-beat A% 0.63+0.29 0.74-0.28 n.s.
intervals before a sustained VT of Figal (without the VT beats A (61D 0.30+0.04 0.31-0.04 n.s.
(a) and of the respective control time series from Fi¢h) lof the A(911) 0.14+0.02 0.14-0.01 n.s.

same patientb).
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changes are mainly caused by sympathetic activities of thenethod with a very close connection to physiological phe-
autonomous nervous system. Vagal activities would causaomena and is relatively easy to interpret.
smaller dimensions. These results are in good agreement The results of the correlation analysis showed that the
with the physiological fact that the sympathetic activity in- parameters from symbolic dynamics and the new derived
creases before the onset of ¥3,4]. methods are only weakly correlated; the combination of all
The significant lower values of"1"), n=6,9, T=1,2,3 Methods may improve the discrimination of VT-VF and con-
in the VT-VF group provide a possibility to predict a VT- trol time series. However, the relative small data base we
VF. The calculation of\(™"T) with different delaysr has used in this stu_dy does not allow multivariate analyses. _
shown the importance of analyzing beat-to-beat variability, MOreover, this study demonstrated the advantage of using
no successive heart beats should be removed. For dela ethods from non_llnear dynamlqs. The Qvolut|on OT points in
greater than one, significant differences in the averag ase space provides a deeper insight into dynamical aspects

. . of the cardiac system. The importance of beat-to-beat analy-
g,;zg;ht[]aetei/sTd\E;g?iﬁ:i,e\pi”e“scgnsc:](t)r\:ves;Qﬁ:rt(:}: g'rfefeégzggz bbgl's under consideration of the time series order was shown.
) . Y Limitations of this study are the relatively small number
beat-to-beat regulation. - _of time series and the reduced statistical analysissubdi-
The nearest-neighbor statistics was useful for assessingsijons concerning age, sex, and heart disedse this rea-
the results. Dimensions higher than nine should not be usedyp these results have to be validated on a larger data base.
the nearest neighbors could be only distantly related. A qUOgFyrthermore, this investigation could be enhanced for ta-
tient less than 0.1 of the nearest neighbor distance to thg]ograms induding more than 10% ventricular prema‘[ure
maximum distance between any two poinds(/md) seems  peats.
to be normal for these short physiologic time series with In conclusion, this study demonstrated that parameters
stochastic influences. from nonlinear dynamics could be meaningful for the predic-
The methods of symbolic dynamics are useful approacheson of VT-VF events even in short term HRV time series.
for classifying the dynamics of heart rate variability. By This finding seems to be of importance in algorithms for risk
means of these methods, the underlying dynamics of the timgtratification and to improve the therapeutic and preventive
series can be investigated. Parameters of the time and fréools of next generation ICD’s.
guency domain often leave these dynamics out of consider-
ation. The optimized symbol definition has to be validated on ACKNOWLEDGMENTS
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