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Short-term forecasting of life-threatening cardiac arrhythmias based on symbolic dynamics
and finite-time growth rates
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Ventricular tachycardia or fibrillation~VT-VF! as fatal cardiac arrhythmias are the main factors triggering
sudden cardiac death. The objective of this study is to find early signs of sustained VT-VF in patients with an
implanted cardioverter-defibrillator~ICD!. These devices are able to safeguard patients by returning their
hearts to a normal rhythm via strong defibrillatory shocks; additionally, they store the 1000 beat-to-beat
intervals immediately before the onset of a life-threatening arrhythmia. We study these 1000 beat-to-beat
intervals of 17 chronic heart failure ICD patients before the onset of a life-threatening arrhythmia and at a
control time, i.e., without a VT-VF event. To characterize these rather short data sets, we calculate heart rate
variability parameters from the time and frequency domain, from symbolic dynamics as well as the finite-time
growth rates. We find that neither the time nor the frequency domain parameters show significant differences
between the VT-VF and the control time series. However, two parameters from symbolic dynamics as well as
the finite-time growth rates discriminate significantly both groups. These findings could be of importance in
algorithms for next generation ICD’s to improve the diagnostics and therapy of VT-VF.

PACS number~s!: 87.19.Hh, 05.45.Tp, 02.50.Sk
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I. INTRODUCTION

Sudden cardiac death is a major public health proble
accounting for approximately 400 000 deaths in the Uni
States annually@1,2#. Therefore, an accurate and reliab
identification of patients who are at high risk of sudden c
diac death is an important and challenging problem. T
main factors triggering sudden cardiac death are in m
cases either ventricular tachycardia~VT! or ventricular fibril-
lation ~VF!, which are connected with transient increases
sympathetic tone@3,4# and based on inter- and intraind
vidual different risk factors@5,6#. Ventricular tachycardia is
defined as three or more consecutive impulses~heartbeats! at
a rate exceeding 100/min. The impulses originate in pa
makers located distal to the bifurcation of the bundle of H
in the bundle branches, Prukinje fibers or, rarely, in
working myocardium of the ventricles. During ventricul
tachycardia, the heart does not pump blood as efficiently
does during a normal rhythm. Ventricular fibrillation is
particular type of reentry usually leading to very fast b
completely irregular disorganized activation of the ent
myocardium of the ventricles. It is more serious than ve
tricular tachycardia because it causes sudden cardiac de
not treated immediately.

Heart rate variability~HRV! parameters, calculated from
the time series of the beat-to-beat-intervals, have been
to predict the mortality risk in patients with structural hea
diseases@7,8#. We have recently demonstrated that a mu
variate approach with HRV parameters, including nonlin
methods as well as the combination of HRV measures w
clinical parameters like the ejection fraction, the complex
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of ventricular arrhythmias, or the signal-averaged electroc
diogram, improves the results of risk stratification@9#. Re-
cent studies showed that HRV assesses the autonomic
vous system dysfunction and is able to identify patients
risk of sudden cardiac death@10,11#. However, these meth
ods are not developed to perform short-term predictions
malignant ventricular arrhythmias.

Recently Liebovitchet al. @12# discovered that the time
between VT-VF events have a power law form, which de
onstrates the nonlinear properties of such cardiac arrh
mias. An interesting approach for a short-term prediction
ventricular fibrillation is described in@13#, where it is shown
that conventional HRV analysis preceding a VT fails to p
dict imminent VF. Another approach to predict VT-VF
based on critical phases@14#, the authors found an increase
number of special patterns before VT-VF. Furthermo
Meyerfeldt et al. @15# discovered that two basic modes
onset are responsible for monomorphic ventricular tachyc
dia: one without beat-to-beat-interval variations occurri
immediately prior to onset and another characterized
short-long-short sequences and increasedQT dispersion. The
QT interval is defined as the time between the beginning
ventricular excitation (Q wave! and the end of the heart re
polarization~the end of theT wave!. The QT dispersion is
determined as the difference between the maximum
minimum QT interval in all leads of the surface electroca
diogram.

All these approaches for a short-term prediction of VF/V
are based on linear methods. However, the application
nonlinear methods in addition to the traditional measures
HRV seems to be more promising@9,16–23#. Nevertheless,
many nonlinear methods require rather long time series
are not easily applicable to very short data sets as used in
study.
733 ©2000 The American Physical Society
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The objective of this contribution is to find early signs
VT-VF in patients with an implanted cardioverte
defibrillator ~ICD! to make a short-term prediction possib
and consequently to improve antiarrhythmic therapy. T
defibrillators are able to safeguard patients by returning t
hearts to a normal rhythm via strong defibrillatory shoc
Additionally, they store the 1000 beat-to-beat intervals i
mediately before the onset of a life-threatening arrhythm
Therefore, we apply standard HRV parameters from the t
and frequency domain@11#, parameters from symbolic dy
namics@18,19#, as well as the finite-time growth rates@24# to
the data stored in the ICD.

The paper is organized as follows. In Sec. II we descr
the data and standard techniques in the time and frequ
domain. In Sec. III we present parameters from nonlin
data analysis based on symbolic dynamics and finite-t
growth rates. Section IV contains the results of the d
analysis. Finally, in Sec. V we discuss our results.

II. DATA AND STANDARD METHODS

The defibrillators used in this study~PCD 7220/7221,
Medtronic! are able to store at least 1000 beat-to-beat in
vals prior to onset of VT~10 msec resolution!, corresponding
to approximately 15 min. We analyze these intervals in
chronic heart failure ICD patients~normal sinus rhythm, no
class I or III antiarrhythmic drugs! just before the onset of a
VT-VF and at a control time, i.e., without a following a
rhythmic event. Time series including more than one nons
tained VT, with induced VT’s, pacemaker activity, or mo
than 10% of ventricular premature beats are excluded f
this analysis. So that from the 17 patients, 24 tachogra
i.e., the time series of the beat-to-beat intervals, with a s
sequent VT-VF and the respective 24 control time se
without VT-VF are considered. Note that three patients h
already several VT’s. To analyze only the dynamics occ
ring just before a VT, the beat-to-beat intervals of the V
itself at the end of the time series are removed from
tachograms. Figure 1 shows an example of 1000 beat-to-
intervals just before a sustained VT~with the following VT!
as well as a control tachogram of the same patient.

To detect early signs of a life-threatening arrhythmia,
apply a multiparametric analysis. Before starting the analy
ventricular premature beats as well as artifacts should
removed from the time series@25#, constructing the so-called
normal-to-normal-beat time series~NN!. The following stan-
dard HRV parameters@11# are calculated from all correcte
time series: ‘‘meanNN,’’ the mean beat-to-beat interval
the time series; ‘‘sdNN,’’ its standard deviation; ‘‘pNN50,
the percentage of beat-to-beat interval differences gre
than 50 msec; and ‘‘rmssd,’’ the root mean square of succ
sive beat-to-beat interval differences. Additionally, the st
dard parameters ‘‘VLF,’’ ‘‘ LF,’’ ‘‘ HF,’’ and ‘‘ P’’ from the
frequency domain are calculated@11#. ‘‘ VLF’’ represents the
power in the frequency band from 0.0033 to 0.04 Hz; ‘‘LF ’’
the power from 0.04 to 0.15 Hz; ‘‘HF ’’ the power from 0.15
to 0.4 Hz; and ‘‘P’’ the total power from 0.0033 to 0.4 Hz
The spectra are estimated using the fast Fourier transfo
To avoid the ‘‘leakage’’ effect, a Blackman-Harris windo
function is applied. The following ratios are included in o
analysis:VLF to P, HF to P, andLF to HF as well asLFn;
e
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the normalized low-frequency band. These standard par
eters of HRV analysis are based on linear techniques.
classify dynamical changes in the time series, we are usin
the following the concepts of symbolic dynamics and t
finite-time growth rates.

III. NONLINEAR ANALYSIS

A. Symbolic dynamics

We have shown that symbolic dynamics is an efficie
approach to analyze dynamic aspects of HRV@18,19#. The
first step in this analysis is the transformation of the tim
series into symbol sequences with symbols from a given
phabet. Some detailed information is lost in this process,
the coarse dynamic behavior can be analyzed. Wackerb
et al. @26# used the methodology of symbolic dynamics f
the analysis of the logistic map, where a generic partition
known. However, for physiological time series analysis
more pragmatic approach is necessary. The transformat
into symbols have to be chosen context dependent. For
reason, we develop complexity measures on the basis of
context-dependent transformations, which have a close c
nection to physiological phenomena and are relatively e
to interpret.

Comparing different kinds of symbol transformations, w
found that the use of four symbols, as explained in Eq.~1!, is
appropriate for our purpose. The time seri
x1 ,x2 ,x3 , . . . ,xN is transformed into the symbol sequen
s1 ,s2 ,s3 , . . . ,sN , siPA on the basis of the alphabetA
5$0,1,2,3%. The transformation into symbols refers to thr
given levels wherem denotes the mean beat-to-beat interv
and a is a special parameter that we have chosen 0.05;
tested several values ofa from 0.03 to 0.07; however, the
resulting symbol sequences differed not significantly,

FIG. 1. The last 1000 beat-to-beat intervals before a susta
VT ~a! and the respective control time series~b! from the same
patient. To analyze the dynamics just before an arrhythmia, all b
to-beat intervals of the VT itself~starting at the arrow! at the end of
time series~a! are removed from the tachograms.
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si~xi !55
0: m ,xi<~11a!m

1: ~11a!m ,xi,`

2: ~12a!m ,xi<m

3: 0 ,xi<~12a!m

where i 51,2,3, . . . . ~1!

There are several quantities that characterize such sym
strings. In this study we analyze the frequency distribution
length three words, i.e., substrings which consist of th
symbols from the alphabetA, leading to a maximum of 64
different words~bins!. This is a compromise of having, o
the one hand, some dynamical information and of having
the other hand, a sufficient good statistics to estimate
probability distribution. We consider the following measur
of complexity.

~i! The Shannon entropyHk ~‘‘fwshannon’’ in Table I!
calculated from the distributionp of words is the classic
measure for the complexity in time series:

Hk52 (
vPWk,p(v).0

p~v!log p~v!, ~2!

whereWk is the set of all words of lengthk. Larger values of
Shannon entropy refer to higher complexity in the cor
sponding tachograms and lower values to lower ones.

~ii ! Next, we count the ‘‘forbidden words’’ in the distri
bution of words with length 3—that is the number of wor
which never occur. A high number of forbidden word
stands for a rather regular behavior in the time series. If
time series is highly complex in the Shannonian sense, o
a few forbidden words can be found.

~iii ! To measure especially low variability, we introduc
the parameter ‘‘plvar10.’’ In this way successive symbols
another simplified alphabet, consisting only of symbols ‘‘0
and ‘‘1,’’ were analyzed. Here the symbol ‘‘0’’ stands for
small difference between two successive beats~the resolu-
tion of the defibrillators used in this study!, whereas ‘‘1’’
represents those cases where the difference between two
cessive beats exceeds this special limit,

sn5H 1: uxn2xn21u^10 msec

0: uxn2xn21u,10 msec.
~3!

Words consisting only of a unique type of symbol~either all
‘‘0’’ or all ‘‘1’’ ! were counted. To get a statistically appr
priate estimate of the word distribution, we choose words
length six, where again at maximum 64 different types
words can occur. ‘‘Plvar10’’ represents the probability of t
word type ‘‘000000’’ occurrence and is able to detect ev
intermittent decreased HRV.

B. Finite-time growth rates

Lyapunov exponents of a dynamical system reflect eff
tive growth rates of infinitesimal uncertainties over an in
nite duration. However, time series analysis is restricted
the analysis of finite-time series and thus it is difficult
determine Lyapunov exponents@27–31#. Moreover, the 1000
beat-to-beat intervals form only a very short time series
ol
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do not allow estimating global Lyapunov exponents. The
fore, we concentrate on quantifying the state-depend
short-term predictability through finite-time growth rate
Note that these differ from the finite-time Lyapunov exp
nents defined in@32–36# as well as the finite-time growth
rates of @24#, both of which require the knowledge of th
tangent maps thus giving the equations governing the
namics. In @36# the significant differences between the
quantities are discussed.

Our finite-time growth rates are approximations based
the idea of Wolfet al. @28#. Firstly, pseudophase spaces
the system are constructed using delay coordinates@37#.
Their dimension is denoted byn and the fixed delay byt.
Next, for each point in this constructed phase spa
I k5@xk ,xk1t , . . . ,xk1(n21)t#, k51, . . . ,N2(n21)t of
the measured tachogramI 5@x1 ,x2 , . . . ,xN# the nearest
neighborI k̄ is determined.I k̄ is defined as that state whic
has the minimal Euclidean distance to theI k . uuI u2I vuu de-
notes the Euclidean distance of the stateI u to I v , i.e.,

uuI u2I vuu5A(
j 50

n21

~xu1 j t2xv1 j t!
2. ~4!

Then the minimal distancedk to the stateI k is given by

dk5 min
i 51, . . . ,N2(n21)t

u i 2ku.(n21)t

i I k2I i i , k51, . . . ,N2~n21!t

~5!

and the nearest neighbor by

I k̄5$I mui I k2I mi5dk%,k51, . . . ,N2~n21!t. ~6!

Note that the time lag of the nearest neighbor has to b
least one window length, i.e.,u i 2ku.(n21)t and we only
consider points as neighbors if their distance to the b
point is less than 10% of the maximum distance between
two points. Next, we analyze the evolution of the statesI k

andI k̄ during the timeT. After theseT steps we get the state

I k
T5@xk1T ,xk1T1t , . . . ,xk1T1(n21)t# and I k

T̄, respectively.

The distance between both statesi I k
T2I k

T̄i represents the di-
vergence afterT evolution steps. From the original distanc
of both states and the distance afterT steps we calculate the
finite-time growth ratelk

(n,t,T) :

lk
(n,t,T)5

1

T
ln

i I k
T2I k

T̄i

i I k2I k8̄i
,k51, . . . ,N2~n21!t. ~7!

lk
(n,t,T) quantifies the local short-term predictability at th

point I k . If theselk
(n,t,T) are greater than zero, the distan

after the evolution time increases; otherwise, it decrease
We calculate the finite-time growth rates for each point

the delay phase space, which leads to a growth rate t
serieslk

(n,t,T) . Its average, the average growth ratel (n,t,T),

l (n,t,T)5
1

N2~n21!t11 (
k51

N2(n21)t

lk
(n,t,T) ~8!
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736 PRE 61NIELS WESSELet al.
quantifies a global short-term predictability. The dimens
n, i.e., the length of the selected tachogram part varied fr
3 to 9. We choose this range to cover an interval up to
which is a typical order of an autoregressive model for sh
term HRV tachograms@25#. The evolution time and the de
lay are defined asT51,2,3 andt51,2,3, respectively.

Additionally, to reduce random influences, we conside
three- and a five-nearest-neighbors approach. Accordin
Eq. ~6! we determine the five nearest neighborsI k̄

1, . . . ,I k̄
5

of the point I k and evolve all neighbors over the evolutio
time T. The finite-time growth rates for the three- and t
five-nearest-neighbors approaches are derived from the a
age distances before and after the evolution time.

IV. RESULTS

We calculate the parameters described in the prece
sections for both the VT-VF and the control time series a
test then for equality of the averaged values obtained fr
both groups. The statistical analysis is based on the t
tailed t test and the nonparametric Kolmogorov-SmirnovZ
test.

Firstly, the standard parameters in the time and freque
domain are determined. We find that none of them leads
significant separation of both groups~Table I!. As already
visible in Fig. 1, the mean beat-to-beat interval meanN
showed a remarkable but nonsignificant difference betw
the groups.

On the contrary, two parameters of symbolic dynam
~‘‘fwshannon’’ and ‘‘plvar10’’, see Table II! as well as the
finite-time growth rates indicate significant differences b
tween both groups. The Shannon entropy of the word dis
bution ‘‘fwshannon’’ is significantly higher in the contro
group, whereas the short-variability measure ‘‘plvar10’’
higher in the VT-VF group. Both parameters indicate
partly decreased heart rate variability in the VT-VF gro
which cannot be shown with the standard deviation ‘‘sdNN
or other variability measures from time domain. It is inte
esting to note that the forbidden word statistics fail to dist
guish both groups.

TABLE I. Time and frequency domain parameters befo
VT-VF and at control time (p significance; n.s., not significant,p
>0.05). The statistical analysis is based on the two-tailedt test and
on the nonparametric Kolmogorov-SmirnovZ test; the paramete
values are expressed as mean6 standard deviation.

VT-VF Control p

Time domain
meanNN 697.16155.6 756.36149.9 n.s.
sdNN 54.07640.62 55.10633.47 n.s.
pNN50 0.0260.04 0.0460.11 n.s.
rmssd 14.85610.30 20.52620.36 n.s.

Frequency domain
VLF to P 0.5460.16 0.5260.17 n.s.
LF to HF 4.1864.07 3.3661.42 n.s.
HF to P 0.0460.04 0.0560.04 n.s.
LFn 0.7460.13 0.7560.09 n.s.
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The finite-time growth rates were calculated for t
single, the three-, and the five-nearest-neighbors approac
Table II represents the mean values and standard devia
of l (n,t,T) for the VT-VF group as well as for the contro
group in the five-nearest-neighbors approach (n53,6,9,
t51, T51). The parameterl (3,1,1) denotes the averag
growth rate with a dimension of 3, lag 1, and evolution tim
1, l (6,1,1), l (9,1,1), respectively. For dimension three the
are no significant differences, whereas the average gro
rates for dimensions six and nine differed significantly
both groups. For evolution timesT52,3 significant differ-
ences disappeared for a dimension of 6. Interestingly, for
dimensions the growth rates were larger in the group of
control tachograms than in the VT-VF group.

Additionally, we calculated the average growth rates
different delay timest52,3, evolution timeT51, and di-
mensions three to nine. For delay 2 we found a signific
difference for a dimension of 6 (l (6,2,1), p50.016). For de-
lay 3 we only recognized a considerable but nonsignific
difference forl (6,2,1) (p50.052), no further growth rate
showed significant differences between both investiga
groups.

To estimate the dependence of the results on the t
series length, we calculate all parameters~t51, T51) for
the shortened time series; the first 2, 4, and 6 min~this cor-
responds to approximately 150, 300, and 450 beats! of the
time series were disregarded. As a result all significant
ferences obtained from the complete time series rem
valid. This is a strong indication that heart rate variabil
changes occur a few minutes before a malignant arrhythm

To get an overview of the nearest neighbors distance,
calculated the maximum distance between any two po
(md) and for each point the distance to its nearest neigh
(dnn). This also was done for the five-nearest-neighbors
proach, for dimensionsn53, . . . ,9 andwith delay t51.
Table III represents the mean values as well as the 9
confidence intervals of these distances. A ratio of 8% of b
distancesdnn/md may be considered as rather large; ho
ever, such values appear to be typical for noisy short ti
series.

The results of the three-nearest-neighbors approach
similar to the five-nearest-neighbors approach. For all
lected delayst51,2,3 we got significant differences for th

TABLE II. Parameters from symbolic dynamics and finite tim
growth rates calculated for dimensions three, six, and nine w
delayt51 and evolution timeT51 before VT-VF and at control
time ~five-nearest-neighbor approach;p, significance; n.s., not sig
nificant; p>0.05)

VT-VF Control p

Symbolic dynamics
forbword 32.2610.5 32.169.3 n.s.
fwshannon 2.1360.59 2.4360.43 0.036
plvar10 0.1260.18 0.0460.05 0.032

Finite-time growth rates
l (3,1,1) 0.3760.31 0.5160.36 n.s.
l (6,1,1) 0.2260.08 0.2660.05 0.044
l (9,1,1) 0.1160.03 0.1360.02 0.030
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TABLE III. Nearest-neighbor statistics calculated for dimensionsn53,6,9 and with delayt51 ~five-
nearest-neighbors approach!. The parameter valuesmd, the maximum distance between any two points, a
dnn, the distance to the nearest neighbor, are given as mean value and 95%-confidence interv~CI!,
respectively.

n md dnn dnn/md

3 278.81~95% CI 235.00-322.63! 6.15 ~95% CI 4.36-7.94! 0.022
6 373.17~95% CI 312.92-433.41! 20.11~95% CI 15.22-24.99! 0.054
9 436.18~95% CI 364.14-508.21! 32.86~95% CI 25.04-40.68! 0.075
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average finite-time growth rates~dimension nine!. In the
single-nearest-neighbor approach no significant differen
between the investigated groups were found.

To detect early signs of a life-threatening arrhythmia,
have applied a multiparametric analysis, calculating~i! stan-
dard time and frequency parameters,~ii ! parameters from
symbolic dynamics, as well as~iii ! the finite-time growth
rates with different dimensions and delays. Analyzing
significance such a large number of parameters leads
multiple-testing problem: If the tests are treated as indep
dent then the probability of rejecting a valid null hypothe
increases with the number of tests performed. If the num
of significant differences between control and VT-VF is
artifact due to multiple testing, we would expect to find a
proximately the same number of significant differences
surrogate data@38#, in which the nonlinearities are destroye
Therefore, for each time series in our study an amplitu
adjusted surrogate@39# series was created, where the his
gram of the surrogate time series is the same as that o
original data. Moreover, the surrogate data is simply a so
version of the original data, but the sorting procedure is p
formed in a very careful way that attempts to match
autocorrelation function of the original data. Figure 2 giv
two examples of surrogate data calculated from the time
ries demonstrated in Fig. 1. All parameters introduced ab
were tested for different mean values between the surro

FIG. 2. Amplitude adjusted surrogates of the 1000 beat-to-b
intervals before a sustained VT of Fig. 1~a! ~without the VT beats!
~a! and of the respective control time series from Fig. 1~b! of the
same patient~b!.
es
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VT and the surrogate control time series. However, no
rameter showed significant differences between both gro
~see Table IV!. This result is an indication that the differ
ences achieved above are not artifacts due to multiple te

To investigate the strength of the relationship between
finite-time growth rates and parameters from symbolic d
namics the correlation coefficients were calculated. The
solute value of the correlation coefficient betwe
l (n,1,1), n53,6,9 and ‘‘fwshannon’’ was on average 0.3, b
tween l (n,1,1), n53,6,9 and ‘‘plvar10’’ on average 0.35
Therefore, the combined use of symbolic dynamics para
eters and finite-time growth rates may improve the ident
cation of potentially following imminent arrhythmias. In thi
study there was only a slow increase in discriminating b
groups of time series; it has to be validated on a larger d
base.

V. DISCUSSION

The aim of this study is to find heart rate variabili
changes just before the onset of ventricular tachycardia
ventricular fibrillation, i.e., to look for some precursorlik
activities before this qualitative change. Two approach
from nonlinear dynamics indeed exhibit significant chang
of heart rate variability: methods of symbolic dynamics a
finite-time growth rates. It is important to note that standa
linear techniques are not able to discriminate between th
both groups.

From finite-time growth rates we get significant diffe
ences between the VT-VF and the control time series o
for relative high dimension (n.5). This indicates that the

TABLE IV. Results of the surrogate analysis parameters fr
symbolic dynamics and finite time growth rates calculated for
mensions three, six, and nine with delayt51 and evolution time
T51 before VT-VF and at control time~five-nearest-neighbors ap
proach;p, significance; n.s., not significant;p>0.05)

VT-VF Control p

Symbolic dynamics
forbword 34.1610.1 39.9611.0 n.s.
fwshannon 2.4460.41 2.6360.41 n.s.
plvar10 0.0360.04 0.0160.01 n.s.

Finite-time growth rates
l (3,1,1) 0.6360.29 0.7460.28 n.s.
l (6,1,1) 0.3060.04 0.3160.04 n.s.
l (9,1,1) 0.1460.02 0.1460.01 n.s.

at
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changes are mainly caused by sympathetic activities of
autonomous nervous system. Vagal activities would ca
smaller dimensions. These results are in good agreem
with the physiological fact that the sympathetic activity i
creases before the onset of VT@3,4#.

The significant lower values ofl (n,1,T), n56,9, T51,2,3
in the VT-VF group provide a possibility to predict a VT
VF. The calculation ofl (n,t,T) with different delayst has
shown the importance of analyzing beat-to-beat variabil
no successive heart beats should be removed. For de
greater than one, significant differences in the aver
growth rates decreased, which shows that the differences
tween the VT-VF time series and the controls are caused
beat-to-beat regulation.

The nearest-neighbor statistics was useful for asses
the results. Dimensions higher than nine should not be u
the nearest neighbors could be only distantly related. A q
tient less than 0.1 of the nearest neighbor distance to
maximum distance between any two points (dnn/md) seems
to be normal for these short physiologic time series w
stochastic influences.

The methods of symbolic dynamics are useful approac
for classifying the dynamics of heart rate variability. B
means of these methods, the underlying dynamics of the
series can be investigated. Parameters of the time and
quency domain often leave these dynamics out of consi
ation. The optimized symbol definition has to be validated
a more representative number of patients. It is necessa
check which symbol definition best describes the dynam
changes inherent in the time series just before the onset
malignant arrhythmia. However, symbolic dynamics is
N
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method with a very close connection to physiological ph
nomena and is relatively easy to interpret.

The results of the correlation analysis showed that
parameters from symbolic dynamics and the new deri
methods are only weakly correlated; the combination of
methods may improve the discrimination of VT-VF and co
trol time series. However, the relative small data base
used in this study does not allow multivariate analyses.

Moreover, this study demonstrated the advantage of us
methods from nonlinear dynamics. The evolution of points
phase space provides a deeper insight into dynamical asp
of the cardiac system. The importance of beat-to-beat an
sis under consideration of the time series order was sho

Limitations of this study are the relatively small numb
of time series and the reduced statistical analysis~no subdi-
visions concerning age, sex, and heart disease!. For this rea-
son, these results have to be validated on a larger data b
Furthermore, this investigation could be enhanced for
chograms including more than 10% ventricular premat
beats.

In conclusion, this study demonstrated that parame
from nonlinear dynamics could be meaningful for the pred
tion of VT-VF events even in short term HRV time serie
This finding seems to be of importance in algorithms for r
stratification and to improve the therapeutic and preven
tools of next generation ICD’s.
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