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AbstractÐStandard time and frequency parameters of heart rate variability (HRV)
describe only linear and periodic behaviour, whereas more complex relationships
cannot be recognised. A method that may be capable of assessing more complex
properties is the non-linear measure of `renormalised entropy.' A new concept of the
method, REAR, has been developed, based on a non-linear renormalisation of
autoregressive spectral distributions. To test the hypothesis that renormalised
entropy may improve the result of high-risk strati®cation after myocardial infarction,
it is applied to a clinical pilot study (41 subjects) and to prospective data of the St
George's Hospital post-infarction database (572 patients). The study shows that the
new REAR method is more reproducible and more stable in time than a previously
introduced method (p50.001). Moreover, the results of the study con®rm the
hypothesis that on average, the survivors have negative values of REAR

(ÿ0.11� 0.18), whereas the non-survivors have positive values (0.03�0.22,
p50.01). Further, the study shows that the combination of an HRV triangular index
and REAR leads to a better prediction of sudden arrhythmic death than standard
measurements of HRV. In summary, the new REAR method is an independent
measure in HRV analysis that may be suitable for risk strati®cation in patients
after myocardial infarction.
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1 Introduction

STANDARD TIME and frequency parameters of heart rate varia-
bility (HRV) only describe linear and periodic behaviour,
whereas more complex relationships and interactions are not
addressed. At the same time, modulation of sinus rhythm
involves many non-linear elements. Thus it is not realistic to
restrict HRV analysis only to linear methods. The application of
non-linear methods in addition to the traditional ones seems to be
promising in this respect (GOLDBERGER et al., 1988; VOSS et al.,
1993; 1996; 1998; KURTHS et al., 1995; SCHREIBER, 1997;
MAKIKALLIO et al., 1997; SCHAÈ FER et al., 1998; WESSEL et al.,
2000). Nevertheless, many non-linear methods require rather
long, stationary time series and are not easily applicable to the
data of cardiac periods. However, non-stationarities may play an
important role in arrhythmogenesis. Thus, HRV analysis should
not be restricted to stationary epochs.

A method that may be capable of assessing more complex
properties of cardiac periodograms is the non-linear measure of
'renormalised entropy'. The basic idea is to determine the
complexity of cardiac periodograms based on a ®xed reference.
Based on general considerations in thermodynamics,
KLIMONTOVICH (1991) suggested comparing the relative
degree of order of two different distributions by renormalising
the reference distribution to a given energy. SAPARIN et al.
(1994) proposed a procedure for calculating this quantity from
time series and applied it to the logistic map. They showed that
the renormalised entropy allows the degree of order to be
compared, not only between chaotic and periodic series, but
also between different periodic and chaotic regimes. KOPITZKI

et al. (1998) applied this method to the data of invasive electro-
encephalograph recordings. Their results suggested that renor-
malised entropy may be a useful procedure for clinical applica-
tions in this ®eld, such as seizure detection and localisation of
epileptic foci.

Applications of renormalised entropy to heart rate data based
on the fast fourier transform (FFT) have been introduced
previously (VOSS et al., 1993; 1996; WESSEL et al., 1994;
KURTHS et al., 1995). However, this method suffers from a
potential lack of reproducibility and time instability. To over-
come these limitations, a new method was developed for the
computation of renormalised entropy REAR, based on an auto-
regressive spectral estimation.
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In this study, we investigate the ability of the new REAR

method to discriminate between different degrees of order in
spectral distribution and the possibility of improving the risk
strati®cation of patients surviving acute myocardial infarction.

2 Methods

2.1 Concepts of renormalised entropy

To compare the relative degree of order of two different
distributions, the reference distribution is renormalised to a
given energy. The complexity of any distribution in relation to
a ®xed reference distribution is estimated by solving an integral
equation. Considering two tachograms (time series of beat-to-
beat intervals) with the density distribution estimates f0�x� and
f1�x� and using the estimate f0�x� as a reference, the renormalised
density distribution �f0�x� of f0�x� is de®ned as

�f 0�x� :� f0�x�T�
f0�x�T dx

�1�

where T is the solution of the integral equation�
ln f0�x�

ÿ
�f0�x�ÿf1�x�

�
dx � 0 �2�

which is equivalent to�
�f0�x� � ln f0�x�dx �

�
f1�x� � ln f0�x�dx �3�

The solution of eqn 2 or eqn 3 has to be found numerically.
The renormalised entropy (RE) of the distribution f1�x� is

de®ned by the following interchanging algorithm. S�f �x�� is the
Shannon entropy of distribution f �x�, that is

S� f �x�� � ÿ
�

f �x� � ln f �x�dx �4�

Procedure:

(i) Calculate D1 � S� f0�x�� ÿ S� �f0�x��, with the distribution
f0�x� as the reference (f0�x� is renormalised). The value of
T is noted T1 � T .

(ii) Calculate D2 � S� f0�x�� ÿ S� �f1�x��, with the distribution
f1�x� as the reference (f1�x� is renormalised). The resulting
T value is noted T2 � T .

(iii) If T14T2, the distribution f0�x� is found to be the more
disordered one (in the sense of renormalised entropy), and
the renormalised entropy RE is de®ned as RE � D1.
Otherwise �T15T2� f1�x� is the more disordered distribu-
tion (in the sense of renormalised entropy), and the
RE � ÿD2.

2.2 New REAR method

Calculation of the renormalised entropy requires us to esti-
mate the tachogram distributions. The previous approach, REFFT

(WESSEL et al., 1994), was based on FFT spectral estimation.

PFFT � f � :�
1

M � Dt
Dt � PMÿ1

n�0

xn � exp�ÿi � 2 � p � f � n � Dt�
���� ����2

�5�
This method used the spectral distribution as the basis for further
calculations. The estimation of a 30 min tachogram distribution
was obtained as follows: from a ®ltered and interpolated
(Dt � 0:5 s) tachogram, the spectrum of eight shifted windows
of 2048 samples was estimated and averaged. The Blackman±
Harris window function was applied to avoid the so-called

`leakage' effect. The non-zero part of the spectral density was
the basis for the calculation of renormalised entropy.

The new algorithm for renormalised entropy, the REAR

calculation, is based on autoregressive spectral estimation of a
®ltered and interpolated tachogram. The spectrum is estimated
using an autoregressive model

Xt �
PM
s�1

asXtÿs � Zt �6�

in which the order M is determined by a modi®ed residual
variance criterion (HAYKIN, 1983). For each tachogram, auto-
regressive coef®cients of model order 1±100 are calculated, and
the model order is chosen such that the variance D2Zt (see eqn 6)
does not change signi®cantly (that is the ®rst index i, for which��D2Z

AR�i�
t ÿ D2ZAR�iÿ1���5E for a given E, E � 5 used in this

study). This modi®ed criterion determines the model order of 30,
which approximately corresponds to 15 beat-to-beat intervals
(Dt � 0:5 s). The estimation of the spectral distribution is given
by

PAR� f � :� a0

1ÿ PM
k�1

ak � �exp�2 � p � i � f � Dt��k
���� ����2

�7�

A known problem of autoregressive spectral estimations is the
bias that can appear even in idealised circumstances. To over-
come this problem, a sinusoidal oscillation with a ®xed ampli-
tude and frequency was added to the time series (VOSS et al.,
1992). The amplitude of 40 ms was chosen to obtain a dominant
peak in the spectral estimation, and the frequency was set to
0.4 Hz, which is the upper limit of the high frequency band
(TASK FORCE, 1996).

For the calculation of renormalised entropy, a spectral density
estimation in the interval [0,0.42] Hz was used to include all
physiological modulations as well as the calibration peak.

Calculation of the renormalised entropy REAR of a tachogram
T based on a reference tachogram TREF includes the rejection of
arrhythmias and artefacts, the interpolation of the ®ltered
tachogram and computation of normalised autoregressive spec-
tral estimations P�T � and P�TREF�, as well as the computation of
renormalised entropy following the interchanging algorithm as
in Section 2.1 ( f0�x� � P�TREF� as the reference, f1�x� �P�T �).

Using a reference tachogram from a healthy subject, with
normal low- and high-frequency modulations, the REAR method
is designed so that either a decreased HRV or a pathological
spectrum leads to positive values of renormalised entropy.

2.3 Length of time series and ®lter algorithms

Both methods for the calculation of renormalised entropy
require ®ltered time series free of noise and arrhythmic events.
Consequently, the effects of three different ®ltering algorithms
on both methods were studied. Further, to assess time stability
and reproducibility, the effect of the length of time series was
investigated. From a tachogram of a healthy person (see Fig. 1a),
the coef®cients of an autoregressive model of the order of 10
(residual variance criteria) were estimated. In a Monte-Carlo
experiment, 50 time series were generated using these coef®-
cients. On the basis of these simulated series, the in¯uence of
time series length and ®ltering algorithms on both methods
REAR and REFFT were studied.

2.3.1 In¯uence of length of time series: The ®rst 30 min of all
simulated tachograms were analysed. Using the interchanging
algorithm (Section 2.1), the most disordered distribution in the
sense of renormalised entropy of all simulated time series was
determined as the reference state (reference distribution
belonging to the simulated time series, see Fig. 1b). Further-

Medical & Biological Engineering & Computing 2000, Vol. 38 681



more, the renormalised entropies of all simulated series were
calculated using four different lengths of analysis (30, 28, 26
and 20 min). As the simulated series are stationary, their
spectra should not change considerably for shorter durations.
To compare the sensitivity of all methods, the cumulative
error was calculated.

Dcum�x� �
P50

i�1

REi�30� ÿ REi�x�
�� �� �8�

where REi�x� is the renormalised entropy of the ith simulated
series based on the analysis of x min.

In addition, an extremely disordered distribution (in the sense
of renormalised entropy) was chosen as the reference state
(physiological time series, see Fig. 1c) to investigate the time
stability of both methods based on a more complex reference
state.

2.3.2 In¯uence of ®ltering algorithms: The exclusion of ecto-
pic beats and artefacts is essential for HRV analysis. To
estimate the stability of our approach, the effects of three
different ®ltering procedures were analysed based on 50
simulated series. Again, the ®rst 30 min of each time series
were analysed. The reference state was the same as described
in the preceding Section (physiological time series). The
renormalised entropies of all simulated series were calculated
after being processed by three ®ltering methods: The original
tachogram is ®ltered using a binomial-7-®lter. Individual
values t of the time series are accepted if

tÿ mj j � 3:5 � sd �9�

where m is the mean of the original tachogram, and sd is the
standard deviation of the binomial ®ltered tachogram. The
constant 3.5 was chosen empirically (WESSEL et al., 1994).
The three ®ltering methods differ in their ways of replacing t
values that are not accepted, the original value t is

method 1 (F1): replaced by the respective value �t of the ®ltered
time series
method 2 (F2): replaced by linear interpolation
method 3 (F3): removed.

To compare the ®ltering methods, a cumulative error was
again calculated

Dcum�x� �
P50

i�1

REi ÿ REi�x�
�� �� �10�

where REi�x� is the renormalised entropy of the ith simulated
series processed by ®lter x (x � F1, F2, F3; REi without
®ltering).

The cumulative errors for both methods based on different
lengths of analysis and different ®ltering methods were
compared using a two-tailed t-test.

2.4 Clinical pilot investigation

The REAR method was applied to data from 18 cardiac
patients and 23 healthy subjects. The cardiac patient group
consisted of survivors of myocardial infarction with documented
life threatening ventricular arrhythmias, ten of them were
survivors of cardiac arrest who had received automatic implan-
table de®brillators. For every subject, a standard bipolar high-
resolution electrocardiogram of 30 min was recorded in supine
rest conditions. The beat-to-beat intervals were extracted using a
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Fig. 1 In¯uence of length of time series: tachograms and autoregressive spectral estimations (a) of original tachogram, (b) of most disordered
simulated time series and (c) of an extremely disordered physiological time series
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pattern-matching algorithm based on a cross-correlation tech-
nique. From the group of healthy subjects, the most disordered
tachogram (in the sense of renormalised entropy) was deter-
mined as the reference for each procedure (interchanging
algorithm, Section 2.1), and renormalised entropies REFFT

and REAR were calculated.

2.5 Validation of REAR with prospective data

REAR and eight time- and frequency-domain parameters were
calculated from tachograms of 572 survivors of acute myocar-
dial infarction. All these patients underwent 24 h Holter moni-
toring before hospital discharge (5±8 days after myocardial
infarction) and were followed up for a minimum of two years.
During the two-year follow-up, 14 patients succumbed to
sudden arrhythmic death (SAD).

Recordings that were too short, as well as tachograms with
more than 20% ventricular premature complexes or with atrial
®brillation, were excluded (VOSS et al., 1998). In long-term
tachograms, renormalised entropy was calculated as the mean of
successive 30 min analyses. The time and frequency-domain
parameters of HRV were determined from the ®ltered 24 h
tachogram. The following time domain parameters were used:

(i) HRVi: the triangular index of the histogram
(ii) meanNN : the mean value of ®ltered time series
(iii) sdNN : the standard deviation of ®ltered time series
(iv) rmssd: the root mean square of successive interval differ-
ences.

The frequency spectra were estimated using FFT with a
Blackman±Harris window function, and four frequency compo-
nents were estimated: the ultra low-frequency domain (ULF) (0±
0.0033 Hz); the very low-frequency domain (VLF) (0.0033±
0.04 Hz); the low-frequency domain (LF) (0.04±0.15 Hz); and
the high-frequency domain (HF) (0.15±0.4 Hz). The following
frequency domain parameters were used in this study:

(a) ULF and VLF: the power in the frequency bands introduced
above
(b) LFyHF: the ratio of LF and HF components
(c) LFyp: the ratio of LF and the total power p (0. . . 0.4 Hz).

For all parameters, the two-tailed t-test for equality of means
was performed to distinguish between the SAD and the non-
SAD group. Further, the Pearson correlation coef®cients
between renormalised entropy REAR and time and frequency
domain parameters were calculated.

3 Results

3.1 Computational stability

The values of the cumulative error measures Dcum�28�,
Dcum�26� and Dcum�20� as the in¯uence of the length of time
series are given in Table 1. The differences between the REAR

and REFFT methods with simulated reference are highly signi®-
cant (p50:001). The REFFT method is more sensitive to time
series length, as the value of Dcum increases rapidly with
decreasing length of the analysis. In contrast, the cumulative

error of the autoregressive method REAR does not signi®cantly
increase with decreasing length. The differences between the
REAR and REFFT methods with physiological reference are also
highly signi®cant (p50:001). However, the value of Dcum

increases more rapidly with decreasing length of analysis.
Table 2 shows the results of the cumulative errors Dcum�F1�,

Dcum�F2� and Dcum�F3� as the in¯uence of different ®ltering
algorithms. Both methods REAR and REFFT show comparable
sensitivities to different ®lter algorithms. However, the cumu-
lative errors for the different ®lters vary considerably. The ®rst
®ltering procedure, based on the binomial-7-®lter, showed the
smallest errors (Dcum�F1�); the global behaviour of the time
series did not change. Linear interpolation of ectopic beats and
artefacts led to approximately 20% higher cumulative errors
(Dcum�F2�). It is strongly recommended that the last ®ltering
procedure is not used, because the cumulative error Dcum�F3� is
more than three times as high as Dcum�F1� (REFFT).
Summarising the results of ®ltering, we have to prefer the
application of the ®rst ®ltering procedure, which was used in
the following.

3.2 Pilot assessment

The results of renormalised entropy REFFT in the clinical pilot
study are illustrated in Fig. 2. Only eight of 18 patients (44.4%)
could be detected using the REFFT method. In comparison, the
new REAR method of calculating renormalised entropy correctly
classi®ed 13 of 18 high-risk patients (72.2%; see Fig. 3).

3.3 Prospective study

In the validation study, the REAR method with the reference
distribution of healthy person 16 from the clinical pilot inves-
tigation was calculated. Renormalised entropy REAR, as well as
most time- and frequency-domain parameters, showed signi®-
cant differences between the SAD and the non-SAD group

Table 1 Mean cumulative error: in¯uence of length of time series

Dcum�28� Dcum�26� Dcum�20�
REFFT: simulated reference 3.30 6.09 13.08
REAR: simulated reference 0.30 0.38 0.67
REFFT: physiological reference 2.23 5.15 20.77
REAR: physiological reference 0.61 1.24 3.20

Table 2 Mean cumulative error: in¯uence of ®ltering algorithms F1,
F2 and F3

Dcum�F1� Dcum�F2� Dcum�F3�
REFFT 0.21 0.30 0.72
REAR 0.23 0.26 0.34
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Fig. 2 Results of renormalised entropy method REFFT in clinical
pilot investigation: (j) healthy people; (u) high-risk
patients. Subject 5 of control group showed most disordered
distribution (in sense of renormalised entropy) and was
chosen as reference for REFFT calculation. Only seven dis-
tributions of high-risk patients were more disordered than
reference distribution and have REFFT value greater than
zero. Considering values less than minimum value of renor-
malised entropy from healthy people, one further cardiac
patient was identi®ed; (ÿ ÿ ÿÿ ) shows this border
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(Table 3). To investigate the strength of the association between
renormalised entropy REAR and time- and frequency-domain
parameters, the Pearson correlation coef®cients were calculated.
The maximum absolute correlation coef®cient between renor-
malised entropy and time and frequency domain HRV para-
meters was only 0.37. The slightly increased correlation values
to HRVi, meanNN and L Fyp con®rm the approach of renor-
malised entropy. Either an increased heart rate, which is
connected with a decreased HRV, a depressed HRV, even at
rest, or pathological spectra lead to positive values of renorma-
lised entropy. Fig. 4 demonstrates that the combination of REAR

and HRVi improves the results of risk strati®cation. For
sensitivity values of 10±40%, the positive predictive accuracy
increases substantially.

4 Discussion

On the basis of the simulated time series from the Monte-
Carlo experiment, the two methods, REAR and REFFT, were
compared. It was shown that the new renormalised entropy
method REAR is more reproducible and stable in time. This
could be achieved, on the one hand, by calculating autoregres-
sive spectral estimations to obtain smooth spectra or, on the other
hand, by comparing amplitude-adjusted spectra using calibra-
tion signals. Further, an optimum ®ltering procedure for data
preprocessing was validated.

The replacing of artefacts and arrhythmias by the respective
value of the binomial ®ltered time series seems to be the most
suitable method of those used in this study. However, the
®ltering procedure used here is probably improvable; the
dependence of renormalised entropy on different preprocessing
algorithms needs to be investigated in future studies. The results
of the clinical pilot investigation showed that the new REAR

method is a better risk predictor than the REFFT method. The
diagnostic results (see Figs 2 and 3) were improved signi®cantly,
probably as a consequence of the different spectral estimation
methods and the associated different reference selection.

The renormalised entropy method REAR is designed in such a
way that tachograms with a normal variability and typical
periodograms have negative values of REAR. Either a decreased
HRV or pathological spectra lead to single-peak spectral
distributions and thus to positive values of REAR. Pathological
spectra are periodograms with dominant ULF, VLF or LF peaks.
Dominant ULF or VLF peaks are seen in tachograms without
any respiratory modulations and without any in¯uence of blood
pressure regulation. Dominant LF peaks are recognisable in the
absence of vagal modulations for a signi®cant part of the
recording. The results with the St George's Hospital post-
infarction database study con®rmed that, on average, the
survivors have negative, whereas the high risk patients have
positive, values of renormalised entropy. This means that the
survivors have comparable spectral estimations with the spec-
trum of the reference series, whereas the high risk patients do not
show this behaviour. Further, it could be shown that the
combination of HRV index and REAR leads to a better prediction
of sudden arrhythmic death than standard measurements of
global heart rate variability. This is a hint that a multivariate
approach, with different HRV parameters, as well as the
combination of HRV measures with clinical parameters may
be promising in risk strati®cation.

Calculating renormalised entropy assumes a ®xed reference
distribution. In this study, the reference distribution was selected
using the interchanging algorithm applied to the data of 23
healthy people. It remains to be investigated whether a general or
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Fig. 3 Results of renormalised entropy method REAR in clinical pilot
investigation: (j) healthy people; (u) high-risk patients.
Reference distribution was chosen from healthy subject 16.
Eight patients had values greater than zero; ®ve patients had
REAR values less than minimum healthy REAR value (under
broken line)

Table 3 For non-SAD as well as SAD group, mean values m and standard deviations s of all calculated parameters are given. p values represent
signi®cance of two-tailed t-test for equality of means of both groups. Pearson correlation coef®cient r was calculated between renormalised
entropy and parameters from time and frequency domain

HRVi meanNN sdNN rmssd ULF VLF LFyHF LFyp RE

Non-SAD m 27.6 871.9 96.8 32.4 62.7 14.7 3.0 0.05 ÿ0.11
s 10.3 157.8 36.0 23.3 46.5 12.9 1.8 0.04 0.18

SAD m 16.7 687.8 57.2 23.1 26.2 6.5 2.2 0.04 0.03
s 6.4 103.3 20.2 15.1 16.4 6.6 1.4 0.04 0.22
p < 0.01 < 0.01 < 0.01 not

signi®cant
< 0.01 < 0.02 not

signi®cant
not

signi®cant
< 0.01

r 0.32 0.37 0.24 0.21 0.26 0.18 0.02 0.27 1
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Fig. 4 Positive predictive accuracy curves for univariate
(ÿ ÿ ÿÿ ) HRVi and ( - � - � - ) REAR, as well as for ( ÐÐ
) combination of both methods. Enormous increase in positive
predictive accuracy at 20% sensitivity level is also related to
small SAD prevalence in investigated group
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a disease-dependent reference distribution should be considered
in future studies. More generally, it is imaginable that the
methodology of renormalised entropy could be improved in
such a way that a reference series becomes unnecessary.

In summary, the new method of renormalised entropy REAR,
which is a measure of relative degree of order, is an independent
parameter in HRV assessment that seems to be potent for risk
strati®cation of patients after myocardial infarction.
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