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Abstract. Standard parameters of heart rate variability are restricted in
measuring linear effects, whereas nonlinear descriptions often suffer from the
curse of dimensionality. An approach which might be capable of assessing
complex properties is the calculation of entropy measures from normalised
periodograms. Two concepts, both based on autoregressive spectral estimations
are introduced here. To test the hypothesis that these entropy measures may
improve the result of high risk stratification, they were applied to a clinical pilot
study and to the data of patients with different cardiac diseases. The study
shows that the entropy measures discussed here are useful tools to estimate the
individual risk of patients suffering from heart failure. Further, the results
demonstrate that the combination of different heart rate variability parameters
leads to a better classification of cardiac diseases than single parameters.

1   Introduction

An accurate identification of patients who are at high risk of sudden cardiac death is
an important and challenging problem. Heart rate variability (HRV) parameters,
calculated from the time series of beat-to-beat-intervals, have been used to predict the
mortality risk in patients with structural heart diseases [1,2]. Linear parameters only
provide limited information about the underlying complex system, whereas nonlinear
descriptions often suffer from the curse of dimensionality. This means that there are
not enough points in the time series to reliably estimate these nonlinear measures.
Therefore, we favour measures of complexity which are able to characterise
quantitatively the dynamics even in rather short time series [3-5]. Recently we could
demonstrate that a multivariate approach including these nonlinear as well as linear
parameters significantly improves the results of risk stratification [6]. Entropy
measures have been used widely in HRV analysis with encouraging results. Most
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frequently the ‘approximate entropy’ ApEn is used which was firstly applied to heart
rate data in [7,8]. Promising applications of ApEn to HRV data are given for example
in [9-13]. Other interesting entropy measures are the ‘tone entropy’ [14], the
‘conditional entropy’ [15], the ‘pattern entropy’ [16], the ‘Kolmogorov entropy’ [17]
and the entropy measures based on symbolic dynamics [3,4].

In this contribution we introduce two entropy measures based on periodograms of
cardiac beat-to-beat intervals. Both measures - the renormalised and the amplitude
adjusted entropy - are calculated from the autoregressive spectral estimation of the
time series. The basic idea of these methods is to determine the complexity of cardiac
periodograms, however, the renormalised entropy needs and the amplitude adjusted
entropy does not need a reference distribution. In this study we investigate the ability
of both entropy measures to distinguish between healthy persons and cardiac patients
in a clinical pilot study. For the distinction between different kinds of cardiac diseases
it is assessed in a multivariate approach whether the amplitude adjusted entropy
contributes significantly to other traditional heart rate variability measures.

2   Methods

Applications of renormalised entropy to heart rate data based on the Fast Fourier
Transform were previously introduced in [3,4]. To overcome the potential lack of
reproducibility and time instability of this measure, the autoregressive method REAR

was developed. Additionally, to avoid the problem of reference selection, the
amplitude adjusted entropy AEAR is introduced here. Figure 1 gives two examples of
tachograms, i.e. the time series of the beat-to-beat intervals and the corresponding
autoregressive spectral estimations.
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Fig. 1. Tachograms and autoregressive spectral estimations (a) of a healthy person with normal
low and high frequency modulations and (b) of a cardiac patient with a single dominant peak in
the very low frequency domain – low and high frequency modulations are absent
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The low and high frequency oscillations (0.05-0.4 Hz) are rather low in comparison
to the very low frequency peak (<0.05 Hz). An autoregressive spectral estimation is
useful to emphasise the different spectral domains, the amplitude adjustment
guarantees the comparability of different spectral distributions.

2.1   Renormalised Entropy REAR

To compare the degree of complexity of one distribution in relation to a given
reference distribution, the latter one is renormalised to a fixed energy. Considering
two tachograms with density estimates (x)f 0  and (x)f1  and using the estimate (x)f 0

as a reference, the renormalised density distribution (x)f 0  of (x)f 0  is defined as:
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where the parameter T is the solution of the integral equation
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The solution of (2) has to be determined numerically. The renormalised entropy REAR

of the distribution (x)f1 is defined by the following interchanging algorithm; where

f)(S  is the Shannon-entropy of distribution f , that is

dxxflnxf)S(f ∫ ⋅−= )()( . (3)

I. Calculating of )f(-)f( 011 SS=∆  with the distribution (x)f0  as the

reference ( (x)f0  is renormalised). The value of T is denoted TT1 = .

II. Calculating of )f(-)f( 102 SS=∆  with the distribution (x)f1  as the reference

( (x)f1 is renormalised). The resulting T value is denoted TT2 = .

III. If 21 TT > , the distribution (x)f0  is found to be the more disordered one (in

the sense of renormalised entropy - i.s.r.e.) and the renormalised entropy is
defined as 1∆=ARRE . Otherwise ( 21 TT < ) (x)f1  is the more disordered

distribution (i.s.r.e.) and the renormalised entropy is 2∆−=ARRE .

Calculating the renormalised entropy requires estimating the tachogram
distributions. Here we use an autoregressive spectral estimation of the filtered and
interpolated tachogram. To overcome bias problems a sinusoidal oscillation with a
fixed amplitude and frequency was added to the time series. The amplitude of
40 msec was chosen to obtain a dominant peak in the spectral estimation and the
frequency was set to 0.4 Hz, which is the upper limit of the high frequency band [18].
A spectral density estimation in the interval [0,0.42] Hz was used to include all
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physiological modulations and the calibration peak. Using a reference tachogram from
a healthy subject with normal low and high frequency modulations the REAR method is
designed so that either a decreased HRV or a pathological spectrum leads to positive
values of renormalised entropy.

2.2   Amplitude adjusted entropy AEAR

The technique described in the last section requires determining a reference state.
This can be done easily by finding the most disordered spectrum of all data sets from a
given control group. But, when analysing new data sets, the problem arise, which
distribution should be selected for reference. The most disordered from all control
group data sets or should we select for each study an own reference state? The latter
choice could lead to an incomparability between different studies. The motivation for
designing the amplitude adjusted entropy, therefore, was to find a method which is
able to estimate the complexity of a given periodogram independently from a
reference state. How can this be done?

One main objective in assessing spectral estimations is to determine phases with a
decreased heart rate variability, therefore, the amplitude adjustment described above
was adopted. A sinusoidal oscillation with an amplitude of 40 msec and a frequency of
0.4 Hz was superimposed to the original time series. In this way we obtained
comparable variability values since they refer to the uniform superimposed variability.
A second objective in HRV analysis is the determination of pathological spectra with
only singular dominant peaks, since the spectral distributions of healthy persons
normally have several peaks due to different cardiovascular modulations. To quantify
the intensity of these modulations, the Shannon entropy of the amplitude adjusted
spectrum is calculated, i.e. the amplitude adjusted entropy AEAR is given by

dxxf̂lnxf̂)f̂( ∫ ⋅−== )()(SAEAR
(4)

where )(xf̂ is the spectral estimation of the time series superimposed by a uniform

sinusoidal oscillation. Correspondingly the Shannon entropy of the original (not
amplitude adjusted) periodogram is denoted by EAR.

3 Results

3.1   Clinical pilot study

In a clinical pilot study the renormalised entropy REAR and the amplitude adjusted
entropy AEAR were applied to data of 18 cardiac patients and 23 healthy subjects. The
cardiac patient group consisted of patients after myocardial infarction with
documented life threatening ventricular arrhythmias. From the group of healthy
subjects, the most disordered tachogram (i.s.r.e.) was determined as the reference for



82

REAR calculation (REAR =0 for healthy person no. 16). The results of this clinical pilot
study are shown in Figure 2. The Renormalised entropy REAR correctly recognised 15
of 18 high risk patients (with the classification rule: greater zero or under the dotted
line at –0.33). The Kolmogorov-Smirnov-Z test showed clearly significant differences
between both distributions (p<0.001). Due to the bimodal distribution of REAR in the
cardiac patient group, however, no statistical significance could be achieved with the
two-tailed t-test for equality of means.

The classification based on the amplitude adjusted entropy reaches a comparable
sensitivity at the 100%- specificity level. 11 of 18 cardiac patients were recognised by
the classification rule AEAR<3.34 (3.34 is the minimum of AEAR in the healthy group,
compare Fig. 3). The t-test for the equality of means, however, was highly significant
(4.34±0.49 for the healthy vs. 2.85±1.65 for the high risk group, p<0.001) because of
the unimodal distribution of AEAR in both groups.

Renormalised Entropy REAR

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

high risk patients

Fig. 2. Results of renormalised entropy REAR in a clinical pilot study, black bars represent the
control group whereas white bars refer to the cardiac patients
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Fig. 3. Results of amplitude adjusted entropy AEAR, black bars represent the control group
whereas white bars refer to the cardiac patients



83

Entropy without amplitude adjustment EAR 
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Fig. 4. Results of the Shannon entropy without amplitude adjustment EAR, black bars represent
the control group whereas white bars refer to the cardiac patients

Figure 4 demonstrates the effect of leaving the amplitude adjustment out: The
entropy values of the healthy and the high risk group highly overlap. The t-test for
equality of means showed no significant differences (4.66±0.45 for the healthy vs.
4.29±0.85 for the high risk group).

3.2  Multiparametric study

The task of separating different cardiac patient groups on the basis of HRV
parameters is a demanding problem. If there are differences, it might be possible to
find non-invasive marker for specific cardiac diseases. Or, is there even a potential to
estimate the severity of cardiac diseases non-invasively? We studied, whether the
HRV behaviour of patients suffering from dilated cardiomyopathy (DCM, 41 male, 9
female, age 52±10 years) and patients which have survived an acute myocardial
infarction (MI, 42 male, 8 female, age 58±9 years) can be distinguished. So, standard
HRV parameters from time and frequency domain were derived from the whole 24h-
time series as well as mean values of 5-minute-segments (see table 1). Additionally,
the amplitude adjusted entropy values were calculated to assess, whether they provide
new information which is not contained in the standard parameter set. The
renormalised entropy was not regarded in this study to avoid the problem of reference
selection. Since the variability characteristics of both patient groups highly overlap in
all individual features a multiparametric approach is pursued. Correlation analysis
reveals that the amplitude adjusted entropy calculated from the whole time series is
not highly correlated with any standard parameter (pearson correlation
coefficient < 0.5). This is not true for the short term amplitude adjusted entropy
which exhibits correlations above 0.7 with the Shannon and Renyi entropy of the
original time series, and with LF, RMSSD and pNN50. Linear discriminant analysis
is used to distinguish between the two different patient groups, since this technique is
able to construct a linear class boundary which is optimally adjusted to correlations
between parameters. To assess the class separability of different parameter
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Table 1. Standard parameters used in the multiparametric study. For a precise
definition see [4,18].

Long term
parameters

meanNN
sdNN
sdaNN5
rmssd
pNN50
Shannon
ULF, VLF, LF, HF

- mean duration of NN
- standard deviation of NN
- standard deviation of NN averaged over 5 min
- root mean square of successive NN differences
- the percentage of NN differences > 50 msec
- Shannon entropy of the histogram
- frequency components of the power spectrum

Short term
parameters

Shannon
Renyi
VLF, LF, HF
LF/HF

- Shannon entropy of the histogram
- Renyi entropy of the histogram (order 0.25)
- frequency components of power spectrum
- proportion of frequency components
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Fig. 5. Receiver operator characteristics achieved with the amplitude adjusted entropy (solid
line) and without it (dotted line)
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sets, crossvalidated recognition rates were calculated providing nearly unbiased
estimates of the performance [19-21]. Then all possible parameter sets consisting of 4
parameters were ranked.

It turned out, that the entropy measure AEAR contributes significantly to the
classification performance between the two cardiac diseases. The combination of
short and long term AEAR with meanNN and sdaNN yields a crossvalidated
recognition rate of 89 %. Leaving the amplitude adjusted entropy out of
consideration, a maximum separation of 75 % could be achieved with a parameter set
consisting of all Shannon and Renyi entropies of the histogram combined with the
normalised very low frequency component between 0.0033Hz and 0.04Hz. The
improvement is demonstrated in Figure 5 where the receiver-operator-curves of both
parameter sets are compared. For each sensitivity value a larger value of specificity
can be obtained using AEAR. The Parameters meanNN and sdaNN5 achieve a higher
significance value in the t-test than AEAR, but classifying only on these two standard
parameters leads to a significantly reduced performance of only 67%. Thus, the
amplitude adjusted entropy provides important additional information for cardiac
disease classification in this study.

4   Discussion

The renormalised entropy REAR is designed in such a way that tachograms with a
normal variability and typical periodograms have negative values of REAR. Either a
decreased HRV or pathological spectra (dominant ULF, VLF or LF peaks) lead to
positive values of REAR. The results of the clinical pilot study confirmed that in
general, healthy persons have negative while most high risk patients have positive
renormalised entropy values. The results did not achieve statistical significance in
comparing the group mean values, however, in an extensive clinical study REAR

already demonstrated the usefulness for risk stratification [22]. A high statistical
significance between survivors of an acute myocardial infarction who survived a two
year follow-up and those who died could be shown. Considering these results and the
results of the amplitude adjusted entropy AEAR in the clinical pilot study, the
application of AEAR to such a large data base seems to be very promising.

For the distinction of DCM and MI patients, which is a more difficult problem than
the distinction of cardiac patients and healthy subjects, a multiparametric approach is
taken to gain from the information augmentation provided by several parameters. To
avoid the problem of selecting a reference spectrum only the amplitude adjusted
entropy together with standard parameters from time and frequency domain are
considered. It could be shown that the combination of the amplitude adjusted entropy
measures with standard HRV parameters leads to better classification results in
comparison to the results achieved only with standard parameters. In this study, we
got an improvement of more than 10%. This implies that the amplitude adjusted
entropy measures contain additional information which is not provided by the
standard parameters considered. This suggests further that a multivariate approach
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using potent HRV parameters together with clinical parameters may be promising in
risk stratification tasks.

Calculating renormalised entropy assumes a fixed reference distribution. In this
study, the reference distribution was selected using the interchanging algorithm
applied to the data of 23 healthy persons. With the amplitude adjusted entropy, a new
method is introduced which does not need a reference distribution. It has to be
validated, whether the amplitude adjusted entropy has the same or better properties in
the classification of patients after acute myocardial infarction. In summary, both
entropy methods REAR and AEAR seem to be potent for risk stratification of patients
after myocardial infarction.
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