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BASICS

NETWORK BASICS (1VL)

FURTHER READING
• Newman, M. E. J. Networks: An Introduction. (Oxford University Press, 2010).
• Jungnickel, D. Graphs, networks and algorithms. (Springer, 2005).
• https://www.maa.org/press/periodicals/convergence/leonard-eulers-

solution-to-the-konigsberg-bridge-problem

EXAMPLES OF NETWORKS

Networks are like Graphs only with meaning

Under these links you can find some rather artistic visualisations of complex net-
work dynamics:

• fireflies:
https://ncase.me/fireflies/

• power grid:
https://bodograumann.github.io/powergrid-dynamics-simulation/

• flight patterns:
https://vimeo.com/5368967

• cell behaviour:
http://cancerres.aacrjournals.org/content/74/21/5963.

The roots of network theory lie in small puzzles. It is commonly believed that one
such puzzle, the Koenigsberg bridge problem, stimulated the mathematical ap-
proach to networks aka graph theory. In the 18th century, Euler solved the fol-
lowing puzzle: "Is it possible to find a route through Koenigsberg, crossing each of
its seven bridges exactly once?" (Fig. 0.1).
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Figure 0.1: Source: Euler, L. Solutio problematis ad geometrian situs pertinentis.
Comentarii academiae scientarum Petropolitanae 8, 128–140 (1736).

MATHEMATICAL GRAPHS

Graphs G = (N,L) are sets of nodes N and links L. Links (u, v) are ordered or
unordered pairs of nodes u, v ∈ N . The former give directed graphs, the latter
undirected graphs. We denote by n = |N | and m = |L| the number of nodes and
links in a graph throughout the lecture.

The links define a subset of the space of ordered pairs of nodes: L ⊂ N ×N . A natural
way to encode this structure is by using the indicator function of this subset on the
set of ordered pairs of nodes:

A : (i, j) ∈ N ×N → {0, 1} (0.1)

This definition easily generalizes to other subsets of the power set of N with higher cardinality,
leading to the concept of hyper-graphs.

An algebraic representation of A is given by the adjacency matrix, which we also
denote by A for simplicity. A is an n × n-matrix with entries 1 if (i, j) ∈ L and 0

otherwise. We exclude here the possibility for (self) loops and multiple links.

There is an important generalization of graphs. Assume a function w : L → R+ \ {0},
assigning a positive number to each link. We call G = (N,L,w) a weighted graph.
It is represented by a weighted adjacency with entries w ((i, j)) if (i, j) ∈ L and 0

otherwise.
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Mathematical graphs can be given a large number of structures in a natural way. Most naturally
they are simplicial complexes.

If there can be several links between nodes, we need a different mathematical
structure to capture this. One option is the incidence matrix:

Bil =

{
1 if i ∈ l
0 otherwise

(0.2)

You can check that if the graph is simple we have:

A = B ·BT −D (0.3)

where Dij = δij di is the diagonal matrix with the degree sequence on the diagonal.

COUNTING FUNCTIONS ON GRAPHS

We can now translate Eulers problem into Graph terms. Landmasses are nodes,
bridges are links. A route involving all nodes and using each link only once is called
an Eulerian path.

Let us denote by dk the number of bridges connecting a landmass k. In graph terms,
the degree.
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Figure 0.2: Creating graphs from a set of nodes with attached half-links.

The total number of bridges is m = 7.

Euler observed the so-called handshaking lemma

∑
k

dk = 2m , (0.4)

where m is the total number of links (bridges) in the graph. This can be immedi-
ately seen from Fig. 0.2, where we assign a number of dk half-links to each node k
(landmass). As all links are cut in halves, there a 2m half-links in total. Likewise,
summing over all k we count each link twice. The immediate consequence is, that
the number of odd dk is even.

EXERCISE: EULER’S PROOF
Try to reproduce Euler’s findings.

Show that:
• If there are more than two landmasses with an odd dk, no Eulerian path exists.
• If the number is exactly two, an Eulerian path exists and has to start in one of the two landmasses
with odd dk.

• If all dk are even, an Eulerian path exists and can start in any landmass.

HINTS
.

Many interesting aspects of graphs are combinatorial in nature. That is, we simply
count how many structural elements of a particular type we have.

Nodewise-Neighbourhood. : Degree, Clustering
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dj =
n∑
k=1

Ajk (0.5)

The set of degrees dj is called the degree sequence of the graph.

Now we can restate Euler’s handshaking lemma
∑

k dk = 2m in more mathematical
terms: Every finite undirected graph has an even number of vertices with odd degree.

For unweighted graphs, the clustering coefficient is defined as:

Cj =

∑n
i,k=1;i 6=k AjiAjkAik

dj(dj − 1)
, (0.6)

i.e. it counts how many neighbours of a node are again linked. If they are, there will
exist a triangle involving i, j, k and AjiAjkAik 6= 0.

Nodewise-Graph. : Betweeness, Centrality measures

A cycle-free path πjk in G is defined as an alternating sequence of nodes and links,
starting at node j and ending in k, such that no node is traversed more than once
and no edge appears more than once in the sequence. We denote by πsjk a shortest
path between j and k containing the minimal number of links. Then, `sjk is the
shortest-path length.

There are two commonly used characteristics based on shortest paths.

Take the fraction of shortest paths between a pair of nodes s, t that involve node i.
The avarage over all possible pairs s, t defines the betweenness of i.

bi =
2

(n− 1)(n− 2)

n∑
s,t=1;s 6=t6=i

|{πsst : i ∈ πsst}|
|{πsst}|

(0.7)

Complementary to the notion of a node’s betweenness, it is useful to consider the
centrality. A particular example is the so-called closeness centrality:

ci =
n− 1∑n
j=1;j 6=i `

s
ij

′′ (0.8)

i.e. the inverse average distance of node i to the all other nodes.

Both betweenness and centrality have been defined firstly in sociology to charac-
terise the roles of individuals in social networks of acquaintances. Caution: You’ll
often find the term ’betweenness centrality’ in the literature as a common miscon-
ception. Betweeness is an independent concept. It might often be correlated to a
node’s centrality but it is easy to construct counterexamples of central nodes with
vanishing betweenness.
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Global. : Density, Mean degree

A global characteristic is for instance the graph density ρ = 2m
n(n−1) . Besides, many

global measures are just moments of the distribution of nodewise characteristics.
Examples are the mean degree and average clustering.

SPECIAL GRAPHS

Figure 0.3: Forest, tree: A forest is an undirected graph, whose components are
trees. A tree is an acyclic connected graph, i.e. every pair of nodes is
connected by exactly one path.

Figure 0.4: Planar graphs: A planar graph can be embedded in the plane without
links crossing each other. The left graph is planar, the right one is not.

ADVANCED FUNCTIONS ON GRAPHS

FURTHER READING
• Modularity: https://arxiv.org/abs/physics/0602124
• Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).
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Figure 0.5: Bipartite graph: A graph where nodes form two groups and every link
connects nodes from both groups.

How can we understand the macroscopic organisation of networks? Many examples
show a structural organisation in ’losely-connected’ components. This high-level
information about the underlying complex system can be grasped by more advanced
functions. We will study a popular example in more detail: the modularity function.

Define Qij := Aij − didj
2m

. The second term is the expectation value for a link (i, j) to
be present in a random graph. The reasoning is as follows. We start with the degree
distribution of the original graph and assign randomly to each node a corresponding
number of 2m half-links (see Fig. 0.2). The joint probability of drawing a half-link
from i and from j is then just given by didj

2m
. Constructing a random graph in such a

way from a given degree sequence is called a configuration model. In the formula-
tion of Q, the configuration model serves as a null model for testing the hypothesis
that G is partitioned into components, i.e. we expect a random graph to have no
macroscopic structure.

Now let s be a vector with values si = ±1 such that (sisj + 1)/2 is 1 when i and j are
in the same component and 0 otherwise. s is an indicator vector of a bipartition of
G. For any guess of s, we can calculate the expectation value Q of Q over all links
falling into the same component as:

Q =
1

2m

n∑
i,j=1

Qij
sisj + 1

2
=

1

4m

n∑
i,j=1

Qijsisj + 0 =
1

4m
〈s,Qs〉 (0.9)

We call Q the modularity of G given a guess s for a bipartition. Newman writes:
"The modularity is, up to a multiplicative constant, the number of edges falling within
groups minus the expected number in an equivalent network with edges placed at
random."

In general, one looks for an s that maximizes the modularity. Let’s look at a special
case to better understand what this means. Sort s such that we have ν 1s followed
by n − ν −1s and two partitions α and β. The superscript ·(α) means a quantity is
restricted to links within α.
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Qs =
ν∑
j=1

Aij −
di

2m

ν∑
j=1

dj −
n∑

j=ν+1

Aij +
di

2m

n∑
j=ν+1

dj (0.10)

= d
(α)
i − d

(β)
i −

di
m

(m(α) −m(β)) (0.11)

〈s,Qs〉 = (m(α) −m(β))− (m(α) −m(β))2

m
−

(
n∑

i=ν+1

d
(α)
i +

ν∑
i=1

d
(β)
i

)
(0.12)

For m(α) = m(β), an equal partition, the maximum is obtained when there are no
links between the communities. Of course, we do not have a perfect bipartition in
general, but the intuition carries over that we want to maximize link density inside
the communities and simultaneously minimize the cross-community links.

Finding optimal partitions of graphs is generally NP hard which we can only approach using
heuristic optimisations. Also, there is no precise definition of a community as such.

In undirected networks, Q is symmetric and hence diagonalisable. We can express s
in an eigenvector base of Q as s =

∑
j〈s, uj〉uj.

Q = 〈s,Q
∑
j

〈s, uj〉uj〉 (0.13)

=
∑
j

〈s, uj〉〈s,Quj〉 (0.14)

=
∑
j

λj〈s, uj〉2 (0.15)

There are different ways how this can be maximized. Assume the largest eigenvalue
λmax is positive. Then Q is proportional to the overlap of s with umax and maximal
when they are parallel. The latter, however is generally impossible due to the nature
of s. Choose e.g. s = sign(umax). Then:

Q =
∑
j

λj

(∑
k

|uk|

)2

(0.16)

with contributions from many (also negative) eigenvalues.

In the other case, λmax = 0 and umax is a constant vector. Hence, there is no meaning-
ful bipartition of the network.

Note also that the summands attribute a non-negative membership weight to each
node, i.e. Q typically depends on some nodes with higher weight compared to the
rest.
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So far, we only considered bipartitions. We can continue partitioning the obtained
communities until the modularity does not increase anymore. For this, however, we
have to generalize our Q. As we do not consider edges leaving community α, we need
to correct the degrees. Otherwise, the total modularity would change.

Q
(α)
ij := Aij −

didj
2m
− δij

(
d
(α)
i − di

m(α)

m

)
(0.17)

This yields

Q(α) = 〈s,Q(α)s〉 (0.18)

as the contribution of partitioning community α to the initial modularity Q. We
continue the consecutive bipartitions as long as the resulting Q(α) are positive.

GRAPHS AS OBSERVABLES: FUNCTIONAL NETWORKS

FURTHER READING
• Marwan, N., Carmen Romano, M., Thiel, M. & Kurths, J. Recurrence plots for the analysis of
complex systems. Phys. Rep. 438, 237–329 (2007).

• Donges, J. F., Heitzig, J., Donner, R. V. & Kurths, J. Analytical framework for recurrence
network analysis of time series. Phys. Rev. E 85, 046105 (2012).

In many examples there is a natural network structure of the data. Examples are
social networks, road networks, etc. It can also be highly interesting to construct
networks from data that is not intrinsically network-like (climate, proteins, time-
series). This means identifying what we mean by nodes and what we mean by nodes
to be connected.

Examples include

Nodes: Links:
Correlation networks measurements correlations
Contact networks amino acids closeness in space
Recurrence networks points in time closeness in phase space

Let us assume we have a time series s = (s0, . . . , sN of N discrete measurements (at
equal intervals). Then we can construct the so-called recurrence plot as follows.

Rij := Θ (ε− c(si, sj)) (0.19)

R is a binary matrix with entries 0 and 1. The function c(·) is a distance function.
Here, however, s needs to be embedded in some metric space where we can define a
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dstance, e.g. euclidean distance or supremum norm. A common approach is delay
embedding

~xi :=
m∑
j=1

si−(j−1)τ~ej (0.20)

where m denotes the embedding dimension and τ the delay. This is especially neces-
sary as typically not all varibles of a system are measured but only one (s).

There are various possibilities to choose c and to select an ε, this is an active area of
research. The resulting Rij then looks like in Fig. 0.6:

Figure 0.6: Recurrence plots for different dynamical regimes.

As you might already guess, a recurrence network is defined by identifying R with
the adjacency matrix of a graph (see Fig. 0.7).

What are the advantages of recurrence networks in contrast to other methods?
Recurrences provide a lot of information about dynamical systems, which we recapit-
ulate in the next section. They can be used to

• uncover complex bifurcation scenarios, e.g. reliably distinguish between chaotic
and nonchaotic dynamics.

• analyse significantly shorter time series (100+) than required by classical tech-
niques such as estimating the maximum Lyapunov exponent from data.

• cope with problematic data commonly found in the geosciences or in astrophysics,
i.e. irregularly sampled data, uncertain timing of observations.
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Figure 0.7: Recurrence networks extracted from windows in a time series. Source:
http://econs.pik-potsdam.de/index.php?a=methods

A RECAP ON DYNAMICAL SYSTEMS (1VL)

FURTHER READING
• Guckenheimer, J. & Holmes, P. J. Nonlinear Oscillations, Dynamical Systems, and Bifurcations
of Vector Fields. Applied Mathematical Sciences, Volume 42 (Springer-Verlag, 2002).

Dynamical Systems are like a box of chocolate. You never know what you get.

We define a dynamical system as the time evolution of a set of variables in the
context of a given model. A set of values associated to these variables uniquely
defines the system’s state x. The space given by the range of all state variables,
i.e. the space of all possible states the dynamical system might obtain, is called
phase space X with points x ∈ X. Typically, we will consider X ⊆ RD if not stated
otherwise.

We can typically formulate the time evolution as a (system of) first-order nonlinear
differential equation(s)

ẋ(t) = f(x(t)) , x(0) = x0 (0.21)

with a suitable smooth function f : X → X. The vector field f gives the ‘velocity’ in
every point, i.e. it tells you how fast x is changing and in which direction.

Alternatively, the evolution can be given by a discrete map:

xn+1 = g(xn) (0.22)
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which we do not discuss further for now.

When f does not explicitly depend on time t, we say the dynamical system is au-
tonomous as it is usually the case in the absence of driving forces, control or stochas-
tic terms. Otherwise, non-autonomous systems can be made autonomous by
including t as an artificial variable with dynamics ṫ = 1.

Furthermore, a model is said to be deterministic when the time evolution always
yields the same output for identical input. Consequently, the evolution only depends
on the initial state x0 and the evolution laws do not change over time.

Solutions (= integral curves) x(t;x0) to Eq.0.21 are everywhere tangent to the vector
field f(x) and are uniquely characterised by the initial state x0 from where we start
the time evolution. In phase space, solutions curves are called trajectories.

For nice enough f there are theorems yielding existence and uniqueness of solutions x(x0, t)

(check the Guckenheimer book for details). The important consequences are:
(i) It is not possible for two trajectories to intersect or to be tangential in any point.
(ii) A trajectory cannot intersect itself, except for cycles.
(iii) Fixed points cannot be reached by a trajectory in finite time.

To get a better intuition for dynamical systems, let us start with deriving classic
equations of motion from Newton’s second law:

d

dt
(mẋ) = F = F (x, ẋ, t) (0.23)

Typically, the mass m is constant and we obtain the second law, i.e. a (net) force F
acting on a mass leads to an acceleration.

In physics, we often we deal with a gradient system

mẍ = F = −∇V (x) (0.24)

where V is a potential function. Such systems are termed conservative, containing
the important class of Hamiltonian systems.

As an example, take the mathematical pendulum of fixed length l, i.e. an oscillator.
We have the gravitational potential V (φ) = −mg cosφ leading to a tangential accelera-
tion as

mlφ̈ = −mg sinφ , (0.25)

where φ is the displacement angle. This is our first case of a nonlinear dynamical
equation. Solutions are given by elliptic integrals, for small angles we obtain a linear
harmonic oscillator. The potential is sketched in Fig. 0.8. To make the story more
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Figure 0.8: The potential V is periodic with minima in 0+k2π and maxima in π+k2π for
k ∈ N. A quadratic approximation of the potential around the minimum
yields the harmonic oscillator.

interesting, we add a motor exerting a constant driving force M on the pendulum
and account for damping by adding a term −dφ̇.

mlφ̈ = M − dφ̇−mg sinφ (0.26)

which we can rewrite as

φ̈ = a− bφ̇− c sinφ (0.27)

By adding a dissipative force (damping) the pendulum becomes non-conservative.
We generally call this a dissipative dynamical system.

This pendulum has two equilibrium positions, given by φ1 = arcsin
(
a
c

)
, φ̇1 = 0 and

φ2 = π − arcsin
(
a
c

)
, φ̇2 = 0. There is, however, more to discover from this equation of a

damped-driven pendulum as we will see below.

ASYMPTOTIC BEHAVIOUR

In the theory of dynamical systems we aim for understanding the behaviour of
a model without necessarily solving its equations. On the one hand, solutions
are typically not known for non-linear f . On the other hand, we can read a lot of
information from the structure of the equations.

Consider again the conservative pendulum Eq.0.25 and the potential V around φ = 0

in Fig.0.8. The extreme values are equilibrium points where the gradient vanishes
and the resulting force F is 0. We immediately see that the derivative dF/dφ|φ=0 is
negative, hence small displacements around the minimum experience a reversing
force. The origin thus is a stable equilibrium while the maxima are unstable.
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Equilibrium points of a dynamical system ẋ = f(x) are termed fixed points. They are singular
points of the vector field defined as solutions x∗ of f(x∗) = 0.

Gradient systems are fully characterised by their potential function. Initialising the
pendulum at some state, we can expect it to oscillate around the stable equilibrium
with a certain period. It will, however, never stop there unless we start at φ = 0.

Only in a dissipative system, the trajectory would asymptotically approach a fixed
point. This is the case for the damped-driven pendulum Eq.0.27. We need a re-
placement of the potential landscape for analysing our system. The approach for
general non-linear dynamical systems is given by phase portraits, i.e. sketches of
the system’s phase space structure.

In Fig. 0.9 we see the phase portrait of the damped-driven pendulum. We can
construct it as follows.

1. For each variable xk in x, sketch the curve ẋk = 0. These are called nullclines,
their intersections are the fixed points.

2. Sketch the vector field. We can read of the directions of the ẋk in the equations.
Regions of equal sign are separated by the nullclines.

At this point, it is typically already possible to infer the asymptotic behaviour quali-
tatively.

In a dissipative system each asymptotic state A (e.g. fixed points) attracts trajecto-
ries from a certain set B(A) ⊆ X which we call basin of attraction. We call A an
attractor. Note that due to the theorem of existence and uniqueness, attractors are
not reached by trajectories in finite time but they come arbitrarily close.

Dynamical systems show various types of asymptotic behaviour:

• equilibrium position: fixed point of f
• periodic process, oscillation: closed orbit in X
• oscillations with k different frequencies, beats: surface of k-torus in X
• irregular, non-periodic oscillation: chaotic motion

In non-linear systems, several attractors can coexist with separate basins. The
asymptotic behaviour hence depends on the initial state of the system and we say
the system is multistable.

Why can’t there be a multistable linear system?

An example is again our damped-driven pendulum. Besides the fixed points that
we already identified, there is also a periodic orbit as another attractor (see Fig.0.9).
By numerically integrating Eq.0.27, we obtained two trajectories from nearby initial
conditions. While the blue trajectory starts in the basin of the fixed point (φ1, φ̇1),
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Figure 0.9: Phase space of the damped-driven pendulum ω vs. φ. light blue :
trajectory towards stable fixed point, red: traj. towards limit cycle,
orange curve: periodic orbit, orange dots: fixed points, dark blue
curves: stable manifolds of the saddle, black curves: null clines.
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the red one approaches a periodic orbit (The orbit is closed because the system is
2π-periodic.).

A universal definition of an attractor has not yet been found. We commonly work
with the one given by Milnor.
Definition 1 (Attractor). An attractor A is defined by:

1. There is a minimal compact invariant set A ⊂ X whose basin of attraction B(A) has
positive Lebesgue measure.

2. There is no strictly smaller set A′ whose basin of attraction coincides with that of A
up to a zero-measure set. (Minimality)

You can think of the following interpretation. Draw a random state s from X. We
only want to consider A an attractor if the probability that s ∈ B(A) – i.e. that it is
attracted by A – is positive. Then there is a significant chance to observe the system
in A e.g. in an experiment.

Given our observations so far, the fixed point (φ2, φ̇2) does not seem to be an at-
tractor. Why is that? This question is closely linked to the stability of possible
asymptotic states. For instance, unstable equilibria are fixed points but they do
not attract any trajectories, i.e they are no attractors according to our definition
above.

STABILITY AND BIFURCATIONS OF FIXED POINTS

Going back to the pioneering ideas of Aleksandr Michajlovič Lyapunov in the 19th
century, certain behaviour (e.g. fixed points) of dynamical systems are considered to
be stable if small perturbations to the initial conditions lead to small reactions of the
system, i.e. small perturbations cannot substantially alter the system’s asymptotic
behaviour.

To quantify what ‘small’ means in this context, let us define a distance measure
between a point x and an arbitrary set C ⊂ X as

d(x,C) := inf{‖x− y‖ | y ∈ C} , (0.28)

where ‖ · ‖ is a suitable norm (the choice is not important). For fixed points, d(·, x?)
is just the regular distance according to the norm, while for e.g. a periodic orbit γ it
reduces to the minimal distance to a point on γ.

Now, we can formalise Lyapunov’s intuition in the following three definitions.
Definition 2 (Locally attracting). A set C is said to be locally attracting if there exists
a neighbourhood

Uε = {x0 ∈ X| d(x0, C) < ε}
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with ε > 0 for which
lim
t→∞

d(x(t;x0), C) = 0 ,

i.e. all trajectories from Uε converge to C.

This definition basically says that small perturbations return to C asymptotically.
Note that this definition alone does still allow for large transient deviations of a
trajectory before it returns.
Definition 3 (Lyapunov stable). Consider a δ > 0, δ < ε defining a set

Uδ = {x0 ∈ X| d(x0, C) < δ} .

A set C is said to be Lyapunov stable if for each neighbourhood Uε as above there
exists a Uδ such that for all x0 ∈ Uδ

∀t≥0 : x(t;x0) ∈ Uε .

Trajectories starting sufficiently close to C remain bounded in a finite neighbourhood.

This definition encodes the notion that trajectories emanating from small perturba-
tions stay close-by.
Definition 4 (Asymptotically stable). When a set is both locally attracting and Lya-
punov stable – i.e. small deviations asymptotically converge back to the set and are
bounded – C is said to be asymptotically stable.

As we are dealing with small perturbations around a solution x∗ of Eqn. 0.21, we
can introduce new variables y := x− x∗:

ẏ = ẋ− 0 = f(x∗ + y) (0.29)

' f(x∗) + J(x∗)y +O(‖y‖2) (0.30)

We observe that for small displacements, the dynamics is linear and determined
by the Jacobian matrix J(x∗) of partial derivatives Jjk = ∂fj/∂yk. Linear ODEs with
constant coeffients have exponential solutions y(t) ∼ exp(λt) where λ ∈ C is an
eigenvalue of J(x∗). For asymptotic stability, it is sufficient that <λk < 0 for all k
eigenvalues, such that small perturbations decay exponentially in all directions.

The fixed point (φ2, φ̇2) of Eqn. 0.27 is not asymptotically stable. This is because
J(φ2, φ̇2) has an unstable direction with <λ1 > 0 and a stable direction with <λ2 < 0.
Such fixed points with mixed stability are termed saddle points. The other two
cases are stable and unstable fixed points. In fact, fixed points are charecterised by
there stable

Ws(x
∗) := {x0 ∈ X| lim

t→∞
d(x(t;x0), x

∗) = 0} (0.31)

and unstable
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Wu(x
∗) := {x0 ∈ X| lim

t→−∞
d(x(t;x0), x

∗) = 0} (0.32)

invariant manifolds. Close to a fixed point, Ws and Wu are tangential to the eigenvec-
tors of J(x∗). An example are the invariant manifolds of the saddle point in Fig. 0.10.

Figure 0.10: Invariant manifolds of the saddle in the damped-driven pendulum.
light blue : unstable manifold Wu, dark blue: stable manifold Ws.
orange curve: periodic orbit, orange dots: fixed points. The right panel
shows a zoom-in around the saddle and the corresponding Jacobian’s
eigenvectors.

In the case of <λ = 0 for some λ, the fixed point has a neutral direction. Then, a lin-
earisation is not sufficient to infer stability and higher orders need to be considered.

The notions presented here can be transfered to periodic trajectories in a straight-
forward way. This leads to the so-called Floquet theory, which we do not discuss
here for breveity.

CHAOS

Chaos is another qualitatively different type of asymptotic behaviour. It is charac-
terised by:

• irregular, non-periodic deterministic motion
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Figure 0.11: Schematic bifurcation diagrammes x∗ vs. µ for selected bifurcations.
Black: stable branch, red: unstable branch. Top row: transcritical,
subcritical pitchfork, supercritical pitchfork. Bottom row: saddle-node
(fold), subcritical Andronov-Hopf, supercritical Andronov-Hopf. These
are examples for local codimension-1 bifurcations (top, saddle-node)
and global codimension-2 bifurcations (Hopf).

• sensitive dependence on initial conditions
• so-called strange attractors with fractal (non-integer) dimension.

The most famous example is Lorenz’ model of convective turbulence. The equations
are:

ẋ = σ(y − x) (0.33)

ẏ = x(r − z)− y (0.34)

ż = xy − bz (0.35)

For σ = 10, b = 8/3 and r = 28, the Lorenz model exhibits chaotic motion as
depicted in Fig. 0.12. As is visualised on the left, the sensitive dependence causes
an exponential separation of nearby initial conditions over time. This has often
been referenced as the butterfly effect, i.e. the slightest change in a system causes
a large reaction. Still, note that the two trajectories remain in the same bounded
region of the phase space. They infinitely wind around a fractal attractor, ’randomly’
switching between two modes of oscillation (right panel). Such fractal sets of non-
integer dimension are termed strange attractors.
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Figure 0.12: Left panel: Time series of x. For two near initial conditions. Right
panel: Projection of the three-dimensional phase space on the xz-
plane. Source: Yuri Maistrenko: Complex Network Dynamics: Theory &
Application. Lecture Notes TU Darmstadt (2014)

EXERCISE: LORENZ MODEL
Analyze Lorenz’ model of convective turbulence.

Find the fixed points and bifurcations in the Lorenz model.

HINTS
The discrete derivative. Use r as the bifurcation parameter and fix σ = 10, b = 8/3.

When nearby points get separated exponentially but the whole motion still is con-
fined to the vicinity of the strange attractor, how can we characterise its stability?

Consider a small volume V =
∏

k ∆xk with length ∆xk in every direction. We can
calculate the change of V ’s shape under the dynamics (Eqn. 0.21):

V̇ = V
∑
k

˙∆xk
∆xk

= V
∑
k

f(∆xk)

∆xk

' V
∑
k

∂fk(∆xk)

∂xk

' V divf

For the Lorenz model we find divf = −(1 + σ + b) < 0, i.e. every volume element shrinks
over time. This is actually the case for all dissipative systems (you can show that
gradient systems have divf = 0) and the chaotic attractor is an attractor in the sense
we considered above.

Let u(t) and u(t) + δ(t) be two neighbouring trajectories with ‖δ‖ � 1. In general, we
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find :

u̇+ δ̇ = f(u) + f(u+ δ) (0.36)

⇒ δ̇ ' f(u) + J(u(t))δ +O(‖δ‖2) (0.37)

or in componentwise form:

δ̇k ' fk(u) +
D∑
l=1

Jkl(u(t))δl (0.38)

Then we define the n Lyapunov exponents for each direction as

Λk := lim sup
t→∞

1

t
ln
‖δk(t)‖
‖δk(0)‖

(0.39)

At a fixed point, i.e. u(t) ≡ u∗, the Λk just equal the real part of the Jacobian matri-
ces’ spectrum. For periodic or chaotic attractors, Lyapunov exponents need to be
calculated via numerical simulations. Sort them by magnitude as Λ1 ≤ Λ2 ≤ · · · ≤ ΛD,
then ΛD determines the stability. For ΛD ≤ 0, we observe asymptotic stability as
nearby trajectories approach each other with an exponential rate less or qual to ΛD

(In autonomous systems, there’s always one zero Lyapunov exponent corresponding
to longitudinal perturbations along a trajectory u(t).). Correspondingly, ΛD > 0

indicates divergent directions.

How important is the initial condition δ(0)? The ’multiplicative ergodic theorem’ by Oseledec
(1968) implies that almost all solutions have the same set of Lyapunov exponents because almost
all trajectories are dense on the chaotic attractor and any group of them has the same time
average. (Here we consider a smooth f with only one attractor.)

Based upon the dynamics of a volume element, it can be shown that the Lyapunov
exponents relate to the time average of the divergence as

∑
k

Λk = lim
T→∞

1

T

∫ T

0

dt divf (0.40)

This means that the sum of Lyapunov exponents is negative in dissipative systems.
In the Lorenz model, we have Λ1 < Λ2 = 0 < ΛD. Eqn. 0.40 implies |Λ1| > |ΛD|, i.e. al-
though a deviation δ(t) is divergent in one direction, it is subject to an even stronger
contraction in the other. This interplay of stretching and folding is characteristic for
any chaotic systems. In case of several positive Lyapunov exponents, one speaks of
hyperchaos.
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DYNAMICS ON NETWORKS I

FURTHER READING
• Merris, R. Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197–198, 143–176
(1994).

• Lovász, L. Random walks on graphs: A survey. Comb. Paul Erdos is Eighty 2, 1–46 (1993).

DIFFUSION PROCESSES (1VL)

Random walks are diffusion processes. They are described by the graph Laplacian:

THE GRAPH LAPLACIAN

EXERCISE: GRAPH LAPLACIAN
Show that the Graph Laplacian is the discrete version of the usual Laplacian.

The graph Laplacian is the discrete version of the usual Laplacian operator. Write down the Graph
Laplacian on a lattice and show that in the limit of the lattice spacing going to zero an appropriately
scaled version of the Laplacian converges to the continuous Laplacian.

HINTS
The discrete derivative. Work from the definition of the derivative:

df

dx

∣∣∣∣
x=x∗

= lim
ε→0

=
f(x∗ + ε)− f(x∗)

ε

Derive the second derivative.

SPECTRAL PROPERTIES

If needed, Linear Algebra Recap.
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PROJECT: RANDOM MATRIX THEORY
Classical results.

SOURCES

PROPERTIES OF DIFFUSION ON NETWORKS

(More detailed subsections?)

Graph partitioning by eigenvectors. Eigenvalues.

Weighted directed graph Laplacians generate stochastic matrices.

MASTER STABILITY FUNCTION (1VL)

Frank

EPIDEMIC SPREADING – SIRS MODEL (1VL)

FURTHER READING
This section losely follows the discussion in Newman’s book, ch. 17.6 and 17.11.

Consider a popularion of n individuals subject to a disease outbreak. We assume
that each individual is susceptible, i.e. they all can receive the disease. Typically,
a disease shows several stages. The most simple model distinguishes susceptible
(S), infected (X) and recovering (R) individuals. The transition between the stages
happens with fixed rates β, γ and δ. The recovery rate δ, for instance, encodes the
statistical recovery probability per unit time.

Figure 0.1: Disease mechanism
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MACROSCOPIC DYNAMICS

We start looking aat the SIRS model from a macroscopic point of view and are
interested in the share of the infected part of the population. Define the densities
s = S/n, x and r. We can read the transition dynamics from Fig. 0.1:

ṡ = δr − βsx (0.1)

ẋ = βsx− γx (0.2)

ṙ = γx− δr (0.3)

0 = s+ x+ r − 1 (0.4)

These rate equations have two fix points. The first, (s∗, x∗, r∗) = (1, 0, 0) corresponds to
a healthy population where each individual either fully recovered or never had the
disease in first place. We are going to be interested in its stability in the following.
The alternative fix point is (s∗, x∗, r∗) = ( γ

β
, (1 − γ

β
) δ
γ+δ

, (1 − γ
β
) γ
γ+δ

) where the disease is
not going to vanish but rather becomes endemic.

MICROSCOPIC DYNAMICS

We can further zoom into the SIRS model and consider the fate of individuals. Each
one has an independent probability to be in stage S, X or R at a particular point
in time. Let us denote this as si := P (i ∈ S) and xi, ri analogously. A disease is
transmitted when an infected individual meets a susceptible one. Depending on
the type of disease, the spreading process is mediated by some form of contact
network (e.g. acquaintances, travel patterns, ...) that we assume to be connected
and not time-dependent for the moment. (This can be relaxed to studying the largest
connected component as we are not interested in isolated outbreaks.)

ṡi = δri − βsi
∑
k

Aikxk (0.5)

ẋi = βsi
∑
k

Aikxk − γxi (0.6)

ṙi = γxi − δri (0.7)

0 = si + xi + ri − 1 (0.8)

We can further simplify the system by replacing xi using the constraint:
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ṡi = δri − βdisi + βsi
∑
k

Aik(sk + rk) (0.9)

ṙi = γ − γsi − (δ + γ)ri (0.10)

xi = 1− si − ri , (0.11)

where di denotes the degree of node i. Our healthy fix point from above is in the
microscopic SIRS model given by (s∗i , x

∗
i , r
∗
i ) = (1, 0, 0) for all i. We can redefine the

variables relative to the fix poin as si 7→ s∗i + si, ri 7→ r∗i + ri and linearise the system to
obtain:

ṡi ' β

(∑
k

Aik(s
∗
k + r∗k)− di

)
si + δri + βs∗i

∑
k

Aik(sk + rk) (0.12)

ṙi ' −γsi − (δ + γ)ri (0.13)

xi = 1− si − ri , (0.14)

For our particular fix point, the system takes the simple form of:

(
ṡi
ṙi

)
'
(

0 δ

−γ −(γ + δ)

)
︸ ︷︷ ︸

=:∂f

(
si
ri

)
+ β

∑
k

Aik

(
1 1

0 0

)
︸ ︷︷ ︸

=:∂g

(
sk
rk

)
(0.15)

This has already a form we have seen in the previous lecture, suggesting to apply
the master stability function approach. Diverting to the discussion above, you find
in he literature that the dynamical system is modified in a further step.

The Kronecker product of a m1 × n1 matrix A and a m2 × n2 matrix B gives a m1m2 × n1n2

matrix as

A⊗B :=

 a11B . . . a1n1B

am11B . . . am1n1B

 .

It is bilinear and non-commutative. The following three relations hold:
• (A⊗B)(C ⊗D) = (AC ⊗BD)

• (A⊗B)−1 = A−1 ⊗B−1

• (A⊗B)> = A> ⊗B>

Using the Kronecker product, we can write the overall linear system dynamics for a
state y := (s1, r1, . . . , sn, rn)> as:

ẏ ' (In ⊗ ∂f + β(A⊗ ∂g)) y (0.16)
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The important observation here is that we can independently diagonalise A. Assume
a transformation T with T−1AT = Λ, Λ = diag(µ1, . . . , µn) and Avk = µkvk. The
transformed variables are ỹ := (T ⊗ I2)y.

˙̃y ' (T ⊗ I2)−1 (In ⊗ ∂f + β(A⊗ ∂g)) (T ⊗ I2)ỹ (0.17)

' (In ⊗ ∂f + β(Λ⊗ ∂g)) ỹ (0.18)

Hence, the system separates in n independent 2 × 2 blocks with system matrix ∂f +

βµk∂g. The latter has two distinct eigenvalues λ1 = −δ and λ2 = βµk − γ. Consequently,
all eigenvalues have negative real part when the following master stability condition
is fulfilled:

µmax <
γ

β
(0.19)

This realtes the stability of the healthy fix point to parameters of disease on the one
hand and a network property on the other hand. We can combine this with bounds
of the adjacency spectrum we discussed before, e.g.

√
dmax ≤ µmax (see Newman, Eq.

18.88).

PAIR APPROXIMATION

In the formulation of the microscopic SIRS model, we used the interaction term
Aiksixj = AikP (i ∈ S)P (j ∈ X) as the probability that the disease can be transmitted
from node k to i. Technically, we need the joint probability si ∧ xk := P (i ∈ S ∧ k ∈ X)

that i is susceptible and has an infected neighbour at the same time. Generally, we
can write the joint probability using the conditional as si ∧ xk = P (i ∈ S|k ∈ X). This
highlights that our interaction term can only be true if si and xk are independent
random variables, which is typically not true as they are connected via the spread-
ing process.

The correct model hence reads as

ṡi = δri − β
∑
k

Aiksi ∧ xk (0.20)

ẋi = β
∑
k

Aiksi ∧ xk − γxi (0.21)

ṙi = γxi − δri (0.22)

0 = si + xi + ri − 1 (0.23)
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Figure 0.2: Sketch of the local neighbourhood

The problem now is that the system is not closed anymore. We need additional
equations for all si ∧ xk which in turn depend on quantities like si ∧ sk ∧ xl and so on
. . .

Still, we can do better than our initial model by performing a so-called pair approx-
imation to obtain a firs-order correction to the model. For the sake of simplicity,
let us demonstrate this using a simplified model with δ = γ = 0 where the only
transition is between S and I. The model reads as

ṡi = −βdisi + β
∑
k

Aiksi ∧ sk (0.24)

0 = si + xi − 1 (0.25)

We can continue be constructing the time evolution of the joint probability (see Fig.
0.2):

d

dt
si ∧ sj = −β

∑
l 6=j

Ail xl ∧ si ∧ sj︸ ︷︷ ︸
infection of i

−β
∑
k 6=i

Ajk si ∧ sj ∧ xk︸ ︷︷ ︸
infection of j

(0.26)

(0.27)

Factoring out the conditional, we see that xl ∧ si ∧ sj = P (l ∈ X|i, j ∈ S) · si ∧ sj. The pair
approximation now assumes that all two-step and more distant interactions can be
neglected, e.g. P (l ∈ X|i, j ∈ S) ≈ P (l ∈ X|i ∈ S). Inserting the approximation, we get

xl ∧ si ∧ sj ≈ P (l ∈ X|i ∈ S) · si ∧ sj =
xl ∧ si
si

si ∧ sj (0.28)

and the model becomes:

ṡi = −βdisi + β
∑
k

Aiksi ∧ sk (0.29)

d

dt
si ∧ sj ≈ −β(di + dj − 2)si ∧ sj + βsi ∧ sj

(∑
l 6=j

Ail
sl ∧ si
si

+
∑
k 6=i

Ajk
sk ∧ sj
sj

)
(0.30)

0 = si + xi − 1 (0.31)
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In summary, the pair approximation circumvents the recursion of joint probabilities
for the cost of an additional equation for each edge in the network. This is, however,
still much less then the full model (as long as the network is finite we could theoret-
ically close he equations). In general, pair approximation is an example for what is
called a moment closure in probability theory.
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DYNAMICS OF NETWORKS AND NETWORK EN-
SEMBLES I

ERDÖS-RENYI RANDOM GRAPHS (1VL)

CONFIGURATION MODEL (1VL)

FURTHER READING
This section follows the discussion in Newman’s book, ch. 13.

In the lat lecture, we’ve learned an important lesson: When we attempt to create a
random network by placing edges randomly between nodes with some fixed proba-
bility, this will always result in a binomial (Poisson for n → ∞) degree distribution.
This way, it is not possible to create the huge variety of network characteristics that
we observe in natural, social or technological networks. The question is: How can we
obtain random graphs with arbitrary degree distribution? The answer is given by the
so-called configuration model.

CONFIGURATION MODEL ALGORITHM

• Specify a degree sequence {di} (or draw a sequence from a given degree distribu-
tion).

• Assign di stubs (half-edges) to each node i.
• Out of all possible matchings of stubs, pick one uniformly at random (i.e. no

configuration is prefered).

All possible matchings of stubs constitute a network ensemble parametrised by
{di}. Up to permutation symmetries, many matchings yield the same graph, though.
Hence, graphs with many symmetries have a higher probability to be realised as
we draw uniformly from the ensemble. We denote by pk the values of the empirical
degree distribution in a network realisation, denoting the fraction of nodes with
degree value k.

Note that we have seen this approch already in Fig. 0.2 as the null model of the
modularity function.
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BASIC PROPERTIES

What is the prob. pij of having a single edge between two nodes i,j with degrees
di,dj?. Pick one stub at node i. Out of the 2m − 1 remaining stubs, there are dj
associated to j, hence the prob. to connect one stub at i with node j is dj/(2m − 1).
Each stub at i has the same independent prob., hence they add up to

pij = di
dj

2m− 1

m�1
≈ didj

2m
(0.1)

Again, this should remind you of the modularity function. The latter constructs the
configuration model ensemble associated to the degree sequence of a given network
and compares the observed edges with the expectation value over the ensemble.

EXERCISE: MULTIEDGES AND LOOPS

Derive the probability to observe multiple edges between nodes i and j as well as the probability for
loops (i = j) to occur.

HINTS
The considerations are analogous to the derivation of pij.

What is the expected number nij of common neighbours?. The calculation is fairly
similar to the previous one, the counting is more subtle. For m� 1 we find:

nij =
∑
k 6=i,j

pik
dj(dk − 1)

2m
= pij

∑
k 6=i,j

dk(dk − 1)

2m
(0.2)

= pij

∑
k 6=i,j dk(dk − 1)

n〈d〉
n�1
≈ pij

〈d2〉 − 〈d〉
〈d〉

(0.3)

Here and in the following discussion, 〈d〉 denotes the average w.r.t. the given degree
sequence.

EXCESS DEGREE DISTRIBUTION

Take some random node i. A common quantity of interest in calculations is the joint
probability P (dj = k ∧ Aij) of having an edge to a neighbour j with degree being exactly
k. Obviously, P (dj = 0 ∧ Aij) = 0 6= P (dj = 0) = p0, i.e. it is not possible to reach a node
with dj = 0 by following an edge. The probability to find a certain degree k at the end
of an edge is not directly related to the probability to observe the degree value k at
all. The total probability that any node at the end of an edge has degree k can be
found to be
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n∑
j=1

δdj ,kP (dj ∧ Aij) =
n∑
j=1

δdj ,kP (Aij|dj) · pdj =
n∑
j=1

δdj ,k
k

2m− 1
pdj =

k

2m− 1
npk ≈

kpk
〈d〉

(0.4)

Note that this relation has an important consequence. The average degree of a neigh-
bour in general, calculated as

∑
k k

kpk
〈d〉 = 〈d2〉

〈d〉 is generally different from the averge
degree 〈d〉 itself. How can this be? The reason is that the counting of neigbours
introduces a bias towards high-degree nodes. First of all, isolated nodes contribute
to 〈d〉 but are not part of any neighbourhood. Secondly, in the neighbour-degree
average, each node is counted multiple times, according to its degree. The higher
the value k, the more a node contributes to the average.

For convenience, we will not work with the neighbour degree in the following but
define the excess degree qk that substracts the arriving edge:

qk :=
pk+1(k + 1)

〈d〉
(0.5)

CLUSTERING COEFFICIENT

Two neighbours i, j of a node with degrees di + 1 and dj + 1 have di and dj available
stubs to be again connected. The probability to observe these values is given by the
excess degree distribution. Hence, the clustering coefficient, i.e. the prob. that two
neighbours of a node are neighbours themselves, is given by:

C =
∞∑
di=0

∞∑
dj=0

qdiqdjpij ≈
∞∑
di=0

∞∑
dj=0

pdi+1(di + 1)

〈d〉
pdj+1(dj + 1)

〈d〉
didj
2m

(0.6)

=
1

2m

[
∞∑
k=0

pk+1k(k + 1)

〈d〉

]2
=

1

n

1

〈d〉3

[
∞∑
l=0

pl(l − 1)l

]2
(0.7)

=
1

n

(〈d2〉 − 〈d〉)2

〈d〉3
∼ 1

n
(0.8)

Similar to Erdös-Renyi random graphs, networks in the configuration model have a
clustering coefficient that vanishes for large system size.

POLYNOMIAL GENERATING FUNCTIONS

Let’s say we have a distribution pk of a variable with discrete values k e.g. the degree
or excess distribution. Calculations often involve expressions for the pk that are
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difficult to be evaluated directly. Here, generating functions provide a useful tool
that might help. They are defined as:

g(z) :=
∞∑
k=0

pkz
k = p0 + p1z + p2z

2 + . . . (0.9)

As they are polynomial, it is straight-forward to find some useful properties:

g(1) =
∞∑
k=0

pk = 1 (0.10)

g(0) = p0 (0.11)

⇒ pk =

[
1

k!

dk

dzk
g(z)

]
z=0

(0.12)

d

dz
g(1) =

∞∑
k=0

kpk = 〈k〉 (0.13)

z
d

dz
g(z) = z

∞∑
k=0

kpkz
k−1 =

∞∑
k=0

kpkz
k (0.14)

⇒ 〈km〉 =

[(
z
d

dz

)m
g(z)

]
z=1

(0.15)

Essentially, knowing only the generating function g(z), it is possible to recover the
full distribution and all of its moments!

Furhtermore, generating functions share the so-called power property. Pick a
sample of m nodes uniformly at random. There degrees are independent outcomes,
hence the prob. that the sample has a certain degree sequence {di} is P ({di}) =∏m

i=1 pdi. What is the probability πs that the total number of stubs in the sample is
exactly s =

∑m
l=1 dl?

πs =
∞∑
d1=0

· · ·
∞∑

dm=0

m∏
i=1

pdiδ(s,
m∑
l=1

dl) (0.16)

h(z) =
∞∑
s=0

πsz
s =

∞∑
s=0

zs
∞∑
d1=0

· · ·
∞∑

dm=0

m∏
i=1

pdiδ(s,
m∑
l=1

dl) (0.17)

=
∞∑
d1=0

· · ·
∞∑

dm=0

m∏
i=1

pdiz
∑m

l=1 dl =
∞∑
d1=0

pd1z
d1 · · ·

∞∑
dm=0

pdmz
dm (0.18)

= (g(z))m (0.19)

Here, g(z) denotes the generating function of the degree distribution. This result is
known as the power property of generating functions and applies generlly to sums of
independent random variables. It is now easy to obtain πs directly from g(z) as
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πs =

[
1

s!

ds

dzs
gm(z)

]
z=0

(0.20)

As an example, consider the Erdös-Renyi random graph with Poisson degree distri-
bution pk = e−c c

k

k!
from the previous lecture. The degree generating function is

g(z) = e−c
∞∑
k=0

ck

k!
zk = e−cecz = ec(z−1) (0.21)

and the generating function of πs is directly determined via the power property to be

h(z) = gm(z) = emc(z−1) . (0.22)

Hence, we find

πs =

[
1

s!

ds

dzs
emc(z−1)

]
z=0

= e−mc
(mc)s

s!
(0.23)

to be Poisson-distributed as well.

Finally, for ease of notation, we introduce the following two quantities. The degree
generating function is denoted as

g0(z) :=
∞∑
k=0

pkz
k . (0.24)

Furthermore, we introduce the excess degree generating function

g1(z) :=
∞∑
k=0

qkz
k =

∞∑
k=0

(k + 1)pk+1

〈d〉
zk =

1

〈d〉

∞∑
l=0

lplz
l−1 =

g′0(z)

〈d〉
=
g′0(z)

g′0(1)
(0.25)

which is by definition closely related to g0(z).

GIANT COMPONENT THRESHOLD

As for the Erdös-Renyi ensemble, we are interested to find the transition (if it ex-
ists) towards the appearance of a giant connected component. To start, let us first
consider the number of second neighbours of a node. Having k second neighbours
introduces the constraint that the excess degrees er of the first neighbours sum
up to k. Note that again we neglect links between neighbours and assume a locally
tree-like network as earlier. See Newman’s book for a more detailed discussion. We
can define the probability of having k second neighbours, given the excess degree
sequence {er} of the m neighbours, as:
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Figure 0.1: Illustration of neighbourhood sets.

p
(2)
k :=

∞∑
m=0

P (k|m neighbours) · pm (0.26)

=
∞∑
m=0

pm ·

(∑
e1

· · ·
∑
em

m∏
r=1

qerδ(k,
m∑
l=1

el)

)
(0.27)

To simplify this expression, we use again the power property and construct the
generating function of p(2)k .

g(2)(z) :=
∞∑
k=0

p
(2)
k zk =

∞∑
m=0

pm

(∑
e

qez
e

)m

=
∞∑
m=0

pm (g1(z))m = g0 (g1(z)) (0.28)

You can check easily that

g(2)(z) = g0 (g1 (g1(z))) (0.29)

. . . (0.30)

g(d)(z) = g(d−1) (g1(z)) (0.31)

Although we have found this recursion relation, actually calculating p(2)k is still a
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hard problem for general degree distributions. Nevertheless, it is possible to obtain
its expectation value, the average number of second neighbours c(2) as:

c(2) =

[
z
d

dz
g(2)(z)

]
z=1

= [zg′0(g1(z))g′1(z)]z=1 = g′0(g1(1))g′1(1) = g′0(1)g′1(1) (0.32)

= g′′0(1) =
∞∑
k=0

k(k − 1)pk = 〈k2〉 − 〈k〉 (0.33)

However, we can also use the recursion relation to calculate the average number of
neighbours d steps away as

c(d) = g(d)
′
(1) = g(d−1)

′
(g1(1))g′1(1) = c(d−1)g′1(1) = c(d−1)

c(2)

g′0(1)
= c(d−1)

c(2)

c
(0.34)

⇒ c(d) =

(
c(2)

c

)d−1
c (0.35)

where c, the average number of neighbours, is just the mean degree 〈k〉. Conse-
quently, we need to distinguish two cases. Firstly, when c(2) > c, the average number
of neighbours grows exponentially from step to step until the component (to which
the arbitrary starting node belongs) reaches the finite system size. In this case a
giant component can exist. Secondly, if c(2) < c the expected component size is
exponentially suppressed for any starting node such that there can be no giant com-
ponent. Hence, c(2) = c is the existence threshold for a giant connected component.

Inserting our result for c(2), we finally find the following condition:

〈k2〉 − 2〈k〉
!
> 0 . (0.36)

Remember that the generating function of the Poisson distribution is g(z) = ec(z−1). It
is straight-forward to calculate the second moment as 〈k2〉 = 〈k〉2 + 〈k〉. It follows that
the giant component threhold of Poisson-distributed random graphs is just 〈k〉 > 1

as we have seen in the previous lecture on Erdös-Renyi ensembles.

CHRISTMAS: SOCIAL NETWORK GROWTH (1VL)

Just read the paper. ;-)
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DYNAMICS ON NETWORKS II: EMERGENT PHE-
NOMENA

FLOW NETWORKS (1 VL)

The first dynamical phenomenon on networks discussed in the first part were
diffusion and (epidemic) spreading processes. Before we continue with emergent
nonlinear processes, flow networks deserve closer attention. They are closely linked
to diffusion and to steady states of nonlinear processes in general. In flow networks,
nodes are typically sinks or sources of some quantity which is transported along the
edges of the graph, which can have a finite capacity. There are many examples,
ranging from transport, trade or financial networks to food webs or functional
climate networks. The respective quantities propagated by the "flow" are vehicles,
goods, money, nutrients or information.

A peculiar phenomenon in flow networks is that typically, the flow pattern responds
with non-local changes to local changes of the capacity (e.g adding/removing an
edge). A paramount example is that of Braess’ paradox in traffic networks. Assume
a road network populated by cars, each choosing the fastest route between start
and destination. When the capacity of an existing road is improved to diminish
congestions or a new one is opened to diversify traffic routes, there are certain cases
where the travel time is actually increased for all cars. In other words, improving
the capacity of the flow network causes a decrease in performance. The converse
is true for closing a road. Braess’ paradox highlights how a non-local change of
flow in response to a local modification alters the flow pattern in a way that is
difficult to predict and that it is insufficient to consider only the local situation
in simulations. This is supported by various empirical measurements gathered
since Braess’ discovery in 1968. Note that Braess’ paradox is a rather general
phenomenon which can also be observed, for instance, in power grids.

DEFINITIONS

Define a flow network as the pair F(G, C) of a Graph G = (V,E) with node set V and
edge set E, as well as the capacity C : E → R+ s.t. e ∈ E 7→ C(e) ≥ 0. A flow is a map
f : E → R+ s.t. e ∈ E 7→ f(e) with the following properties:

• fij is a shorthand for f(e), where the head of e is node i and the tail is node j.
• f is anti-symmetry (introduces an orientation): fij = −fji.
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• f is capacity-constrained: f(e) ≤ C(e) ∀e ∈ E
• The flow is conserved.

The flow conservation requires that the net flow Ik across each node vanishes,
except for sinks and sources. Assume without loss of generality there is one source s
and one sink t:

Ik =
n∑
l=1

Aklfkl = Iinδks − Ioutδkt (0.1)

As a consequences, we have Iin = −Iout =: I and the total in-flow has to equal the
total out-flow.

THE LINK TO DIFFUSION

FURTHER READING
Laplacian pseudoinverse:

Klein, Douglas J., and Milan Randic. "Resistance distance." Journal of mathematical chemistry
12.1 (1993): 81-95.

Often, flows are a function of the differences in the value of a potential that takes
values at each node. For instance, in an electrical network the flow fij on an edge
is the current induced by the difference in the node voltages vi and given by Ohm’s
law.

fij =
vi − vj
rij

, rij > 0 (0.2)

Flow conservation implies

I(δks − δkt) =
n∑
l=1

Akl
vk − vl
rkl

=
n∑
l=1

Lklvl . (0.3)

Here, L is a weighted Laplacian matrix where the resistances rij define the edge
weights. This expression of flow conservation is known as Kirchhoff’s current law
in electrostatics. Moreover, this is exactly the Laplace problem obtained earlier for
diffusion. It appears generically in flow networks whenever the flow is proportional
to a difference. Hence, this functional form is commonly termed diffusive coupling
in network dynamics.

Looking for solutions of Kirchhoff’s equation in terms of the yet undetermined
voltages poses a problem since the Laplacian is not invertible. We can however
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construct a so-called Moore-Penrose pseudoinverse R to obtain solutions which
are unique up to an additive constant. A convenient definition is

R := (L + J)−1 − 1

n2
J (0.4)

(0.5)

where J is the unit matrix such that all Jij ≡ 1.

Every pseudoinverse R of L needs to fulfill the Moore-Penrose condition:

LRL = L, RLR = R, (RL)> = RL, (LR)> = LR . (0.6)

Finally, the solutions v∗ are obtained as:

v∗ = RI(χs − χt) + const. (0.7)

where χs is an indicator vector with entries (χs)k = δks.

EXERCISE: PSEUDOINVERSE

1. Derive the form of the pseudoinverse given above.
2. Check that R fulfills the Moore-Penrose conditions.

HINTS
Ansatz. Evaluate the expression (L+ αJ)(R + βJ) with some α, β ∈ R. Furthermore, require LR =

In − 1
n
J . (It’s easy to see that this complies with the Moore-Penrose conditions.)

Spectrum. You may use the fact that R has a singular spectrum to evalute RJ .

NEWMAN’S BETWEENNESS

FURTHER READING
Newman, Mark EJ. "A measure of betweenness centrality based on random walks." Social
networks 27.1 (2005): 39-54.

arxiv.org/pdf/cond-mat/0309045.pdf

Now that we solved the Laplace problem arising from the flow conservation, we can
calculate the actual corresponding flow which we will also denote by f .
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Figure 0.1: Difference between shortest-path and current-flow betweenness.

fij =
v∗i − v∗j
rij

=
1

rij
(χi − χj)>v∗ =

I

rij
(χi − χj)>R(χs − χt) (0.8)

=
I

rij
(Ris +Rjt −Rit −Rjs) (0.9)

The share of the current between s and t that goes via node i 6= s, t, i.e. the through-
current csti , is given by halve the sum of the modulus as you can easily verify:

csti =
1

2

n∑
j=1

|Aijfij| =
I

2

n∑
j=1

Aij
rij
|Ris +Rjt −Rit −Rjs| , i 6= s, t , (0.10)

with csts = I and cstt = −I. This quantity, averaged over all pairs s/t of source/target
nodes became known as the current-flow or Newman’s betweenness bfi associated
to a node i :

bfi =
2

(n− 1)(n− 2)

∑
s<t

csti
I
, bwi ∈ [0; 1] . (0.11)

Newman’s betweenness can be interpreted as a measure of a node’s importance in a
flow network. Contrary to the popular shortest-path betweenness, bfi does not only
take shortest-paths between s and t into account but all according to their weight
rij. Fig. 0.1 highlights a case where both measures differ drastically, as there is no
shortest path through the central node C.
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MAX-FLOW/MIN-CUT THEOREM

FURTHER READING
Edmonds, Jack, and Richard M. Karp. "Theoretical improvements in algorithmic efficiency for
network flow problems." Journal of the ACM (JACM) 19.2 (1972): 248-264

Ford Jr, Lester R., and Delbert R. Fulkerson. A simple algorithm for finding maximal network
flows and an application to the Hitchcock problem. No. RAND/P-743. RAND CORP SANTA
MONICA CA, 1955.
Meyner, Felix. "Einführung in Netzwerk-Fluss-Probleme Das min-cut max-flow Theorem."

Innovative Internet Technologies and Mobile Communications (IITM) 33 (2012).

Finally, we turn to the question: What is the maximum possible flow on F that is
still capacity-constrained?

This is adressed by the so-called max-flow/min-cut theorem:

The maximum flow from the sources to the sinks of a flow network is determined by the total
capacity of the minimum cut.

The essential statement of this theorem is that maximum flow is determined by
the bottlenecks of the flow network. This consequence should be intuitively clear,
take for instance the case sketched in Fig. 0.1. The extent of the bottleneck, i.e. the
minimum cut, however is interesting in itself as it measures the robustness of the
flow network in some sense. Hence, it is often of interest to determine the minimum
cut for a given network.

First, we need some definitions. Let C = (S, T ) be a crisp partition of the node set
V in two parts S and T , s.t. s ∈ S and t ∈ T . The cut set is then defined as XC :=

{(l, k) ∈ E : l ∈ S ∧ k ∈ T}. It has the associated cut capacity C(XC) =
∑

e∈XC C(e).

The minimum cut is given by Cmin = minC C(XC).

The maximum flow is given by the total in-flow due to flow conservation as |f |max =

max(s,t)

∑
(s,k)∈E fsk.

The statement of the theorem is then Cmin = |f |max. There are various algorithms
to determine XCmin

associated to Cmin via maximising the flow. As an example, we
consider the Ford-Fulkerson algorithm from 1956.

The algorithm uses the concept of an augmenting path p, i.e. a path with free ca-
pacaty on all edges p = {e1, . . . , em} : ∀e∈pf(e) < C(e) directed from the source s to
the sink t. The Ford-Fulkerson algorithm iteration then uses the following iteration
procedure.

1. Initially, all paths between s and t are augmented.
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Figure 0.2: Example flow network.

2. Pick one path p at random from all available independent augmented paths.

3. Determine the minimum residual capacity cp = mine∈pC(e) along p.

4. Add the edge associated to cp to the potential minimum cut set X̂C.

5. Substract cp from all C(e), e ∈ p.

6. Repeat from step 2 until no augmented path is left.

An actual minimum cut XC ⊆ X̂C is determined as the subset of the potential
minimum cut that is a proper cut set. However, as X̂C usually contains only very
few edges compard to the total size of E, this minimisation problem is much simpler
than the original one. A variation of the algorithm that only considers shortest st-
paths was given 1972 by Edmonds and Karp.

Consider the example in Fig. 0.2. A possible sequence of paths in the iteration
scheme is:

1. p1 : s, v1, v3, t with cp = 12 on (v1, v3)

2. p2 : s, v2, v4, t with cp = 5 on (v2, v4)

3. p3 : s, v1, v4, t with cp = 8 on (s, v1)

4. p4 : s, v2, v3, t with cp = 9 on (v2, v3)

Hence, the potential minimum cut is X̂C = {(s, v1), (v1, v3), (v2, v3), (v2, v4)}. This is,
however, not a a minimal cut set as one is redundant. By removing the edge (v1, v3)

we finally obtain a minimum cut set XCmin
= X̂C \ {(v1, v3)} and the maximum flow is

|f |max = 20 + 9 + 5 = 34.
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