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Planetary Boundaries
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No “control” possible, only “management”.

Goal: Not optimization but sustainability.
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Informal overview




A metaphorical boat ride
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A metaphorical boat ride
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A metaphorical boat ride (cont.)
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Formal definitions and properties




Def: Manageable Dynamical System w. Desirable States

X=X, 7,1, M, X*") isaM.D.S.w.D.S (or simply system) iff
» X # () is a set (state space)
» 7~ C 2% is a Hausdorff topology (set of open subsets of X)
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X=X, 7,1, M, X*") isaM.D.S.w.D.S (or simply system) iff
» X # () is a set (state space)
» 7~ C 2% is a Hausdorff topology (set of open subsets of X)
» VYxe X;t,t' >0:
> Ty :[0,00) — (X, T) continuous (default forward trajectory
starting at x, e.g. given by a solution to some ODE)
» 7,(0) = x, TTX(Z’)(I,) =T (t+1)



Def: Manageable Dynamical System w. Desirable States

X=X, 7,1, M, X*") isaM.D.S.w.D.S (or simply system) iff
X # 0 is a set (state space)

v
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7~ < 2% is a HausdorfF topology (set of open subsets of X)
VxeX;t,t’'>0:
> Ty :[0,00) — (X, T) continuous (default forward trajectory
starting at x, e.g. given by a solution to some ODE)
» 7,(0) = x, T‘rx(t)(t,) =T (t+1)
» Vx e X:
» 7, € My (set of admissible trajectories starting at x,
e.g. given by a differential inclusion)
» Ve My: pu:[0,00) - (X,7) continuous, u(0) = x
»ifue My,t>0,x" = u@), u € My,
Vit €[0,¢]: u’(t"”) = u(t’”), and
Vl” > t: /.l//(t,,) — /.l/(t/, _ t),
then u”” € M, (closedness under switching at any time)
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Def: Manageable Dynamical System w. Desirable States

X=X, 7,1, M, X*") isaM.D.S.w.D.S (or simply system) iff
X # 0 is a set (state space)

>

>

>

v

7~ < 2% is a HausdorfF topology (set of open subsets of X)
VxeX;tt'>0:

> Ty :[0,00) — (X, T) continuous (default forward trajectory
starting at x, e.g. given by a solution to some ODE)
> %(0) =X, T (1) = (@ + 1)

VxeX:

X

ov

oTsD,

» 7, € My (set of admissible trajectories starting at x,
e.g. given by a differential inclusion)
» Ve My: pu:[0,00) - (X,7) continuous, u(0) = x
»ifue My,t>0,x" = u@), u € My,
Vit €[0,¢]: u’(t"”) = u(t’”), and
Vi’ >t /.l”(l‘”) — /.l/(l‘” _ t),
then u”” € M, (closedness under switching at any time)

+€T MO} (desirable aka sunny region of X)




Switching of admissible trajectories

» Vx e X:
» T € M,
» Yu e My: u:[0,0)— (X,7) continuous, u(0) = x
»ifue My,t>0,x" = u@), i’ € My,
Yt e [0,t]: u”’ (") = u(t”), and
Ve’ >ou (") =@ -1,
then y” € M,




Def: Invariant open kernels, Shelters

The invariant open kernel A® of A C X is

the largest open subset K of A

that is forward-invariant under the default flow,

i.e.,thathas K C A, K € 7 and 7[[0,00)] C K forall x € K.



Def: Invariant open kernels, Shelters

The invariant open kernel A® of A C X is

the largest open subset K of A

that is forward-invariant under the default flow,

i.e.,thathas K C A, K € 7 and 7[[0,00)] C K forall x € K.

Its existence is nontrivial and follows from the fact that
the set of all open and invariant sets is a kernel system,
i.e., closed under taking finite and infinite unions.

It may be empty.



Def: Invariant open kernels, Shelters

The invariant open kernel A® of A C X is
the largest open subset K of A

that is forward-invariant under the default flow,
i.e.,thathas K C A, K € 7 and 7[[0,00)] C K forall x € K.

Its existence is nontrivial and follows from the fact that
the set of all open and invariant sets is a kernel system,
i.e., closed under taking finite and infinite unions.

It may be empty.

The system’s shelters are the set § := (X*)®
= region where system stays in sun forever by default, even under
“infinitesimal” (i.e., positive but sufficiently small) noise.




Def: Sustainable sets & kernels, Manageable region

A € T is sustainable it Vx e X due MVt >20: u(r) € A.
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The sustainable kernel AS of A C X is
the largest sustainable open subset of A.

Again, existence follows because
the set of all sustainable sets is a kernel system.
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A € T is sustainable it Vx e X Au e M,y VYt > 0: u(t) € A.

The sustainable kernel AS of A C X is
the largest sustainable open subset of A.

Again, existence follows because
the set of all sustainable sets is a kernel system.

The system’s manageable region is M := (X*)S
= region where system can be managed to stay
in sun forever even under “infinitesimal” noise.



Def: Sustainable sets & kernels, Manageable region

A € T is sustainable it Vx e X Au e M,y VYt > 0: u(t) € A.

The sustainable kernel AS of A C X is
the largest sustainable open subset of A.

Again, existence follows because
the set of all sustainable sets is a kernel system.

The system’s manageable region is M := (X*)S
= region where system can be managed to stay
in sun forever even under “infinitesimal” noise.

Sunny GREY
Downstream @ ___

Every invariant open set is sustainable.
Hence S € M.




Def: Forecourts, Stable reachability

C € 7 isaforecourtforY C X, denoted C ~» Y, iff
YxeCAdue MyVYWeT,W2Y
At >0: (@) e Wand V¢ €[0,¢] : u(t’) e C.

(one can approach Y arbitrarily closely from everywhere in C without
leaving C)



Def: Forecourts, Stable reachability
C € 7 isaforecourtforY C X, denoted C ~» Y, iff
YxeCAdue MyVYWeT,W2Y
At >0: (@) e Wand V¢ €[0,¢] : u(t’) e C.

(one can approach Y arbitrarily closely from everywhere in C without
leaving C)

Y C X is (stably) reachable from x € X through A C X, denoted
x w4 Y, iff 3 forecourt C C A of Y with x € C.



Properties of stable reachability

Forall A,A’,C,Y,Z C X and x,y,z € X:
1. fYisopen: i) C Y iff Vx e C

Aue Myt >0Vt €[0,7]: u(t) € Y and u(t’) € C;
(i) x wa YifACeT,xe CCAVX €C

Aue Myt >0Vt €[0,¢] : u(t) €Y and u(t’) € C.
2. Each set of the form (»w»4Y) := {x € X : x ~»4 Y} is open.
3. Transitivity:

X ML Y W Z:>X'VV)A+A/ Z,

XWA)”W)A'Z:>X“"’>A+A' Z.

(But note that not always x ~»4 x, e.g. for unstable fixed points)
4. If A is open, it is stably reachable from each of its elements.



Proof sketch for transitivity

» Forecourt: Yx e CAue My VWeT ,W2Y
At >0: u@) e Wand V¢ €[0,¢] : u(t’) e C.

» Transitivity:

X gy L= X wpn Z.




Def: Upstream, Downstream, Trenches,
Glades, Lakes, Backwaters

» Shelters S = (X*)* (will stay in sun by default)

» Manageable region M = (X*)° (can stay in sun by management)

» Upstream U := (~»xS) 2 S (can reach shelter)

» Downstream D := (w>x M) — (woxS) = (wxM)-U22M-U
(can stably reach M but not S)

» Trenches @ := X — (voxX™)
(cannot reach sun at all)



Def: Upstream, Downstream, Trenches,
Glades, Lakes, Backwaters

» Shelters S = (X*)* (will stay in sun by default)

» Manageable region M = (X*)S (can stay in sun by management)

» Upstream U := (~»xS) 2 S (can reach shelter)
» Downstream D := (w>x M) — (woxS) = (wxM)-U22M-U
(can stably reach M but not S)
» Trenches @ := X — (voxX™)
(cannot reach sun at all)
» Glades G .= (wx+S)-SCU
(can reach shelter without visiting dark)
» Lakes L =M NU - (wx+:S)=MNU-S-GCU
(can avoid dark and can reach shelter, but not both)
» Backwaters W .=MND=M-UCD

Qﬂn

=—===—== fgan:avoeid dark but cannot reach shelter)




Def: Abysses, Eddies, Main cascade

» Upstream U := (~»xS) 2 S (can reach shelter)

» Downstream D = (mox M) — (moxS) = (woxM)-U DM -U
(can stably reach M but not S)

» Trenches ©@ := X — (»oxX™)
(cannot reach sun at all)

> Abysses Y :=
{xeX|VueM;At20: u) c®}-0
(cannot avoid staying in dark eventually)

» EddiesE =X -U-D-0-T

I ||||||

o
“il
>

1 IIIII
fi



Def: Abysses, Eddies, Main cascade

» Upstream U := (~»xS) 2 S (can reach shelter)

» Downstream D := (»ox M) — (woxS) = (woxM)-U 2 M -U
(can stably reach M but not S)

» Trenches ©@ := X — (»oxX™)
(cannot reach sun at all)

07

> Abysses Y :=
{(xeX|YueM;At>0: u@) € G} —
(cannot avoid staying in dark eventually)

>EddieSE:=X—U—D—®—T Bkwat

» Main cascade C := {U,D, E, T, ®} 35})» }}
(partition)

> U (/\7(’ D (/\7(’ E (/\7(’ T (]\7(’ ® NN abyer 2 Abvss /0 eday

Sunny Eddy Trench
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Decision tree representation, Colour scheme

can can
reach the reach the
Sunny part over & sunny part at the main
over againy, least once?.
cascade
partiion
abysses trenches
Y

can stay
in the sun

can stay dark dark
in the sun o S
Jorever? eddies abysses

remaining sunny
upstream
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Example: gravity pendulum fun ride

_ W management

option

default
dynamics

Lake dilemma:
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keep thrill forever by repeated bursts, or get to safety risking sickness?




Example: logistic predator-prey model

x = Easter Island population,

X =0x+ @yxy
y = Easter Island vegetation,

y=ry(l—y/k)—yxy

Different parameters lead to completely different topologies:

T

[m] =l =



Example: Carbon Cycle with Planetary Boundaries

[Anderies et al. 2013]

¢; = terrestrial carbon share
(vegetation and soil) o8l

¢, = maritime carbon share RN

(upper oceans) 06 >

ca=1—-cpm—ct =
atmospheric carbon share

Glade dilemma:

keep high ¢, risking
almost extinction when
management breaks away?




Example: management by smooth parameter change

y=—@A+r)3y + 2r2 - 1)@+ )y + e - 10,
default 7 = 0, management 7 € [—100, 100].

Bifurcation diagram with some trajectories for 7 = +100:
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Further definitions and properties




Def: Network of Ports and Rapids

Port = maximal set of mutually reachable states,

Rapid = equivalence class of non-port states w.r.t. which ports they
can reach and from which they can be reached.

Network of Ports, rapids, and their reachability:

more rapids here

aport
(region of mutual
reachability)

arapid
.| (region one must leave /f”
& cannot return to)




Def: Network of Harbours and Channels

Harbour = maximal set of states mutually reachable through X+,

Channel = equivalence class of non-harbour states
w.r.t. sunny reachability of harbours.

Network of Ports, rapids, and their reachability:

b more channels here port with 2 harbours
port with 1 harbour =
= \

rapid

"~ aharbour
(region of mutual
sunny reachability)

N0t oy, S2Ve &
e
th,%g by utum to
ny
" parg)

o3| sunny part another channel

harbour !
dilemma |

dark




Def: Network of Docks and Fairways

Dock = maximal set of states mutually reachable through S,

Fairway = equivalence class of non-harbour states
w.r.t. safe reachability of docks.

Network of Docks, fairways, and their reachability:

harbour with
. 2docks|

a fairway y
(region one

{ dock harbour with / mest leave & |
\dilemma_ | *!1 dock & 1 fairway /  / must leave &
/ A 1 to through
" FaN safepart) )
. ~ /
sunnily |
but not |
safely \
reachable ",

sunny part

dark

N

harbour

“(region of mutual safe reachability)




Three-layer Reachability Network of Networks

= harbour

rapid rapid rapid

harbour
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Properties
Let X~ = X - X*,T* =T N X% U* =UnNX*, ete.

Proposition:
1. Each two ports [harbours, docks] are disjoint.

2. Each port lies completely in one of U, D, E, T, ©,
no port intersects 1.

3. Each harbour [dock] lies completely in one port [harbour].
4. Each channel [fairway] lies completely in one port or rapid [one
harbour or channel].

5. If a harbour H intersects some of the regions S + G, L, U*, W, or
D*, it is already completely contained in that region.

Guess which part is nontrivial!
(My proof even requires the Axiom of Choice. . . )
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To show that a port P C T is already in Y—, assume
re PNTY C Xt eT.We will now construct a con-
tradiction by constructing an admissible trajectory from
x that avoids © forever. Since = ~»x = and X+ is open,
there is an open set A € X+ with y ~ x x forall y € A.
Since 7, is continuous and A open, we find ¢y > 0 with
7.(t) € A for all t € [0,¢0]. Let y = 7,(to) and pick a
(€ M, that returns arbitrarily closely to x. Let A be
the set of all open A C X+ with z € A, and choose
aty >0 with p(ts) € A for all A€ A (this requires
the Axiom of Choice which we will assume here).
Lett; =inf yc 4SUpPpe g pcatn = 0. Since y € T+6,
there is ¢/ >0 with u(t') € © for all ¢ >/, hence
t, <t for all Ae A and thus t; <. Next we show
that p(t1) = x. If u(t1) = y # x, one can choose A € A
and C € T with y € C' and ANC = ( (this is the only
point where we need the Hausdorff property). Since 1t is
continuous, there are t; < t1 and t,, > t; with u(t') € C
for all ¢’ € [t;,t,]. By definition of t1, there is A’ € A
withsupge 4 pcartB € [t1,t,]. Putting A” = ANA’ €
A, we then also have SUppea.pcartB € [t1,t,], hence
there is B € Awith BC A” C Aand tp > t; and hence
u(tp) € C by choice of t;. But u(tp) € BC A by
choice of t . Hence p(t5) € ANC' = (), a contradiction.
So w(ty) = x after all. Finally we concatenate 7,.[0, )
and 12[0,#;] infinitely many times and get an admissible
trajectory from z that avoids © forever.



Summary of Dilemmas

Name Option 1 Option 2 Possible example
“Glade” dilemma higher desirability/flexibility safety adaptation/mitigation
“Lake” dilemma uninterrupted desirability eventual safety great transformation
“Port” dilemma higher flexibility higher desirability land-use change
“Harbour” dilemma uninterrupted desirability eventually higher desirability/flexibility space colonization
“Dock” dilemma uninterrupted safety eventually higher desirability/flexibility new technologies
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“Topological” bifurcations

x = variable, r = parameter, management can change x by +1.

backwater/glade

bifurcation and
later port pitchfork
bifurcation caused
by a subcritical
pitchfork bifurca-
tion of the default
flow (similar in the
supercritical case)

glade/backwater/abyss
transition  caused
by a saddle-node
bifurcation,  with
the second critical
value marked in
red

shelter/backwater/lake/upstream
transition  caused

by the transition of

a stable fixed point

through a dark

strip

shelter/backwater/abyss
transition  caused

by the transition of

a stable fixed point
into the deep dark

-1
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Thanks!
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Questions? Discussion!

POTSDAM INSTITUTE FOR
CLIMATE IMPACT RESEARCH




	Motivation
	Informal overview
	Formal definitions and properties
	Examples
	Further definitions and properties

