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Motivation



Planetary Boundaries

No “control” possible, only “management”.

Goal: Not optimization but sustainability.



Informal overview



A metaphorical boat ride



A metaphorical boat ride



A metaphorical boat ride (cont.)



Formal definitions and properties



Def: Manageable Dynamical System w. Desirable States

X = (X,T , τ,M, X+) is a M.D.S.w.D.S (or simply system) iff
I X , ∅ is a set (state space)
I T ⊆ 2X is a Hausdorff topology (set of open subsets of X)

I ∀ x ∈ X ; t, t ′ > 0:
I τx : [0,∞) → (X,T ) continuous (default forward trajectory

starting at x, e.g. given by a solution to some ODE)
I τx (0) = x, ττx (t) (t ′) = τx (t + t ′)

I ∀ x ∈ X :
I τx ∈Mx (set of admissible trajectories starting at x,

e.g. given by a differential inclusion)
I ∀ µ ∈ Mx : µ : [0,∞) → (X,T ) continuous, µ(0) = x
I if µ ∈ Mx , t > 0, x ′ = µ(t), µ′ ∈ Mx′ ,
∀ t ′′ ∈ [0, t]: µ′′(t ′′) = µ(t ′′), and
∀ t ′′ > t: µ′′(t ′′) = µ′(t ′′ − t),
then µ′′ ∈ Mx (closedness under switching at any time)

I X+∈T \{∅} (desirable aka sunny region of X)
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Switching of admissible trajectories

I ∀ x ∈ X :
I τx ∈Mx
I ∀ µ ∈ Mx : µ : [0,∞) → (X,T ) continuous, µ(0) = x
I if µ ∈ Mx , t > 0, x ′ = µ(t), µ′ ∈ Mx′ ,
∀ t ′′ ∈ [0, t]: µ′′(t ′′) = µ(t ′′), and
∀ t ′′ > t: µ′′(t ′′) = µ′(t ′′ − t),
then µ′′ ∈ Mx



Def: Invariant open kernels, Shelters

The invariant open kernel Aι◦ of A ⊆ X is
the largest open subset K of A
that is forward-invariant under the default flow,
i.e., that has K ⊆ A, K ∈ T and τx[[0,∞)] ⊆ K for all x ∈ K .

Its existence is nontrivial and follows from the fact that
the set of all open and invariant sets is a kernel system,
i.e., closed under taking finite and infinite unions.
It may be empty.

The system’s shelters are the set S := (X+)ι◦

= region where system stays in sun forever by default, even under
“infinitesimal” (i.e., positive but sufficiently small) noise.
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Def: Sustainable sets & kernels, Manageable region

A ∈ T is sustainable iff ∀ x ∈ X ∃ µ ∈ Mx ∀ t > 0 : µ(t) ∈ A.

The sustainable kernel AS of A ⊆ X is
the largest sustainable open subset of A.

Again, existence follows because
the set of all sustainable sets is a kernel system.

The system’s manageable region is M := (X+)S

= region where system can be managed to stay
in sun forever even under “infinitesimal” noise.

Every invariant open set is sustainable.
Hence S ⊆ M .
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Def: Forecourts, Stable reachability

C ∈ T is a forecourt for Y ⊆ X , denoted C Y , iff
∀ x ∈ C ∃ µ ∈ Mx ∀W ∈ T ,W ⊇ Y

∃ t > 0 : µ(t) ∈ W and ∀ t ′ ∈ [0, t] : µ(t ′) ∈ C.

(one can approach Y arbitrarily closely from everywhere in C without
leaving C)

Y ⊆ X is (stably) reachable from x ∈ X through A ⊆ X , denoted
x A Y , iff ∃ forecourt C ⊆ A of Y with x ∈ C.
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Properties of stable reachability

For all A,A′,C,Y ,Z ⊆ X and x, y, z ∈ X :
1. If Y is open: (i) C Y iff ∀ x ∈ C

∃ µ ∈ Mx, t > 0 ∀ t ′ ∈ [0, t] : µ(t) ∈ Y and µ(t ′) ∈ C;
(ii) x A Y iff ∃C ∈ T , x ∈ C ⊆ A ∀ x ′ ∈ C

∃ µ ∈ Mx′, t > 0 ∀ t ′ ∈ [0, t] : µ(t) ∈ Y and µ(t ′) ∈ C.
2. Each set of the form ( AY ) := {x ∈ X : x A Y } is open.
3. Transitivity:

x A y A′ Z =⇒ x A+A′ Z,

x A y A′ z =⇒ x A+A′ z.

(But note that not always x A x, e.g. for unstable fixed points)
4. If A is open, it is stably reachable from each of its elements.



Proof sketch for transitivity

I Forecourt: ∀ x ∈ C ∃ µ ∈ Mx ∀W ∈ T ,W ⊇ Y
∃ t > 0 : µ(t) ∈ W and ∀ t ′ ∈ [0, t] : µ(t ′) ∈ C.

I Transitivity:

x A y A′ Z =⇒ x A+A′ Z .



Def: Upstream, Downstream, Trenches,
Glades, Lakes, Backwaters

I Shelters S = (X+)ι◦ (will stay in sun by default)
I Manageable region M = (X+)S (can stay in sun by management)

I Upstream U := ( XS) ⊇ S (can reach shelter)
I Downstream D := ( X M) − ( XS) = ( X M) −U ⊇ M −U
(can stably reach M but not S)

I Trenches Θ := X − ( XX+)
(cannot reach sun at all)

I Glades G := ( X+S) − S ⊆ U
(can reach shelter without visiting dark)

I Lakes L := M ∩U − ( X+S) = M ∩U − S − G ⊆ U
(can avoid dark and can reach shelter, but not both)

I Backwaters W := M ∩ D = M −U ⊆ D
(can avoid dark but cannot reach shelter)
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Def: Abysses, Eddies, Main cascade

I Upstream U := ( XS) ⊇ S (can reach shelter)
I Downstream D := ( X M) − ( XS) = ( X M) −U ⊇ M −U
(can stably reach M but not S)

I Trenches Θ := X − ( XX+)
(cannot reach sun at all)

I Abysses Υ :=
{x ∈ X | ∀ µ ∈ Mx ∃ t > 0 : µ(t) ∈ Θ} − Θ
(cannot avoid staying in dark eventually)

I Eddies E := X −U − D − Θ − Υ

I Main cascade C := {U, D, E,Υ,Θ}
(partition)

I U 6 D 6 E 6 

Υ

6 

Θ
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Decision tree representation, Colour scheme
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Examples



Example: gravity pendulum fun ride

Lake dilemma:
keep thrill forever by repeated bursts, or get to safety risking sickness?



Example: logistic predator-prey model
x = Easter Island population, ẋ = δx + ϕγxy
y = Easter Island vegetation, ẏ = ry(1 − y/κ) − γxy

Different parameters lead to completely different topologies:

0 5000 10000 15000 20000 25000 30000 35000
x

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

y

a

U−

U( +)

U( +)

S

G

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
x

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

y

b

D−

D( +)

D( +)

W

[Brander and Taylor 1998]



Example: Carbon Cycle with Planetary Boundaries

[Anderies et al. 2013]

ct = terrestrial carbon share
(vegetation and soil)

cm = maritime carbon share
(upper oceans)

ca = 1 − cm − ct =
atmospheric carbon share

Glade dilemma:
keep high ct , risking
almost extinction when
management breaks away? 0.0 0.2 0.4 0.6 0.8 1.0
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Example: management by smooth parameter change

ẏ = −(4 + r2)3y3 + (2r2 − 1)(4 + r2)y + er − 10,
default ṙ = 0, management ṙ ∈ [−100, 100].

Bifurcation diagram with some trajectories for ṙ = ±100:



Further definitions and properties



Def: Network of Ports and Rapids
Port = maximal set of mutually reachable states,

Rapid = equivalence class of non-port states w.r.t. which ports they
can reach and from which they can be reached.

Network of Ports, rapids, and their reachability:
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Def: Network of Harbours and Channels
Harbour = maximal set of states mutually reachable through X+,

Channel = equivalence class of non-harbour states
w.r.t. sunny reachability of harbours.

Network of Ports, rapids, and their reachability:
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Def: Network of Docks and Fairways
Dock = maximal set of states mutually reachable through S,

Fairway = equivalence class of non-harbour states
w.r.t. safe reachability of docks.

Network of Docks, fairways, and their reachability:
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Three-layer Reachability Network of Networks
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Properties

Let X− = X − X+, Υ± = Υ ∩ X±, U± = U ∩ X±, etc.

Proposition:
1. Each two ports [harbours, docks] are disjoint.
2. Each port lies completely in one of U, D, E,Υ−,Θ,

no port intersects Υ+.
3. Each harbour [dock] lies completely in one port [harbour].
4. Each channel [fairway] lies completely in one port or rapid [one

harbour or channel].
5. If a harbour H intersects some of the regions S +G, L, U+, W , or

D+, it is already completely contained in that region.

Guess which part is nontrivial!
(My proof even requires the Axiom of Choice. . . )





Summary of Dilemmas

Name Option 1 Option 2 Possible example
“Glade” dilemma higher desirability/flexibility safety adaptation/mitigation
“Lake” dilemma uninterrupted desirability eventual safety great transformation
“Port” dilemma higher flexibility higher desirability land-use change
“Harbour” dilemma uninterrupted desirability eventually higher desirability/flexibility space colonization
“Dock” dilemma uninterrupted safety eventually higher desirability/flexibility new technologies



“Topological” bifurcations

x = variable, r = parameter, management can change ẋ by ±1.

backwater/glade
bifurcation and
later port pitchfork
bifurcation caused
by a subcritical
pitchfork bifurca-
tion of the default
flow (similar in the
supercritical case)
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Thanks!

Questions? Discussion!
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