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As the Copenhagen Accord indicates, most of the international
community agrees that global mean temperature should not be al-
lowed to rise more than two degrees Celsius above pre-industrial
levels to avoid unacceptable damages from climate change. The
scientific evidence distilled in the IPCC’s 4th Assessment Report
and recent reports by the U.S. National Academies shows that this
can only be achieved by vast reductions of greenhouse gas (GHG)
emissions.
Still, international cooperation on GHG emissions reductions suf-
fers from incentives to free-ride and to renegotiate agreements in
case of non-compliance, and the same is true for other so-called
‘public good games.’ Using game theory, we show how one might
overcome these problems with a simple dynamic strategy of Lin-
ear Compensation (LinC) when the parameters of the problem
fulfill some general conditions and players can be considered to
be sufficiently rational.
The proposed strategy redistributes liabilities according to past
compliance levels in a proportionate and timely way. It can be
used to implement any given allocation of target contributions,
and we prove that it has several strong stability properties.

greenhouse gas emissions | free-riding | compliance | renegotiation |
strategy | compensation

In many situations of decision-making under conflicting interests,
including the management of natural resources (1), game theory

– the study of rational behaviour in situations of conflict – proves
to be a useful analysis tool. Using its methods, we provide in this
article a partial solution for the cooperation problem in a class of
so-called public good games: If a number of players repeatedly con-
tribute some quantity of a public good, how can they make sure ev-
eryone cooperates to achieve a given optimal level of contributions?
The main application we have in mind are international efforts to
mitigate climate change. There the players are countries and the cor-
responding public good is the amount of GHG emissions they abate
as compared to a reference scenario (e.g., a ‘business as usual’ emis-
sions path). The existing literature on the emissions problem stresses
the fact that only international agreements which contain sufficient
incentives for participation and compliance can lead to substantive
cooperation (2; 3), and game theory is a standard way of analysing
the strategic behavior of sovereign countries under such complex in-
centive structures. While earlier game-theoretic studies have been
mainly pessimistic about the likelihood of cooperation (4–19), our
results show that with emissions trading and a suitable strategy of
choosing individual emissions, high levels of cooperation might be
achieved.

The general situation is modeled here as a repeated game played
in a sequence of periods, with a continuous control variable (e.g.,
emissions reductions) that can take on any value in principle. We fo-
cus on the case where the marginal costs of contributing to the public
good are the same for all players. This is, e.g., the case if there is an
efficient market for contributions (24; 25).

We show that players can ensure compliance with a given ini-
tially negotiated target allocation of contributions by adopting a cer-
tain simple dynamic strategy to choose their actual contributions over
time. In each period, the allocation of liabilities is redistributed in re-
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Fig. 1. Illustration of Linear Compensation in a simple public good game. Alice,
Berta, and Celia farm their back-yard for carrots. Each has her individual farming
liability (thick separators) but harvests are divided equally. In the first year, Berta
falls short of her target by some amount (white area). Thus in the second year
her share of the total liabilities is temporarily increased by some multiple of this
amount, while those of the other two are decreased accordingly. Since in year
two, all comply with this completely, liabilities are then restored to their target
values (dashed separators).

action to the preceding compliance levels. The redistributions are ba-
sically proportional to shortfalls, i.e., to the amount by which players
have failed to comply in the previous period, but with a strategically
important adjustment to keep total liabilities constant. This strategy
will be called ‘Linear Compensation’ (LinC), and its basic idea is il-
lustrated in Fig. 1 in a fictitious community gardening example. In
the emissions game, these liabilities to reduce emissions then trans-
late into emissions allowances via the formula allowance = reference
emissions – liability. Our assumptions and the proposed strategy are
summarized in Table 1.

We prove that under certain conditions, an agreement to use the
strategy LinC is self-enforcing in that no player or group of play-
ers has a rational incentive to ever deviate from this strategy or can
ever convince the other players to switch to a different strategy by
renegotiating with them. In game-theoretic terms, it is both strongly
renegotiation-proof (26; 27) and a Pareto-efficient and strong Nash-
equilibrium in each subgame if all players use LinC. Moreover, ap-
plying LinC requires only little knowledge of costs, benefits, and dis-
counting, and is robust with regard to implementation errors such as
inadvertent shortfalls since it reacts in a proportionate way and re-
stores full cooperation soon afterwards. Since the strategy LinC can
in principle stabilize an agreement to meet any given target alloca-
tion, it does not solve the problem of selecting these targets them-
selves. However, it indicates that players can focus on ‘first-best’
outcomes, negotiating an allocation of the highest achievable total
payoff and then implementing that allocation by using LinC.

Before presenting our results in detail, we give a short literature
review and define our formal framework. Regarding the emissions
game, we will then discuss the validity of our assumptions and what
implications the results might have for real-world climate politics.
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Existing literature on the emissions game. A commonly used ap-
proach to strategic interaction on mitigating pollution is the theory of
International Environmental Agreements, recently surveyed in (4). In
this branch of the literature, cooperation has usually been modeled as
a one-shot game. Players join or stay out of a long-term coalition for
selfish (or rational) reasons, and within such ‘stable’ coalitions, play-
ers act to the best of the group. When this group includes all players,
the cooperation dilemma is overcome. Early insights of this theory
were that large stable coalitions tend to be unlikely, particularly when
they would actually benefit players (5; 6), and that additional ingredi-
ents to the international agreement are needed in order to entice more
players to join, e.g., side payments (7). More elaborate schemes have
been conceived and explored, e.g., optimized transfers, linking with
research cooperation, or endogenously determined minimum partic-
ipation clauses (28–30), suggesting that higher participation levels
may well be reached, but at the price of added complexity in the
agreement.

A different route is taken by authors who include the time dimen-
sion in the game by modeling it as a repeated game (8–10), thus in-
troducing a way for players to react to others’ shortfalls. In analogy
to the Prisoners’ Dilemma, players have the discrete choice to ‘de-
fect’ (emit the individual optimum) or ‘cooperate’ (emit only what is
optimal globally) in most of these models. The conclusion is mostly
that cooperation among more than a few players is unlikely because
the threat to punish defection by universal defection is not credible.
In (10), it is shown that in such a discrete model, defection by smaller
numbers of players can be a credible threat deterring unilateral defec-
tions. But in a model where countries choose emissions levels from a
continuum of choices, a similar strategy only works if players value
the future high enough (11). We will improve upon these mixed re-
sults and show that in such a continuous model and with the ability
to emit more than the individual optimal, one can even deter multi-
lateral deviations from the global optimum by reacting in proportion
to the size of the deviation, avoiding harsh punishments for small er-
rors. While the above models focus primarily on analytical results,
some authors also apply numerical models based on empirical data
(12). Although their analysis is made difficult by the fact that numer-
ical solution requires specifying a finite number of time periods, they

The public good game:

• Repeated game, no binding agreements or commitments
• Individual contributions are made per player and period

and are publicly known after each period
• Positive, non-increasing marginal individual benefits,

depending on total contributions
• Non-negative total costs with non-decreasing marginals,

depending on total contributions,
shared proportionally or based on marginal cost pricing

• All players discount future payoffs in the same way
• Optimal total contributions are known and

an allocation into individual targets has been agreed upon

The strategy of Linear Compensation (LinC):

• Initial individual liabilities = targets
• Shortfall per period = liability – actual contribution

(if positive, otherwise zero)
• New liability = target + [own shortfall – mean shortfall] · factor
• The strategy is to always contribute your liability

Table 1. Main assumptions and solution for the public good game

are able to show that the option to retaliate improves the prospect of
cooperation.

Finally, the models in (13–18) describe the climate change game
as a dynamic game with a stock pollutant, thus improving on both
the repeated game model and the static one-shot game model. In
(15; 18), it is shown that some intermediate amount of cooperation
can be stabilized against unilateral deviations by harsh punishments.
A similar model is also used in (19), the work most similar to ours:
it introduces the idea of keeping total contributions at the optimal
level also during punishments, but again using harsh instead of pro-
portionate punishments. We will show that a proportionate version
of their redistribution idea will even lead to renegotiation-proofness
when marginal costs are equal for all players. This is in line with
some real-world policy proposals that suggest a similar redistribu-
tion, although of direct financial transfers, to make threats credible
and thus ensure compliance with emissions caps (3).

Framework
The public good game. Assume that there are infinitely many pe-
riods, numbered 1, 2, . . . , and finitely many players, numbered
1, . . . , n. In each period, t, each player, i, has to choose a quantity
qi(t) as her individual contribution to the public good in that period.
The resulting total contributions in period t are Q(t) =

∑
i qi(t).

In the emissions game, qi(t) would be the difference between
i’s hypothetical amount of GHG emissions in period t in some pre-
determined reference scenario (e.g., ‘business as usual’), and i’s net
emissions in period t. By ‘net emissions’ we mean the amount of real
emissions caused domestically plus, if players use emissions trading,
the amount of permits or certificates sold minus the amount of per-
mits or certificates bought on the market. In other words, qi(t) = 0
corresponds to business-as-usual behaviour, and qi(t) > 0 means
that i has reduced emissions in t domestically and/or by buying per-
mits or certificates.

Depending on qi(t) andQ(t), player i has certain individual ben-
efits bi(t) and individual costs ci(t) in period t. The typical con-
ditions under which a problem of cooperation arises and can be ap-
proached by our results are reflected in the following somewhat ideal-
ized assumptions on these costs and benefits and on the information,
commitment abilities, and rationality the players possess. For the
emissions game, we discuss the validity of the following assumptions
in more detail in the Discussion and in SI: Validity of assumptions.

The contributed good is called a ‘public’ good since individual
benefits bi(t) are determined by total contributions only, through an
increasing function fi(Q(t)). They are zero at Q = 0, and marginal
benefits are non-increasing. A period’s total benefits B(t) are then
given by f(Q(t)) =

∑
i fi(Q(t)). On the negative side, we assume

that total costs C(t) are also determined by a non-negative and non-
decreasing function g(Q(t)) of total contributions, start at zero, and
marginal costs are non-decreasing.1

Unlike in many other models of public goods, we assume here
that total costs are shared in a way that equalizes marginal costs. E.g.,
costs might be shared in proportion to individual contributions, giv-
ing ci(t) = qi(t)C(t)/Q(t). Or, what is more realistic if there is a
perfect competition market for contributions, costs might be shared
according to a rule based on marginal cost pricing.2 In both cases,
one has the following convexity property on which our results will
rely: for each Q, there is some ‘cost sensitivity’ γ(Q) so that (i) if qi
and Q are both lowered by an amount x > 0, then ci gets lowered
by at most xγ(Q), (ii) if qi is raised by an amount x > 0 but Q

1Formally, fi and g are twice differentiable, bi(t) = fi(Q(t)), C(t) = g(Q(t)) > 0,
fi(0) = g(0) = 0, f ′i(Q) > 0, g′(Q) > 0, f ′′i (Q) 6 0, and g′′(Q) > 0.
2 Each player i would then actually contribute an amount ai(Q) for which its individual
pre-trade cost function gi has marginal costs g′i(ai(Q)) equal to the global marginal costs
g′(Q), and would buy the remaining contribution, qi − ai(Q), at a price that also equals
g′(Q). Individual costs are then ci = gi(ai(Q)) + [qi − ai(Q)]g′(Q).
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is kept constant by lowering the other values qj , then ci raises by at
least xγ(Q), and (iii) ci = 0 for Q 6 0. In other words, lowering
your contributions by x saves you at most costs of xγ(Q), but if x
contributions are redistributed from others to you, your costs raise by
at least that same amount. It is easy to see that in the proportional
cost-sharing case, γ(Q) equals average costs g(Q)/Q, while in the
marginal cost pricing case, γ(Q) equals marginal costs g′(Q).

In the emissions game, the benefits of reducing emissions by
1 Gt CO2-equivalents in period t correspond to all avoided welfare
losses that would have been caused at times after t by that additional
1 Gt of emissions, properly discounted to reflect the corresponding
time difference, and using any suitable welfare measure such as con-
sumption, income, gross domestic product (GDP), etc. (20–22). The
above form of the costs ci seems justified when we assume an in-
ternational emissions market between firms, similar to the European
Union Emission Trading Scheme (EU ETS). A simple example cost-
benefit structure is that of linear benefits and linear marginal costs
(23): fi(Q) = βiQ with βi > 0, g(Q) = Q2 for Q > 0, and
g(Q) = 0 for Q 6 0. For other examples, see SI: Examples.

We explicitly allow individual contributions qi to be any real
number in principle, positive or negative. However, as Q gets large,
costs get prohibitively high, and as Q gets small, benefits get pro-
hibitively negative. Hence total period payoffs, P (t) = B(t)−C(t),
are bounded from above but not from below, with P (t) → −∞ for
Q(t) → ±∞. In the emissions game, large positive or negative val-
ues for some qi can obtain if large amounts of emissions permits are
traded. Although the strategy we will propose below prescribes such
large values of qi only in cases where there has already been an ir-
rationally large earlier deviation, this might still lead to problems in
practice (for an alternative model, see SI: Bounded liabilities).

Players make the choices qi(t) individually and simultaneously
in each t, and all know that no player can commit himself bindingly
to some value of qi(t) at some time earlier than t. They also know
that each i has complete information about costs, benefits, and all
past contributions when choosing qi(t). Players are assumed to be
rational in that they aim at maximizing their long-term payoff, using
some strategy to choose qi(t) on the basis of this information, and
expect the others to do so as well. Regarding how much the players
value next period’s payoffs in comparison to this period’s, we assume
as usual that for some constant δ > 0 and all periods t, all prefer to
get one payoff unit in period t+ 1 to getting δ payoff units in t.

For some optimal amount Q? of total contributions, total (ex-
pected) payoff gets maximized, and marginal total costs equal
marginal total benefits but exceed marginal individual benefits:

f(Q?)− g(Q?) = max, g′(Q?) = f ′(Q?) > f ′i(Q
?). [1]

α compensation factor
B(t), bi(t) benefits in period t, total and for player i
βG marginal benefits at target, for a group of players G
C(t), ci(t) costs in period t, total and for player i
d̄(t), di(t) shortfalls in period t, average and of player i
δ lower bound for discounting factors
f(Q), fi(Q) benefit functions, total and for player i
g(Q) total cost function
γ(Q), γ? cost sensitivity function, and value at target Q?

`i(t) liability of player i in period t
Q(t), qi(t) contributions in period t, total and by player i
Q?, q?i target contributions, total and for player i
x size of potential shortfall by a group of players G

Table 2. Main symbols used in this article

Optimal total payoffs are usually much larger than the total payoffs
the players would end up if they do not cooperate. E.g., in the simple
example with linear benefits and marginal costs, optimal total payoffs
are larger than the non-cooperative equilibrium payoffs by a factor
of approximately n2/4, showing that the potential gains of coopera-
tion can be very large and increase with the number of players (see
SI: One-shot game and SI: Examples).

Finally, let us assume that players can enter no legally binding
and enforceable agreements (since this is the worst case assumption
when studying the possibility of cooperation) but have somehow cho-
sen in advance (before period one) an allocation of the optimum tar-
get into individual targets q?i , with

∑
i q
?
i = Q?. This allocation will

be so that no group G of players has an incentive to contribute more
than what was agreed as their joint target Q?G =

∑
i∈G q

?
i .3

In the emissions game, targets might be negotiated using equity
criteria such as per capita emissions permits, per capita payoffs, his-
torical responsibility, etc. (31–33) (34, p. 915). In game-theoretic
terms, this initial negotiation poses a problem of equilibrium selec-
tion that precedes the problem of cooperation which we are con-
cerned with in this article (see also SI: Cooperative analysis).

Free-riding and renegotiations. In this kind of public good game,
the problem of cooperation is now this: Although the negotiated tar-
gets provide the optimal total payoff and are often also profitable for
each individual player, they constitute no binding agreement. Hence
player i will hesitate to meet the target if he can hope that the oth-
ers will meet it, since contributing less reduces i’s costs more than
his benefits (see Eqn. [1]). If there is only one period of play, this
free-rider incentive is known to make cooperation almost impossible,
since rational players will then contribute a much smaller quantity,
which means that the agreement is not self-enforcing (for more on
this, see SI: Properties of the one-shot game).

In a repeated game, however, a player i can react to the other
players’ earlier actions by choosing qi(t) according to some strategy
si that takes into account all players’ individual contributions before
t. The immediate gains of free-riding might be offset by future losses
if others react suitably. The announcement to react in such a way can
then deter free-riding as long as that announcement is credible (see,
e.g., Robert Aumann’s Nobel Lecture (35)).

However, if those who react to free-riding would thereby reduce
their own long-term payoffs, and if they cannot bindingly commit
themselves beforehand to actually carry out the announced reaction
despite harming themselves in doing so, then such a threat would not
be credible since a potential free-rider could expect that a rational
player will not harm herself but rather overlook the free-riding. After
the fact, a free-rider of period t could then successfully renegotiate
with the others between periods t and t+ 1, convincing them to “let
bygones be bygones”. The effect is that his free-riding in t will be
ignored, since in t+ 1 everyone benefits from doing so (26).

A famous example of such a non-credible strategy, though in a
different game, is the strategy ‘tit for tat’, observed in various ver-
sions of the repeated Prisoners’ Dilemma when players can commit
themselves beforehand (36; 37). That strategy is to start with ‘cooper-
ate’ and then do whatever the other player did in the previous period,
thereby punishing defection with defection. But once this calls for
‘defect’ in some period, both would be better off at that point if they
instead both continued with ‘cooperate’. So the threat to defect after

3Formally:
∑
i∈G f

′
i(Q

?) < h′(0) where h(x) = (Q?G + x)g(Q? + x)/(Q? + x).
4 Unfortunately, experimental studies of repeated games have yet been rare and inconclusive
about the question of what the effect of credible threats on cooperation is. E.g., in (39) it is
concluded that the existence of equilibria with credible threats is a necessary but not sufficient
condition for cooperation in a certain type of game, while others, like (40), report that sometimes
cooperation can also be sustained without credible threats in the laboratory. In (41, p. 1502)
it is concluded from the experience with existing International Environmental Agreements that
only those treaties in which compliance could be enforced lead to a substantial amount of
cooperation, which can also be interpreted as supporting the necessity of credible threats.
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a defection is void and cannot deter free-riding under assumptions of
rationality and without commitment possibilities (38).4

Another problematic strategy is to simply treat free-riding as
some form of debt to be repaid with interest, as it is done, e.g., in
the Kyoto protocol, in which a country falling short in one period has
its liabilities in the following period increased by 1.3 times the size of
its shortfalls. In our framework, such a rule would lead to inefficient
contributions in t+1 that exceed the optimal valueQ?, making rene-
gotiations likely that lower all liabilities to an efficient value. Even
worse, if a player never fulfills his liabilities, he gets away with it.

Depending on the cost-benefit structure of a repeated game, there
might or might not be strategies that achieve a certain level of stabil-
ity against deviations such as free-riding and against incentives to
renegotiate. Fortunately, we can formally prove that in our assumed
framework, a rather simple, proportionate combination of the above
two ideas of punishing other’s and repaying one’s own shortfalls is
both efficient and highly stable, even when players make small errors
in implementing it. Table 1 summarizes our main assumptions and
the suggested solution that we present below.

Results
Avoiding renegotiations. Let us deal with the question of renegoti-
ations first. The crucial idea to avoid those in our kind of game is
to keep total contributions constant and only redistribute them as a
reaction to past behaviour. Consider a strategy s which, in each pe-
riod t, tells all players to choose their contributions qi(t) in a certain
way which makes sure that the total target is met, Q(t) = Q?. Then
no matter the actions before t, there can be no alternative strategy s̃
that achieves higher total payoffs than s from time t on. So, any al-
ternative strategy s̃ that leads to different payoffs than s would lead
to a strictly smaller payoff than s for at least one player. This holds
whether only payoffs in t are considered or also later payoffs with dis-
counting. Hence there is no possible situation in the game that would
cause all players to agree to change the strategy. In game-theoretic
terms, such a strategy is ‘strongly perfect’, i.e., Pareto-efficient in all
subgames. It will thus be strongly renegotiation-proof (26; 27) if we
manage to do the redistribution of contributions in t+ 1 in a way that
makes free-riding in t unprofitable in the long run. This we will do
next.5

Deterring simple free-riding by groups of players. Suppose in some
period t, all players contribute their targets, except that a set G of
players free-rides. This means they jointly contribute only a quantity
QG(t) =

∑
i∈G qi(t) that is by some amount x > 0 smaller than

their joint target contribution: QG(t) = Q?G − x. Note that G’s ben-
efits are given by fG(Q) =

∑
i∈G fi(Q), so that βG = f ′G(Q?) is

G’s target marginal benefit. Let γ? = γ(Q?) be the cost sensitivity
at the target contributions. Then G’s shortfalls reduce their joint ben-
efits in t by at least xβG, but saves them costs of at most xγ?. Hence
their joint payoff increases by at most

x(γ? − βG). [2]
How much redistribution in t + 1 is now needed to make this un-
profitable for G? Suppose the contributions in t+ 1 are redistributed
in such a way that everyone gets their target benefits but group G
has additional costs, and these additional costs times δ are no smaller
than the above x(γ? − βG). Then, in period t, it is not attractive for
G to free-ride, since in that period, they value their resulting losses in
t+ 1 higher than their gains in t. Such a redistribution can easily be
achieved: Just raise G’s joint contributions QG(t + 1) from Q?G by
at least x(γ? − βG)/γ?δ and reduce the other players’ contributions
accordingly.6 This leads to additional costs for G in t+ 1 of at least

x(γ? − βG)/δ. [3]
So, G’s joint gains in t are overcompensated by these losses in t+ 1.
Although free-riding for one period might be profitable for some in-
dividual members of G, there is always at least one member of G for

whom it is not. Fig. 1 illustrates the basic idea. We will show next
how the same kind of redistribution can be used to deter also every
conceivable sequence of deviations from the target path.

The strategy of Linear Compensation (LinC). A simple strategy that
does this assigns each player i in each period t a certain individual
liability `i(t) which that player should contribute in t. In period one,
liabilities equal the negotiated targets, `i(1) = q?i (1). Later, they
depend on the differences between last period’s liabilities and ac-
tual contributions of all players. After each period t, we first com-
pute everyone’s shortfalls in t, which are di(t) = `i(t) − qi(t) if
`i(t) > qi(t), and otherwise di(t) = 0, that is, we do not count ex-
cesses. Then we redistribute the targets in t+1 so that these shortfalls
are compensated linearly, but keeping the total target unchanged:

new liability = target + [own shortfall − mean shortfall] · factor

`i(t+ 1) = q?i + [di(t)− d̄(t)] · α. [4]

In this, d̄(t) =
∑
i di(t)/n is the mean shortfall and α is a certain

positive compensation factor we will discuss below. Obviously, if all
players comply with their liabilities by putting qi(t) = `i(t), then all
shortfalls are zero, and both liabilities and contributions stay equal to
the original targets so that the optimal path is implemented.

The compensation factor α has to be large enough for the argu-
ment of the previous section to apply in all possible situations, what-
ever the contributions have been before t. In the simple free-riding
situation discussed in the previous section, the group’s joint shortfall
equals x and the mean shortfall is d̄(t) = x/n. Hence G’s joint ad-
ditional liability in t + 1 is [x − |G|x/n] · α, where |G| < n is the
number of players in G. If this is at least x/δ, then having shortfalls
of size x is not profitable, independently of what the actual liabilities
in t were. Since only shortfalls but not excesses lead to a redistri-
bution, a group can neither profit from contributing more than their
liability.

In other words, to make sure no group of players has ever an in-
centive to deviate from their liability for one period, even if liabilities
are already different from the target, it suffices if

α >
n

γ?δ
·max

G

γ? − βG
n− |G| , [5]

where the maximum is taken over all possible groups of players G.
If it is known that the benefit functions of all players are equal,
then βG = C′(Q?)|G|/n > γ?|G|/n and Eqn. [5] simplifies to
α > [nγ? − C′(Q?)]/γ?δ(n − 1), so that in particular α > 1/δ
suffices. Note that liabilities do not depend on costs and benefits ex-
plicitly, only via the negotiated targets q?i and the factor α, so the
information about costs and benefits one needs to apply LinC is lim-
ited to the knowledge of the optimum contribution and the marginal
costs and benefits at the target. Now, a player i who complies with
the liabilities defined by Eqns. [4] and [5] by putting qi(t) = `i(t) is
said to apply the strategy of ‘Linear Compensation’ (LinC).

In game-theoretic terms, we have shown above that when all
players apply LinC, this forms a ‘one-shot subgame-perfect’ equi-
librium. It is then also never profitable to deviate from LinC for any
number of successive periods. The proof for this follows a standard

5If we drop the assumption that the global target Q? maximizes total payoff, e.g., because of
uncertainty in estimating the optimum, then such redistribution strategies are no longer Pareto-
efficient in all subgames. Renegotiations that improve total payoff may then happen, which is
desirable. Still, the same reasoning as above shows that there is never an incentive for all play-
ers to pretend past actions were different from what they really are, hence no group of players
can convince the rest to ignore their shortfalls. This is called ‘weak renegotiation-proofness’
(26; 27). See also SI: Renegotiations when targets are not optimal.
6If G consists of all n players, optimality of Q? implies that shortfalls give no gains for G in
period t.
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argument (42).7 In the Appendix, we prove that even no conceivable
infinite sequence of deviations is profitable for any group G of play-
ers. Hence for any given set of targets q?i , it builds a strong Nash
equilibrium in each subgame if all players apply LinC given these
targets. Roughly speaking, the reason is that if G continually falls
short, contributions of the other players will decrease fast enough, so
that, in the long run,G’s gains from saved costs are overcompensated
by their losses from decreased total contributions. Note that the oth-
ers do not need to use a threat of contributing nothing forever (which
would not be credible), but only threaten to respond to each period
of shortfalls with a period of punishment, one at a time. This gradual
escalation is credible when there is ‘common knowledge of rational-
ity,’ since G knows in advance that after each individual period t of
shortfalls, the others still expect them to follow their rational interest
and return to compliance in t + 1 instead of falling short again, no
matter how many shortfalls have happened already.8

Discussion
We have presented a simple strategy by which players in a public
good game can keep each other in check in the provision of agreed
target contributions. Our approach can be interpreted as a combi-
nation of a proportionate version of the punishment approach that
strategies like ‘tit for tat’ use in the Prisoners’ Dilemma, and the re-
payment approach that is already included in the Kyoto mechanism.
This combination has been formally shown here to have strong game-
theoretic stability properties in situations where some simplifying as-
sumptions hold, a feature that is not true of strategies that use only
one of the two ingredients. In Axelrod’s (36) terminology, our strat-
egy, LinC, is ‘nice’ in that it cooperates unless provoked, ‘retaliating’
when provoked, ‘forgiving’ when deviators repay, and uses ‘contri-
tion’ to avoid the echo effect.

We believe that very similar strategies will be valuable also in
contexts in which some of our assumptions are violated. E.g., fu-
ture work might use an improved model of the emissions game in
which the assumption of identical periods is replaced by certain
path-dependencies: Real-world benefit functions fi depend on GHG
stocks and hence on time and emission history, and also the cost func-
tion g depends on time and emission history because of technological
progress. Since past contributions will reduce future marginal costs,
this will lead to a non-constant optimal abatement path Q?(t). How-
ever, these effects will probably not weaken LinC’s stability when q?i
is replaced by a time-dependent target allocation q?i (t) of Q?(t) that
is computed according to some initially negotiated rule (e.g., in fixed
proportions). This is because then the Pareto-efficiency argument for
renegotiation-proofness still holds, while shortfalls would slow down
technological progress and lead to even higher marginal costs in the
punishment period.

A more critical assumption is that contributions are unbounded
which would make it possible in principle to punish even long se-
quences of large shortfalls by escalating emissions, a possible devel-
opment which rational players would then avoid. If emissions can not
exceed some upper bound, it would still suffice if welfare losses be-
came prohibitively large when emissions approach that bound. Only
if those losses are bounded as well, the question whether large short-
falls can be deterred depends on the actual cost-benefit structure and
on the value of δ, which is in line with general results on repeated
games with bounded payoffs (42) (see also SI: Bounded liabilities,
SI: Validity of assumptions).

In addition to such model refinements, future work should also (i)
assess the possibility of players to “bind their hands” ahead of time by
making long-term investment decisions that reduce their own ability
to choose qi(t) at t, (ii) study the influence of incomplete informa-
tion due to restricted monitoring capacities, finite planning horizons
and of other forms of ‘bounded rationality’ (43), (iii) link emissions
reductions with other issues (44), (iv) include possible altruism, rep-

utation, and status effects, also using experimental approaches such
as (45).

Since LinC uses a proportionate and timely measure-for-measure
reaction to shortfalls, it performs well also in situations in which
players cannot control their actions perfectly. It is easy to see from
Eqn. [4] that random errors do not add up or lead away from the tar-
get, nor do one-time deviations initiate a long sequence of reactions.9

The latter is avoided by comparing actual contributions not to the ini-
tial targets but to dynamic liabilities, which are similar to the ‘stand-
ings’ used in ‘contrite tit-for-tat’ for the repeated Prisoners’ Dilemma
(46). All the above stability properties of LinC hold independently
of the form and amount of discounting if the compensation factor α
is chosen properly.10 While many other games have no strong Nash
equilibria, the public good game studied here somewhat surprisingly
even allows players to sustain any allocation of the optimal total pay-
off with a strategy that is a strong Nash equilibrium even in each sub-
game (though leaving the coordination problem of equilibrium selec-
tion as a task for prior negotiations). Since deviations by groups have
been considered before only for non-repeated ‘normal-form’ games,
this new combination of ‘strong Nash’ and ‘subgame-perfect’ equi-
librium can also be considered a contribution to game theory itself.

In real-world climate politics, redistribution mechanism such as
ours could play a key role in the implementation of cap-and-trade
regimes, whose importance is stressed by many authors (see, e.g., the
impressively broad collection of articles in (2). While in domestic
emissions markets, caps can be issued by a central authority and com-
pliance might be enforced legally, both is more difficult in large inter-
national markets (47). If, like in the first two periods of the EU ETS,
each country in a market issues its own permit quantity qi, a strategy
like LinC might be used to ensure compliance with some agreed indi-
vidual caps that realize that market’s joint optimum, giving countries
incentives to issue only the agreed target amount of permits and to
ensure that domestic emissions are matched by permits after trading.
To choose a suitable compensation factor, only a conservative esti-
mate of the (expected) marginal costs and benefits at the target and
the short-term discounting factor is needed.

In this way, one could avoid using “sticks” such as trade sanc-
tions (48, p. 34) or tariffs (3), which are mostly considered to be diffi-
cult to push politically vis-a-vis partners, and focus on “carrots” (ben-
efitting from other players’ emissions reductions). Still, tariffs might
be helpful vis-a-vis non-participants, who might prefer to avoid them
by joining the market (49). Also, starting with a number of regional
markets with possibly sub-optimal caps, several such markets might
merge to decrease marginal costs (50; 51), eventually leading to a
global cap-and-trade system with a globally optimal cap. Whenever
caps need to be negotiated anew due to new participants or new cost-
benefit estimates, any pre-negotiation shortfalls would still be taken
into account in LinC, providing both continuity and flexibility as de-
manded in (48, p. 36). Likewise, compliance with the Kyoto protocol
might improve if its current compensation rule was modified to keep
total liabilities constant as in Eqn. [4] and if the current compensa-
tion factor of 1.3 was adjusted according to Eqn. [5]. In contrast, the
harsh punishment strategies on which earlier studies have focussed
are not only less strategically stable but also less practicable because
of their disproportionate reactions and their strict distinction between
‘normal’ and ‘punishment’ periods.

7If m successive deviations were profitable, but no shorter sequence was, then one-shot
subgame-perfectness would imply that after the first m − 1 deviations, the m-th is no longer
profitable. Hence already the first m − 1 deviations would have been profitable — a contra-
diction. Infinite sequences have to be considered separately since payoffs are unbounded.
8This expectation is common to all Nash-like equilibrium concepts. The much stronger de-
mand that compliance should be optimal regardless of the other players’ behavior would require
so-called ‘dominant’ strategies which, however, do rarely exist in repeated games.
9With implementation errors of variance σ2, the mean squared deviation of `i(t + 1) from
the target q?i will be at most σ2α2(n − 1)/n, hence the mean squared deviation between
actual and target contributions is of magnitude σ2(1 + α2(n− 1)/n).
10The value of δ however does play a role when, in addition to our assumptions, liabilities shall
be bounded. This is further explored in SI: Bounded liabilities.
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Appendix: Why infinite sequences of deviations do not pay

Suppose all players apply LinC by putting qi(t) = `i(t) except
that from some period t0 on, a group G of players play a deviation
strategy s that leads to joint shortfalls

∑
i∈G di(t) = xt in each pe-

riod t > t0. Since excess contributions never pay, we can assume
that xt > 0. Assume further that in each period t and for each in-
teger r > 0, all players consider getting one payoff unit in period
t+ r as equivalent to getting wt,r payoff units immediately in period
t, where the discounting weights wt,r fulfill the conditions

wt,0 = 1, wt,1 > δ, wt,r > 0,
∑∞
r=0 wt,r = Wt <∞. [6]

E.g., players could use exponential discounting with wt,r = εr ,
δ < ε < 1, and Wt = 1/(1− ε).11 G’s discounted long-term payoff
from t0 on is then UG(t0) =

∑
t>t0

wt0,t−t0PG(t) with joint pe-
riod payoffs PG(t) =

∑
i∈G(bi(t) − ci(t)). We will show that this

is no larger than if they had continued to apply LinC instead. Assume
∆(s,LinC) > 0 is the difference in UG(t0) between playing s and
playing LinC from t0 on, and consider the following two cases.

(i) Suppose the discounted total long-term shortfalls are finite,
i.e., the series

∑
t>t0

wt0,t−t0xt of non-negative terms converges.
Now consider the truncated deviation strategy s̃ that returns to com-
pliance in some period t1 > t0, i.e., consists in playing s for t0 6
t < t1 and playing LinC for t > t1. Let ∆(s, s̃) be the difference in
UG(t0) between playing s and s̃. This is at most the costs they save
in periods t > t1 when playing s instead of LinC, which is at most
xtγ

? according to Eqn. [2]. Hence ∆(s, s̃) 6
∑
t>t1

wt0,t−t0xtγ
?.

Because of the assumed series convergence, this goes to zero for
t1 →∞, so it is smaller than ∆(s,LinC) if t1 is large enough. Then
∆(s̃,LinC) = ∆(s,LinC)−∆(s, s̃) > 0 which means that already
the truncated deviation strategy s̃ is profitable. But we already proved
that no finite sequence of deviations is profitable, so neither is s.

(ii) Suppose the discounted total long-term shortfalls are infinite,∑
t>t0

wt0,t−t0xt = ∞. Because xt−1 > 0, the joint liability of G
in period t is no smaller than the target, LG(t) =

∑
i∈G `i(t) > Q?G.

Hence their joint costs CG(t) are either zero if xt > Q?, since
then total costs are zero, or they are by at most Q?γ? smaller
than in the case where LG(t) = Q?G. In other words, CG(t) is
bounded from below by some value Cmin

G . Concerning benefits, let
fG(Q) =

∑
i∈G fi(Q) and let βG = f ′G(Q?) be the target marginal

benefit of G. Then G’s joint benefits are fG(Q? − xt), which is at
most fG(Q?)− βGxt because marginal benefits are non-increasing.
ThusG’s joint payoffs are at most (Q?−Q?G)γ?+fG(Q?)−βGxt,
so that G’s discounted long-term payoff UG(t0) is then at most

Wt0 [fG(Q?)− Cmin
G ]− βG

∑
t>t0

wt0,t−t0xt. [7]

But the latter series diverges because of our assumption, hence
UG(t0) = −∞. In other words, an infinite sequence of shortfalls
growing this fast is infinitely bad.12
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SI: Validity of assumptions on the emissions game
Typical models of the emissions game used in the literature fulfill our
assumptions on costs and benefits (1; 2).

Concerning benefits, the economic literature on climate change
as distilled in the IPCC’s 4th Assessment Report and recent reports
by the U.S. National Academies indicates that the global society as
a whole would benefit from reduced GHG concentrations (3–5). The
regional distribution of the consequences of climate change is much
more uncertain, but some studies (6; 7) suggest that on a suitable
level of regional aggregation, most or all world regions do indeed
have positive marginal benefit functions f ′i , whether in terms of GDP,
consumption, or other welfare measures. If some country or region
i would not profit from reduced GHG concentrations, it may still
be part of a politically or economically closely integrated group of
countries that would profit from reduced GHG concentrations as a
group. In that case, it may be appropriate to treat that group as a
single player, and indeed many models use world regions instead of
countries as players (1; 2; 8). Otherwise, i has to be excluded from
the scope of LinC and its contributions (if any) could be treated as
an exogenous variable for our solution to be applicable. This could
also be done with countries whose emissions cannot be monitored or
that cannot be considered rational agents (see below) or seem to use
a discounting rate much larger than the others.

The common assumption that marginal benefits are non-
increasing was made mainly for simplification. Many models in the
literature even assume constant marginal benefits. If actual marginal
benefits can be increasing, e.g., because of certain tipping elements
in the Earth system (9; 10), our analysis would still be valid if we
let βG denote the value infQ6Q? f

′
G(Q) instead of f ′G(Q?) and raise

the compensation factor α accordingly.
For costs, the convexity of the cost function (i.e., non-decreasing

marginal costs) is more essential for our analysis but reflects the
usual assumptions. A recent study (11) estimates actual marginal
costs to be approximately linear, hence a model of linear benefits and
marginal costs seems to be a plausible first approximation. However,
we also assume that marginal costs are equalized for all countries
by emissions trading and shared in a way fulfilling our convexity as-
sumption, and whether this is justified depends on whether the market
has perfect competition or whether instead prices can be influenced
strategically by some countries with “market power”, as it is assumed
in some models (12). Future research should investigate this issue in
detail.

Another issue is that of risk and uncertainty. In a more accu-
rate model, benefits of reductions in period t would be an uncertain
and/or risky quantity (13; 14), e.g., due to the unknown value of fu-
ture GDP and the fact that for a stock pollutant, emissions-related
damages in t may depend on earlier emissions in a non-linear way.
Much of the existing literature on cooperation in this game assume
this non-linearity is small enough for a game-theoretic analysis to
disregard it (1; 2; 8; 15). On the question of discounting in the con-
text of the emissions game, see (16; 17), where it is also argued that

risky payoffs can be treated as risk-free by using their expected value
and a lower, “risk-free” discounting rate. One might also want to use
a more general payoff function of the form hi(bi − ci) with concave
increasing functions hi, for which we conjecture our results will still
hold.

Finally, whether the assumption of complete information is a rea-
sonable approximation will have to be checked carefully, even when
risk has been accounted for as indicated. Uncertain information about
past contributions may be overcome by improving monitoring possi-
bilities (18; 19), increasing the period length, or basing liabilities on
earlier periods by replacing `i(t + 1) by `i(t + k) for some k > 1
in Eqn. [4].The assumption that no country has a significant possibil-
ity to bindingly commit itself to certain future contributions has to
be evaluated in light of the possibility of early investment decisions.
Whether countries can be considered to be rational players in the
sense of classical game-theory or exhibit some form of bounded ratio-
nality (20), and whether they cannot enter legally binding agreements
that are not self-enforcing in the sense discussed, but can somehow be
enforced by other means external to the considered game (e.g., inter-
national bodies or trade sanctions), are difficult questions of political
science and international legal theory which are beyond the scope of
this article. In this context, models that link emissions reductions
with other issues (21), and approaches based on agent-based model-
ing (22), learning theory (23), or complex networks (24) are impor-
tant contributions. Also, decision-makers might include criteria such
as reputation and relative status in their reasoning, or might be influ-
enced by citizens’ altruistic attitudes towards public goods problems
(25).

SI: Renegotiations when targets are not optimal
Let us drop the assumption that the global target Q? maximizes total
payoff. Then LinC is no longer Pareto-efficient, hence not strongly
renegotiation-proof, but is still weakly renegotiation-proof and also
has the following property if α is large enough: Assume some group
G of players can profit from free-riding in a period t and then rene-
gotiating a new strategy s with the others that all will follow from
t + 1 on. Then there is another strategy s̃ that all players outside
G strictly prefer to play from t + 1 on over playing s, and so that
G’s long-term payoff from t on is smaller than if all had continued
to play LinC. We will prove below that this strategy s̃ can be chosen
so that it simply consists in continuing to play LinC, but with a new
set of targets q?i from t + 1 on, and taking into account in t + 1 the
shortfalls in t. In other words, the “meta-strategy” of sticking to LinC
and only changing the targets when necessary deters any attempts of
free-riding followed by renegotiation.

The proof is this: As all would agree to play s from t + 1
on, it must increase Ui(t + 1) for all i, hence it must increase∑
i Ui(t+1) =

∑
r>0 wt+1,rP (t+1+r). Thus the supremum of the

new total period payoffs, P+ = supr>0 P (t + 1 + r), exceeds the
original target payoffs and is finite since payoffs are bounded from
above. Since total payoffs f(Q) − g(Q) are a continuous function
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of Q, there is a value Q+ for which they equal P+. So any strat-
egy s̃ that has total contributions Q+ from t+ 1 on gives at least the
same value of

∑
i Ui(t + 1) as s does. In particular, this is true if s̃

consists in applying LinC with any targets q+i instead of q?i , as long
as
∑
i q

+
i = Q+. Since each Ui(t + 1) is a linear function of the

targets q+i , the latter can also be chosen so that for each individual
i, Ui(t + 1) is larger for s̃ than for s. Let q0i be those targets and
consider the alternative targets q+i = q0i + (n− |G|)λ for i ∈ G and
q+i = q0i − |G|λ for i /∈ G, with some λ > 0. Then Ui(t + 1) is
still larger for s̃ than for s for all i /∈ G, and UG(t + 1) is linearly
decreasing with increasing λ. Now let s0 be the strategy of applying
LinC with the original targets q?i and consider these four cases:

(i) all play s0 from t on,
(ii) G free-rides in t and all continue with s0 from t+ 1 on,
(iii) G free-rides in t and all switch to s from t+ 1 on,
(iv) G free-rides in t and all switch to s̃ from t+ 1 on.

We already know that UG(t) is larger in case (i) than in case (ii) and
UG(t + 1) is larger in case (iii) than in cases (ii) and (iv). Hence
λ can be chosen so that UG(t) is smaller in case (iv) than in case
(i), but UG(t + 1) is still larger in case (iv) than in case (ii). Since
also Ui(t + 1) is larger in case (iv) than in case (iii) for all i /∈ G,
this means that when G proposes switching to s after the free-riding,
the rest has incentives to argue for switching to s̃ instead which at
t + 1 still all prefer to continuing with s0, but which makes sure the
free-riding by G did not pay in the long run.

SI: Properties of the one-shot game
Here we consider the one-shot version of the game (also called the
stage game of the repeated game) in which only one period is played
and a strategy just consists of choosing the individual contributions
qi of that period.

Pareto-efficient contributions. Since the game has transferable util-
ity and the total period payoff P has a unique maximum P ? for
Q = Q?, a vector of individual contributions qi is Pareto-efficient
if and only if

∑
i qi = Q?.

Pure-strategy equilibria.A pure-strategy equilibrium is a strong
form of Nash equilibrium in which strategies do not use random-
ization. Let Q−i = Q − qi be the joint contributions of all players
except i. A best response qi of player i to a given value of Q−i is
a value of qi that maximizes the individual period payoff Pi. A best
response must make total contributions non-negative, Q > 0, since
for Q < 0 we have ∂Pi/∂qi > f ′i(0) > 0. Hence qi > −Q−i.
Note that for qi = −Q−i we have Pi = 0, and for qi → +∞ we
have Pi → −∞. Thus, for any best response qi to Q−i, either (i)
qi > −Q−i and Pi as a function of qi has a local maximum with
Pi > 0 at qi, in particular ∂Pi/∂qi = 0, or (ii) qi = −Q−i and Pi
as a function of qi has a global maximum Pi = 0 at that value. Let
f =

∑n
i=1 fi.

Now a pure-strategy equilibrium (PSE) is a vector of contribu-
tions qi for all i such that qi is a best response to Q−i for all i. So for
a PSE, either (i) Q > 0 and ∂Pi/∂qi = 0 for all i, or (ii) Q = 0 and
Pi as a function of qi has a global maximum at that value for all i.

In the proportional cost sharing case, denote average unit costs
by h(Q) = g(Q)/Q > 0, so that ci = h(Q)qi with h′(Q) =
(g′(Q) − h(Q))/Q > 0 for Q > 0 and h′(Q) = 0 for Q 6 0. In
case (i), we then have ∂Pi/∂qi = f ′i(Q) − h(Q) − qih′(Q) = 0,
and taking the sum over all i gives 0 = f ′(Q) − nh(Q) − Qh′(Q)
or f ′(Q) = (n − 1)h(Q) + g′(Q). Since the left-hand side is non-
increasing, the right-hand side non-decreasing, and since f ′(Q?) =
g′(Q?), this condition has at least one (and often unique) solution
QPSE > 0 for which

f ′(QPSE) = (n− 1)h(QPSE) + g′(QPSE). [8]

Given QPSE, the individual conditions ∂Pi/∂qi = 0 have a unique
solution

qPSE
i =

f ′i(Q
PSE)− h(QPSE)

h′(QPSE)
[9]

if h′(QPSE) > 0. This solution leads to individual period payoffs

PPSE
i = fi(Q

PSE) + h(QPSE)
h(QPSE)− f ′i(QPSE)

h′(QPSE)
. [10]

If PPSE
i > 0 for all i, this solution is the unique one-shot PSE with

Q = QPSE. If h′(QPSE) = 0 or some of the PPSE
i are non-positive,

the analysis is more complicated.
In the marginal cost pricing case, we have ci = gi(ai(Q)) +

[qi − ai(Q)]g′(Q). In case (i), we then have ∂Pi/∂qi = f ′i(Q) −
g′(Q) − (qi − ai(Q))g′′(Q) = 0, and taking the sum over all i
gives the following condition for a PSE which again has at least one,
typically unique solution QPSE:

f ′(QPSE) = ng′(QPSE). [11]

Given QPSE, the individual conditions ∂Pi/∂qi = 0 have a unique
solution

qPSE
i = ai(Q

PSE) +
f ′i(Q

PSE)− g′(QPSE)

g′′(QPSE)
[12]

if g′′(QPSE) > 0. This solution leads to individual period payoffs

PPSE
i = fi(Q

PSE)− gi(ai(QPSE))

− g′(QPSE)
f ′i(Q

PSE)− g′(QPSE)

g′′(QPSE)
. [13]

Because PPSE < P ?, there are allocations qi of the total optimal
contributions Q? that give each i a strictly higher payoff than PPSE

i .
Hence each such PSE is Pareto-dominated but may serve as a kind of
benchmark in negotiations of the target allocation q?i in the sense that
one could restrict attention to target allocations that Pareto-dominate
the PSE. This idea to use non-cooperative solutions as a benchmark
for cooperative ones is also used in the context of consensus voting
rules (26). See also SI: Cooperative analysis.

SI: Examples
Linear benefits, monomial costs. Many examples from the litera-
ture are of the following form:

• Individual benefits fi(Q) = βiQ with f ′i(Q) = βi > 0.
• Total marginal benefits f ′(Q) = β =

∑
i βi > 0.

• Total costs g(Q) = max{Q, 0}ζ with ζ > 1.
• Marginal total costs g′(Q) = ζ max{Q, 0}ζ−1.
• Total period payoff P (Q) = βQ−max{Q, 0}ζ with
P ′(Q) = β − ζ max{Q, 0}ζ−1.

The optimal total contributions Q? > 0 then fulfill

0 = P ′(Q?) = β − ζ(Q?)ζ−1,

hence

Q? = γ
1
ζ−1

0 ,

P ? = (ζ − 1)γ
ζ
ζ−1

0 ,

where γ0 = β/ζ are the target average unit costs.
In the proportional cost sharing case, we then have average unit

costs h(Q) = max{Q, 0}ζ−1 with h′(Q) = (ζ−1)Qζ−2 forQ > 0
and h′(Q) = 0 for Q < 0, leading to individual period payoffs
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Pi = βiQ − qih(Q) with ∂Pi/∂qi = βi − (ζ − 1)(qi + Q)Qζ−2

for Q > 0 and ∂Pi/∂qi = βi for Q < 0. A one-shot PSE has
QPSE > 0 and fulfills

0 = f ′(QPSE)− (n− 1)h(QPSE)− g′(QPSE)

= β − (n− 1 + ζ)(QPSE)ζ−1,

hence the unique PSE is given by

QPSE = β̃
1
ζ−1 ,

qPSE
i =

βi − β̃
ζ − 1

β̃
2−ζ
ζ−1 ,

PPSE
i =

(ζ − 2)βi + β̃

ζ − 1
β̃

1
ζ−1 ,

PPSE = (n− 2 + ζ)β̃
ζ
ζ−1 = O

(
P ?/n

1
ζ−1

)
,

where β̃ = β/(n − 1 + ζ) is slightly smaller than the average in-
dividual marginal benefits. For ζ = 2, total period payoff is then
shared equally between players, and individual payoffs are PPSE

i ∝
1/(n+ 1)2, bearing a surprising similarity to Cournot-Nash payoffs
in Cournot oligopolies (see also SI: Cooperative analysis). For ζ > 2,
part of it is shared in proportion to marginal benefits, while for ζ < 2,
those with larger marginal benefits get smaller payoffs.

In the marginal cost pricing case, the one-shot PSE fulfills

β = ng′(QPSE) = nζ(QPSE)ζ−1,

hence the unique PSE is given by

QPSE = β̃
1
ζ−1 ,

qPSE
i = ai(β̃

1
ζ−1 ) +

βi/ζ − β̃
ζ − 1

β̃
2−ζ
ζ−1 ,

PPSE
i =

ζ

ζ − 1
β̃

ζ
ζ−1 +

ζ − 2

ζ − 1
βiβ̃

1
ζ−1 − gi(ai(β̃

1
ζ−1 )),

PPSE = (nζ − 1)β̃
ζ
ζ−1 = O

(
P ?/n

1
ζ−1

)
,

where β̃ = β/nζ this time.

Decreasing marginal benefits, quadratic costs.A simple model
with decreasing instead of constant marginal benefits that can still
be solved analytically is this:

• Individual benefits fi(Q) = βi ln(1 +Q) for Q > 0 and
fi(Q) = βi(Q−Q2/2 +Q3/3) for Q 6 0, with βi > 0.

• Individual marginal benefits f ′i(Q) = βi/(1 +Q) for Q > 0 and
f ′i(Q) = βi(1−Q+Q2) for Q 6 0.

• Total costs g(Q) = max{Q, 0}2.
• Marginal total costs g′(Q) = max{2Q, 0}.
• Total period payoff for Q > 0:
P (Q) = β ln(1 +Q)−Q2 with P ′(Q) = β/(1 +Q)− 2Q.

Optimal total contributions Q? > 0 must fulfill

0 = P ′(Q?) = β/(1 +Q?)− 2Q?,

hence

Q? =

√
1 + 2β − 1

2
,

P ? = β ln

√
1 + 2β + 1

2
+

√
1 + 2β − 1− β

2
.

In the proportional cost sharing case, we then have average
unit costs h(Q) = max{Q, 0} with h′(Q) = 1 for Q > 0 and

h′(Q) = 0 forQ < 0, leading to individual period payoff forQ > 0:
Pi = βi ln(1 + Q) − qiQ with ∂Pi/∂qi = βi/(1 + Q) − qi − Q.
The one-shot PSE has QPSE > 0 and thus fulfills

0 = f ′(QPSE)− (n− 1)h(QPSE)− g′(QPSE)

= β/(1 +QPSE)− (n+ 1)QPSE,

hence the unique PSE is given by

QPSE =
%− 1

2
,

qPSE
i = 2

βi − β̃
%+ 1

,

PPSE
i = βi

(
ln
%+ 1

2
− %− 1

%+ 1

)
+ β̃

%− 1

%+ 1
,

PPSE = β ln
%+ 1

2
+
%− 1

2
− β̃,

where β̃ = β/(n+ 1) is slightly smaller than the average individual

marginal benefits, and % =

√
1 + 4β̃. Again, part of the total pe-

riod payoff is shared in proportion to marginal benefits, and that part
grows with β.

For small β and large n, P ? ≈ β2/4 and PPSE ≈ β2/n =
O(P ?/n), i.e., the cooperative payoff is of the order n larger than
the PSE payoff. For large β � n, P ? ≈ (β lnβ)/2 ≈ PPSE, i.e.,
the cooperative and PSE payoffs are approximately equal.

In the marginal cost pricing case, the one-shot PSE fulfills

β/(1 +QPSE) = ng′(QPSE) = 2nQPSE,

hence the unique PSE is given by

QPSE =
%− 1

2
,

qPSE
i = ai(Q

PSE) + βi − 1− β̃ − %,

PPSE = β ln
%+ 1

2
+
%− 1− β̃

2
,

where β̃ = β/n and % =

√
1 + 2β̃ this time.

As above, for small β and large n, P ? ≈ β2/4 and PPSE ≈
β2/2n = O(P ?/n), and for large β � n, P ? ≈ (β lnβ)/2 ≈
PPSE.

Diverging costs for some maximal contributions. A simple model
in which contributions are effectively bounded from above by diverg-
ing costs is this:

• Linear individual benefits fi(Q) = βiQ with βi > 0.
• Individual marginal benefits f ′i(Q) = βi.
• Total costs g(Q) = Q2/(1 − Q) for Q ∈ [0, 1) and g(Q) = 0

for Q < 0.
• Marginal total costs g′(Q) = Q(2−Q)/(1−Q)2 forQ ∈ [0, 1).
• Total period payoff P (Q) = βQ−Q2/(1−Q) for Q ∈ [0, 1),

with P ′(Q) = β −Q(2−Q)/(1−Q)2,

Optimal total contributions Q? ∈ (0, 1) fulfill

0 = P ′(Q?) = β −Q?(2−Q?)/(1−Q?)2,

hence

Q? = 1− 1/
√
β + 1,

P ? = β + 2− 2
√
β + 1.

In the proportional cost sharing case, we then have average unit
costs h(Q) = Q/(1−Q) forQ ∈ [0, 1), with h′(Q) = 1/(1−Q)2,
leading to individual period payoff Pi = βiQ − qiQ/(1 − Q) for
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Q ∈ [0, 1), with ∂Pi/∂qi = βi −Q/(1 −Q) − qi/(1 −Q)2. The
one-shot PSE has QPSE ∈ (0, 1) and thus fulfills

0 = f ′(QPSE)− (n− 1)h(QPSE)− g′(QPSE)

= β −Q?(n+ 1− nQ?)/(1−Q?)2,

hence the unique PSE is given by

QPSE = 1−
n−1
2

+
√
β + n+ (n−1

2
)2

β + n
.

For large n, PPSE ≈ β2/n = O(P ?/n), i.e., the cooperative payoff
is of the order n larger than the PSE payoff.

In the marginal cost pricing case, the unique PSE is given by

QPSE = 1− 1/

√
β̃ + 1,

where β̃ = β/n. For large n, again PPSE ≈ β2/2n = O(P ?/n).

SI: Bounded liabilities
In some applications, it might be desirable or necessary to restrict
the range of possible liabilities LinC might allocate in reaction to de-
viations. Let’s assume liabilities must be bounded by some lower
bounds `min

i < q?i for all players i, so that only liabilities with
`i(t) > `min

i are feasible allocations. E.g., if individual contributions
qi cannot be negative, one could choose `min

i = 0. Any strategy that
still keeps total liabilities fixed to the optimal targetQ? in order to be
strongly renegotiation-proof can then assign any group G of players
at most the liability Lmax

G = Q? −
∑
i/∈G `

min
i .

We suggest to use the following modified strategy of Bounded
Linear Compensations (BLinC) in that case: For those players iwith-
out shortfalls in t, liabilities in t+1 are calculated as in LinC, but are
capped at their lower bounds. For those with shortfalls, the liability
adjustments are then scaled down to keep the total target:

`i(t+ 1) =

{
max{ q?i + [di(t)− d̄(t)] · α , `min

i } if di(t) = 0
q?i + [di(t)− d̄(t)] · α /s(t) if di(t) > 0,

[14]
where s(t) > 0 is chosen so that

∑
i `i(t + 1) = Q?. If shortfalls

are moderate so that d̄(t) 6 (q?i − `min
i )/α for all i with di(t) = 0,

then s(t) = 1 and the allocation is the same as in LinC (Eqn. [4]).
While LinC’s subgame-perfectness follows from the ability to

assign additional liabilities proportional to a large enough multiple
of the shortfalls, BLinC can do so no longer in case of large short-
falls. Hence it depends on the choice of the bounds `min

i and on the
discounting factor δ whether BLinC is subgame-perfect or not.

Note that, in the proportional cost-sharing case, the gain that any
groupG of players would get from a shortfall of size x > 0 in a situa-
tion in which its liability is already maximal, LG = Lmax

G , is at most
Lmax
G γ?− (Lmax

G −x)γx−xβG, where γx = g(Q?−x)/(Q?−x)
are the average unit costs at Q? − x, with γx 6 γ? because average
costs are non-decreasing. And the discounted loss that G would have
in t + 1 from having assigned maximal liabilities again is at least
δγ?(Lmax

G − Q?G). Hence a sufficient condition for such a shortfall
to be unprofitable is that the former be smaller than the latter, which
is equivalent to

x(βG − γx) + Lmax
G γx > Q?Gγ

?δ + Lmax
G γ?(1− δ). [15]

We can now show the following ‘strong’ form of a ‘folk theo-
rem’: if the target allocation q? is profitable for each player, so that
Q?βG−Q?Gγ? > 0 for allG, and if δ is close enough to unity and the
bounds `min

i are small enough, then the above condition is fulfilled
for allG and all x > 0. Let εG = (Q?βG−Q?Gγ?)/2(1+βG) > 0,

ε = minG εG > 0, and x0 = Q?−ε. Choose the bounds `min
i small

enough so that Lmax
G > Q? and Lmax

G > (Q?Gγ
? + ε − x0(βG −

γ?))/γx0 for all G. Then, for all G and x,

x(βG − γx) + Lmax
G γx > Q?Gγ

? + ε. [16]

This is because (i) for x ∈ [x0, L
max
G ], we have x(βG − γx) +

Lmax
G γx > xβG > (Q? − εG)βG > Q?Gγ

? + εG > Q?Gγ
? + ε,

(ii) for x > Lmax
G > Q?, we have γx = 0 and thus x(βG − γx) +

Lmax
G γx = xβG > Q?βG > Q?Gγ

? + ε, and (iii) for x 6 x0,
we have 0 6 γx0 6 γx 6 γ? and thus x(βG − γx) + Lmax

G γx >
x0(βG − γ?) + Lmax

G γx0 > Q?Gγ
? + ε. Now if δ is close enough

to unity, Q?Gγ
? + ε > Q?Gγ

?δ + Lmax
G γ?(1 − δ) and the claim is

proved.
This means that, for large enough compensation factor α, no

group of players has ever an incentive to deviate from BLinC for one
period, and thus neither for a finite number of periods. In contrast to
LinC, the bounds on liabilities in BLinC imply that also the possible
payoffs are bounded. Hence a standard argument as in (27) shows
that then also no infinite number of deviations can pay. In particular,
this shows that with individually profitable targets q?i , large enough
α and δ, and small enough `min

i , the modified strategy BLinC is still
subgame-perfect.

In the example with linear benefits and marginal costs (ζ = 2),
and for `min

i = 0 (non-negative liabilities), Eqn. [15] is fulfilled when
Q?G < min{βG − β(1− δ)/2, βG(1− βG/2β)/δ − β(1− δ)/2δ}
for all G. For large enough δ, this can be fulfilled by a target al-
location proportional to marginal benefits, q?i = βi/2. That alloca-
tion leads to payoffs which are also proportional to marginal benefits,
Pi = βiβ/4.

In the marginal cost pricing case, a condition similar to Eqn. [15]
can be found, but no similar general existence result as above is ob-
vious.

For the emissions game, we simulated whether BLinC can be
used instead of LinC in a slightly modified version of the STACO
cost-benefit-model which is frequently used in the literature (1; 2; 8).1

and which calculates time-dependent individual benefit functions
bi(t) and a time-dependent global optimal emissions abatement path
Q?(t). For the chosen model parameters, a moderate α of 1.22 ful-
fills Eqn. [5]. We tested several possible allocations of the global
target Q?(t) into time-dependent individual targets q?i (t) under the
assumption of proportional cost sharing. A promising compromise
between an “egalitarian” and a “grandfathering” allocation distributes
half of the long-term global payoff as compared to the business-as-
usual scenario in a way so that each region’s per capita payoff in
purchasing power (PPP) increases by the same amount, and the other
half in proportion to regional GDP (based on 1995 population, PPP,
and GDP data).2 That allocation gives four players negative contribu-
tion targets q?i (t), i.e., more emissions permits than under business-
as-usual, which is often termed “hot air” in the policy literature, so
that those players can profit from selling unused permits on the mar-
ket. When the liability bounds `min

i (t) were chosen so that those four
players never have liabilities lower than twice this (negative) value,
and all others never have negative liabilities at all, we could verify
using Eqn. [15] that none of the 4095 possible groups of players ever
had incentives to deviate from BLinC. An alternative allocation that
completely achieved equal per capita payoffs in PPP did not allow to
use the same kind of bounds `min

i (t) since then some groups of in-

1Model parameters: 12 players (economic world regions); 2-year periods; exponential dis-
counting at 2% yearly; costs based on cubic regional abatement cost functions as estimated
by (28); benefits = avoided emissions-related economic damages in linear approximation,
properly discounted; damages estimated as 2.7% of regional GDP if atmospheric GHG con-
centrations double; GDP estimated with the DICE integrated assessment model (1994 version
with “no controls”, scenario B2 (29)); play simulated from 2010–2110.
Other authors use similar models, e.g. the WITCH model with 12 regions in (31) or the EPPA
model with 16 regions in (32).
2This is basically the average of the sharing rules 2 and 3 from (33), for which those authors
found that only very small long-term coalitions were stable in their model. For a more recent
study of the distributional effects of various sharing rules see (32).
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dustrialized regions could profit from free-riding. Still, with a differ-
ent cost-benefit model and different liability bounds this completely
egalitarian allocation rule might work. If marginal cost pricing is as-
sumed instead of proportional cost sharing with the same model and
bounds, both allocation rules gave several groups of industrialized
countries incentives to free-ride. Using numerical optimization, we
were able to find for sufficiently large values of δ some alternative
sets of liability bounds that would remove these incentives, but these
results are very preliminary. Future work should assess this question
more thoroughly, and using more elaborate cost-benefit models.

SI: Cooperative analysis
We proved that for each conceivable target allocation, playing LinC
constitutes a strong form of strategic equilibrium that realizes this al-
location. Hence the problem of negotiating a target allocation can be
seen as a problem of selecting a particular equilibrium of the game.

The game-theoretic literature does not answer clearly which
equilibria rational players can, will, or should select in a game that
has many equilibria, and there are quite different approaches to this.

Coalition formation. One approach is to envision that players might
end up partitioned into some coalition structure π = {S1, . . . , Sm},
i.e., a partition of all players intom disjoint coalitions of one or more
players each, who will cooperate internally but not with each other.
The coalition structure {N} in which all players cooperate is called
the grand coalition. In the public good game, such a coalition struc-
ture can reach a large number of alternative equilibria as follows:
Consider them-player version of the game in which each coalition Sj
is treated as one player with benefit function fSj =

∑
i∈Sj fi, and

let (QPSE
1 , . . . , QPSE

m ) be the contributions in a PSE of this game.
These can be determined by replacing n, fi, and qi in Eqns. 8 and 9
by m, fSj , and QPSE

j , respectively. Now assume each Sj has agreed
internally on some individual target allocation q?i of QPSE

j , so that∑
i∈Sj q

?
i = QPSE

j , and applies LinC to these targets internally (i.e.,
ignoring players outside Sj in the calculation of liabilities). Then it
is easy to see that this constitutes an equilibrium of the whole game
with similar stability properties as when LinC is applied by the grand
coalition, but total payoffs are sub-optimal when the coalition struc-
ture is not the grand coalition.

Let vPSE(Sj , π) be the joint payoff of Sj in such an equilibrium,
given the coalition structure π. Then it might be considered plausible
that vPSE(Sj , π) is the joint payoff that the players in Sj can expect
to get should initial negotiations lead to the coalition structure π.

Both classical “cooperative” game theory and the newer more
sophisticated theory of zt coalition formation (34) now try to predict
which coalition structures might arise and what allocations the coali-
tions will agree to, by only considering what each coalition can ex-
pect to get given each coalition structure, and assuming players can
influence the coalition structure in various ways independent from
those payoffs, by individually or jointly leaving, joining, or blocking
coalitions. Such an analysis then only depends on the partition func-
tion v = vPSE. Depending on the precise assumptions, that theory
sometimes somewhat surprisingly predicts that not the grand coali-
tion but a partition into more than one coalition will form, resulting
in sub-optimal payoffs.3

Consider for example the public good game with linear benefits
fi(Q) = βiQ, quadratic costs g(Q) = max{0, Q}2, and propor-
tional cost sharing ci = Cqi/Q. Then it can be shown (see SI: Ex-
amples) that vPSE has a particularly simple form that only depends on
the number of coalitions and not at all on their size or their individual
benefit functions: v(Sj , π) = A/(|π|+ 1)2 for some constant A. (If
marginal cost pricing is used and all individual cost curves are iden-
tical, one gets the very similar form v(Sj , π) = A(|π| − 3/2)/|π|3
instead). This extreme form of v has been analysed in the literature
as a kind of quintessential example of cooperative games with ex-

ternalities since it also arises naturally from Cournot-Nash equilibria
in Cournot oligopolies4 For n = 5 (and similarly for larger n), one
approach (35) predicts that a coalition structure with one individual
player S1 and two coalitions S2, S3 consisting of two players each
will arise, each coalition getting a payoff of 1/16. The argument for
this is that any allocation of the grand coalition’s payoff of 1/4 must
give at least one player at most a payoff of 1/20 < 1/16, so that that
player will leave the grand coalition and the remaining four players
will then split in two pairs for similar reasons. Another approach by
the same authors (36) assumes that the actual bargaining process fol-
lows a certain particular protocol and predicts that the result is one
individual player and a coalition of the remaining four players, not
splitting any further into two pairs. Other authors (37; 38) arrive
at still different coalition structures for different values of n (e.g.,
n = 6).

In such analyses, however, it remains unclear why the predicted
coalitions should not afterwards negotiate an additional agreement
with each other in order to realize and share also the additional to-
tal payoff that is possible by forming the grand coalition. Following
Coase (39), such behavior should always be expected so that only
optimal allocations can result. We support this point of view with an
analysis of the case n = 5 of the above example, in the next sub-
section.

Other choices of the partition function v than vPSE might also be
plausible. Assume players can make each other believe that, should
no global agreement be reached, they will contribute nothing. Then
each coalition Sj can only expect to benefit from its own contribu-
tions, resulting in a maximal payoff v0(Sj , π) = v0(Sj) that only
depends on Sj (actually only on the functions fSj and g) and is su-
peradditive: v0(Sj ∪ Sk) > v0(Sj) + v0(Sk). For such superad-
ditive value functions, a rich literature exists which holds that the
grand coalition will indeed form. Its most prominent solution con-
cept is the Shapley value (40) which suggests that player i’s share
of v(N) should be a certain linear combination of the differences
v(S ∪ {i}) − v(S) for all S with i /∈ S. For situations with play-
ers of unequal “size”, there are weighted versions of this (41) that
give players with larger weight wi (e.g., a country’s population in the
emissions game) larger payoffs. Depending on the chosen weights,
this can lead to any payoff allocation in the so-called core of the game
(42). Given v and weights wi with

∑
i wi = 1, the (weighted) Shap-

ley values are φi = wi[P (N) − P (N \ {i})], where the potential
function P is defined recursively as P (∅) = 0 and

P (S) =

[
v(S) +

∑
i∈S

wiP (S \ {i})

]
/
∑
i∈S

wi. [17]

A third choice of v relies on the assumption that players can make
each other believe that, should no global agreement be reached, they
will not enter any other agreement with a smaller coalition but still
maximize their individual payoff by playing a best response of the
one-shot game. In that case, we get the value function v(N) = P ?

and v(S) =
∑
i∈S P

PSE
i for S 6= N , which is not only superadditive

but even additive for all coalitions except the grand coalition. Such a
situation is often called a pure bargaining or unanimity game, and its
weighted Shapley values are simply φi = PPSE

i +wi(P
? −PPSE),

that is, the surplus from cooperation is shared in proportion to the
weights. In the example of linear benefits and marginal costs, the
weighted Shapley values are then proportional to 4 + wi(n− 1)2.

Coalition formation when inter-coalitional agreements are pos-
sible. Before turning to a more general case, we present this idea

3Note that in many relating papers the authors use public goods examples with a different cost
structure than ours, assuming non-decreasing individual marginal costs that depend on indi-
vidual contributions, Ci = gi(qi), instead of our assumption of marginal costs that depend
only on total contributions, Ci = qig(Q)/Q.
4Although the corresponding game has a different individual payoff structure that cannot be
interpreted as a public good game, only v is considered relevant in this line of reasoning.
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by first discussing the example of five players with linear bene-
fits and marginal costs, for which the value function has the form
v(Sj , π) = 1/(|π| + 1)2. Suppose the grand coalition, denoted by
(12345), meets to negotiate an allocation of the total payoff of 1/4,
and the current proposal is to split it equally into 5 · 1/20. In (35)
it is argued that each player, say player 1, can then hope to get 1/16
if he leaves the room, since he can then expect that (i) another pair,
say players 23, will leave, so that the coalition structure (1, 23, 45)
of one singleton and two pairs will arise, and that (ii) the resulting
coalitions will then behave like three individual players, so that their
payoffs are those in the PSE, 1/16 for each coalition.

But if those three coalitions would agree on an additional inter-
coalitional agreement, they could realize a surplus of 1/4− 3/16 =
1/16 and share it to everyone’s profit. Collective rationality requires
that we assume this would indeed happen, leading to some individ-
ual payoffs ai with

∑
i ai = 1/4, a1 > 1/16, a2 + a3 > 1/16,

and a4 + a5 > 1/16. A similar assumption must be made for any
possible refinements of that structure that might arise should one of
the players 2345 leave her coalition. If 2 leaves, the resulting struc-
ture is either (1, 2, 3, 4, 5) or (1, 2, 3, 45), depending on whether the
latter can stabilize itself. Whether it can do so depends on what an
additional leaving player, say 5, can expect to get.

If 5 leaves (1, 2, 3, 45), we get the all-singletons structure
(1, 2, 3, 4, 5), and collective rationality implies that all five would
then come back to the table and start a new round of negotiations,
probably starting with the allocation that was discussed last for the
grand coalition. As this allocation is 5 · 1/20, player 5 can hence
expect to get 1/20 when leaving (1, 2, 3, 45). Collective rational-
ity now requires that (1, 2, 3, 45) would not agree on an allocation b
that destabilizes their structure, so we can assume that structure will
stabilize itself like this: First, coalition 45 has an intra-coalitional
agreement on how to share their PSE payoff of 1/25, and then the
four coalitions have an inter-coalitional agreement on how to share
the additionally possible payoff of 1/4 − 4/25 that gives neither 4
nor 5 an incentive to leave. Hence all players can expect that, should
the structure (1, 2, 3, 45) arise, their payoffs would be some bi with∑
i bi = 1/4, b1 > 1/25, b2 > 1/25, b3 > 1/25, b4 > 1/20, and

b5 > 1/20.
Let us now assume that each player announces in advance to ac-

cept no less than 1/20 should the structure (1, 2, 3, 45) arise. This
is certainly a credible announcement since it corresponds to the cur-
rently discussed allocation, can be realized by putting ai = 1/20,
leads to a stable agreement, and gives no incentive to deviate from
it and accept less than 1/20 when the structure (1, 2, 3, 45) indeed
arises. We will argue below that these announcement will finally sta-
bilize the grand coalition. In other words, all players can expect the
payoffs to be bi = 1/20 if structure (1, 2, 3, 45) arises, and similarly
for all other structures with three singletons and a pair.

Now for the stability of (1, 23, 45): If a2 < b2 = 1/20, player
2 has an incentive to leave (1, 23, 45). A similar condition holds for
players 345, so (1, 23, 45) is unstable if not a2, a3, a4, a5 > 1/20.
But then a1 6 1/4 − 4/20 = 1/20 < 1/16, so 1 would not
agree on that allocation since he can realize 1/16 in the PSE. Hence
(1, 23, 45) can not stabilize itself, in contrast to the expectation (ii)
above, and will instead fall apart to give one of the stable coalitions
(1, 2, 3, 45) and (1, 23, 4, 5).

Similarly, also a two-singletons-and-a-triple structure, say
(1, 2, 345), cannot stably agree on a payoff allocation a′. It would
require

∑
i a
′
i = 1/4, a′1 > 1/16, a′2 > 1/16, and a′3 + a′4 + a′5 >

1/16. But since 1/4 − 2/16 < 3/20, one of a′3, a′4, a′5 must be
smaller than 1/20, so that that player would leave to get 1/20 in a
four-singletons-and-a-pair structure.

Now we check expectation (i) by checking the stability of
(1, 2345): They would agree on a payoff allocation c with

∑
i ci =

1/4, c1 > 1/9, and c2 + c3 + c4 + c5 > 1/9. If at least two
of the latter four summands are < 1/20, the corresponding play-
ers, say 45, have an incentive to leave since the unstable intermedi-

ate structure (1, 23, 45) would split further into either (1, 2, 3, 45) or
(1, 23, 4, 5), and both players get 1/20 in each of them. Hence sta-
bility of (1, 2345) requires that three of the values c2, c3, c4, c5 are
> 1/20, so that c1 6 1/4− 3/20 = 1/10 < 1/9 in contradiction to
c1 > 1/9. Thus (1, 2345) cannot stabilize itself either, and neither
can any other structure with a four-player coalition.

Finally, we can now check whether the grand coalition can ex-
pect anyone to leave should they propose the allocation 5 · 1/20: If
a player i leaves the room, he can expect that the other four play-
ers will split into two singletons and a pair that will first reach an
intra-coalitional agreement and then meet again with the rest to ne-
gotiate an allocation of the additional surplus they can get from an
inter-coalitional agreement. Because each other player announced to
accept no less than 1/20 in that case, i cannot expect to get more
than 1/4 − 4/20 = 1/20 when he leaves. Hence there is no incen-
tive for individuals to leave the grand coalition in the first place when
5 · 1/20 is proposed. With similar arguments, one can show that nei-
ther any coalition has an incentive to leave the grand coalition, and
that the same also holds for larger values of n with the assumed cost-
benefit functions. In other words, it seems likely that there will be an
agreement in the grand coalition when inter-coalitional agreements
are possible.

Now for a more general but symmetric case, where a similar anal-
ysis can be performed for most other cost-benefit structures. As-
sume benefits are symmetric, fi = f0 for all i, and that for each
m ∈ {1, . . . , n}, the equation

f ′(Q) = (m− 1)h(Q) + g′(Q) [18]
has a unique solutionQm with h′(Qm) > 0. Then for each coalition
structure π with |π| = m and each coalition S ∈ π with |S| = k, we
have

vPSE(S, π) = kf0(Qm) + h(Qm)
h(Qm)− kf ′0(Qm)

h′(Qm)
. [19]

Now assume all players announce they will not accept a payoff less
than vPSE(N, {N})/n = P ?/n, no matter what structure arises.

Then each structure π can either stabilize itself by giving each
player exactly P ?/n, or cannot stabilize itself at all. To see this,
call this symmetric allocation a, and proceed inductively from finer
to coarser structures: The all-singletons structure π is stable with
a since it gives each coalition at least the same as in the PSE,
P ?/n > vPSE({i}, π) for all i ∈ N , and no-one can leave any
coalition since they are all singletons already. Given that the claim is
true for all refinements of a structure π, we distinguish two cases to
show that it is also true for π:

(i) If a gives each coalition S ∈ π at least vPSE(S, π), it is a
possible outcome of an inter-coalitional agreement, and no player or
subcoalition has an incentive to leave. The latter is because for every
finer structure π′ that might arise from leaving, they must expect that,
because of the announcements, π′ will stabilize itself by agreeing on
the same allocation a if it can stabilize at all.

(ii) On the other hand, assume a gives some coalition S ∈ π
less than vPSE(S, π), but some other allocation b stabilizes π. Then
vPSE(S, π) > kP ?/n where k = |S|, and b gives each coalition
T ∈ π at least vPSE(T, π). Because S gets more under b than under
a, some other coalition T ∈ π must get less under b than under a.
The crucial point of the proof now is that this T cannot be a singleton;
otherwise it would get under b at least

vPSE(T, π) = f0(Qm) + h(Qm)
h(Qm)− f ′0(Qm)

h′(Qm)

>

(
kf0(Qm) + h(Qm)

h(Qm)− kf ′0(Qm)

h′(Qm)

)
/k

= vPSE(S, π)/k > P ?/n, [20]
but the latter is what a singleton gets under a. So T contains at least
two players and gets less under b than under a. Hence at least one
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player in T gets less under b than under a. That player has an incen-
tive to leave T since she gets a in any stable structure that might arise
from her leaving T . This proves that when a does not stabilize π, no
other allocation b will. Finally, taking π = {N}, this proves that the
grand coalition can stabilize by agreeing on the symmetric allocation
ai = P ?/n.5

So, in contrast to (35), the possibility of players or coalitions
leaving negotiations need not destabilize the grand coalition if later
inter-coalitional agreements are possible. We will further explore this
line of thought in a forthcoming paper.

The tracing procedure. A quite different approach is that of Harsanyi
and Selten (43) based on payoff-dominance and a so-called tracing
procedure. It suggests that the grand coalition will indeed form to
realize an optimal (i.e., payoff-undominated) equilibrium which is
selected in a procedure in which all players gradually adapt their be-
liefs about the others’ choices in a Bayesian fashion, depending not
on a value function v but on the actual strategies that constitute the
available equilibria. Unfortunately, that theory is mainly developed
for games with bounded payoffs and only finitely many strategies,
and therefore does not apply easily to our situation. We may however
at least pick up the main idea of the tracing procedure (44) and inter-
pret it in our context, making a number of assumptions on the beliefs
of players during negotiations:

All players assess the progress of negotiations by the same pa-
rameter τ ∈ [0, 1] that increases monotonically from zero at the be-
ginning to one at the time agreement is reached. All players start at
τ = 0 with the assumption that the remaining players will use their
PSE strategies qPSE

i as given by Eqns. 8 and 9. At each point τ dur-
ing negotiations, all players expect some allocation ~q τ to be focal
at this point and that all other players will apply the strategy LinC
with targets ~q τ if agreement will be reached, but expect that all other
players will use their PSE strategies if no agreement will be reached.
In particular, ~q 0 = ~q PSE. At each point τ , each player i considers
the probability that agreement will be reached to be τ . We now re-
quire that the focal allocation ~q τ is rational for each player i if she
maintains these beliefs. For this, playing LinC with targets ~q τ must
be a best response for i to the strategy mixture of the other players
that her beliefs imply. For τ = 1, all players will assume the rest will
apply LinC with the agreed allocation with certainty, and our paper
proves that for i it is a best response to that if she applies LinC with
the same allocation. So, for τ = 1, the rationality requirement does
not restrict the set of possible allocations ~q τ . But for τ < 1, player i
expects that there is a positive probability 1− τ that the other players
play their PSE strategies instead of LinC, in which case the best re-
sponse would be to play qPSE

i as well. The long-term payoff player i
expects if she contributes qi in each period is

(1− τ)W1Pi(qi, qi +QPSE
−i ) + τVi(qi, ~q

τ ) [21]

where QPSE
−i = QPSE − qPSE

i , Pi(qi, Q) = fi(qi) − qih(Q) is the
period payoff of i if she contributes qi and total contributions are Q,
and Vi(qi, ~q τ ) is the long-term payoff for player i if she contributes
qi in each period while all other players apply LinC with targets ~q τ .
Unfortunately, the Appendix on infinite sequences of deviations (case
ii) shows that Vi(qi, ~q τ ) = −∞ if qi 6= qτi . This means that the best
response would always consist in accepting qτi whatever it is. But
then, also for τ ∈ (0, 1), the rationality requirement does not restrict
the set of possible allocations ~q τ , and the tracing procedure could not
predict how the beliefs develop and whether the ~q τ would converge.

Let us now assume that the cost-benefit structure is so that we
could restrict liabilities to non-negative values and use BLinC instead
of LinC to stabilize an agreement, as discussed in the SI: Bounded li-
abilities. If we replace LinC by BLinC in the above discussion, the
value Vi(qi, ~q τ ) will not be −∞ if qi 6= qτi . Instead, the contribu-
tions by the other players will quickly converge to zero so the per-
period payoff of i will converge to Pi(qi, qi). If i is sufficiently pa-
tient, Vi(qi, ~q τ ) will then approximately equal W1(fi(qi) − g(qi)).

The best response qi to the current beliefs of i at τ is then approxi-
mately that qi which maximizes the function πτi (qi, ~q

τ ) that is given
by πτi (qi, ~q

τ ) = aτi (~q τ ) if qi = qτi and by πτi (qi, ~q
τ ) = pτi (qi) if

qi 6= qτi , where

aτi (~q τ ) = (1− τ)Pi(q
τ
i , q

τ
i +QPSE

−i ) + τPi(q
τ
i , Q

τ ), [22]

pτi (qi) = (1− τ)Pi(qi, qi +QPSE
−i ) + τPi(qi, qi). [23]

The function pτi (qi) has its maximum at that qi for which

0 =(1− τ)[f ′i(qi +QPSE
−i )− h(qi +QPSE

−i )− qih′(qi +QPSE
−i )]

+ τ [f ′i(qi)− g′(qi)]. [24]
Denote this qi by q̃τi and note that it depends on τ but not on the focal
allocation ~q τ . As our rationality requirement maintains that the best
response is qi = qτi , the value aτi (~q τ ) must be larger than pτi (q̃τi ) for
all i. Still, this does not much restrict the choice of ~q τ .

So far, we only required individual rationality during negotia-
tions. But it is natural also to assume a form of collective rationality
and require that the focal allocation ~q τ must be be so that there is
no alternative allocation that payoff-dominates it in the sense that the
expected payoff aτi (~q τ ) is larger for each i. This condition is equiva-
lent to requiring thatAτ (~q τ ) =

∑
i a
τ
i (~q τ ) is maximal at ~q τ , which

requires that for all i,

0 = ∂Aτ (~q τ )/∂qτi

= (1− τ)[f ′i(q
τ
i +QPSE

−i )− h(qτi +QPSE
−i )− qτi h′(qτi +QPSE

−i )]

+ τ [f ′(Qτ )− g′(Qτ )]. [25]
For τ = 1, these equations are all equivalent to the optimality con-
dition f ′(Qτ ) = g′(Qτ ). Although this implies that the final agree-
ment realizes the optimum total contributions Qτ = Q?, it does not
pose any further restriction on ~q τ . But for τ < 1, these n equations
might be independent and thus have a unique solution ~q τ . If this is
so for all τ ∈ (τ0, 1) for any τ0 < 1, the tracing procedure maintains
that in the last phase of the negotiations, the focal allocations will
“trace” the path of those unique solutions ~q τ , converging to some
limit ~q 1 for τ → 1. This limit could now be considered a likely final
outcome of the negotiations if suitable liability bounds can be found
that allow the application of BLinC to actually realize it.

Let us look at the simple example of linear benefits fi(Q) = βiQ
and quadratic costs g(Q) = max{0, Q}2 again (SI: Examples). In
that case, Eqn. [25] is

0 = (1− τ)[βi − 2qτi −QPSE
−i ] + τ [β − 2Qτ ]. [26]

We can first determine Qτ from their sum, giving

Qτ =
[β − (n− 1)QPSE](1− τ) + nβτ

2(1− τ) + 2nτ
[27]

which converges for τ → 1 to Q? = β/2 as required. Then we get

qτi =
βi −QPSE

−i

2
+ τ

β − 2Qτ

2(1− τ)
[28]

which converges to

q1i =
βi −QPSE

−i

2
+
n− 1

2n
QPSE = βi − β/2n. [29]

The resulting payoffs are then all equal, Pi = β2/4n, but this is a
consequence of this particularly simple payoff structure.

If g(Q) = max{0, Q}ζ with ζ 6= 2, the resulting payoffs are
larger for those with larger βi if ζ < 2, and they are larger for those
with smaller βi if ζ > 2, opposite to how the PSE payoffs behave. An
example of this is the emissions game with the STACO cost-benefit-
model (1; 2; 8), using the same parameters as in SI: Bounded liabil-
ities. It has approximately cubic costs (ζ = 3), and when we solve

5Note that this is also relevant for Cournot oligopolies of any size, since the Cournot-Nash
equilibrium leads to the same v as the public good game with symmetric linear benefits and
quadratic costs.
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Eqns. 25 numerically, the resulting allocation of the optimal global
payoff gives the US, Japan, and the EU (having large βi) a share of
about 4%, 6%, and 4% of the payoff, respectively, and the remain-
ing nine world regions (having small βi) a share of about 10% each.
However, such an allocation could not be stabilized using BLinC with
similar liability bounds as we discussed in SI: Bounded liabilities, so
it does not seem a likely outcome of the emissions game.
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