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Abstract.
To keep the Earth System in a desirable region of its state space, such as defined by the recently suggested

“tolerable environment and development window”, “guardrails”, “planetary boundaries”, or “safe (and just) op-
erating space for humanity”, one not only needs to understand the quantitative internal dynamics of the system
and the available options for influencing it (management), but also the structure of the system’s state space with
regard to certain qualitative differences. Important questions are: Which state space regions can be reached from
which others with or without leaving the desirable region? Which regions are in a variety of senses “safe” to
stay in when management options might break away, and which qualitative decision problems may occur as a
consequence of this topological structure?

In this article, we develop a mathematical theory of the qualitative topology of the state space of a dynamical
system with management options and desirable states, as a complement to the existing literature on optimal
control which is more focussed on quantitative optimization and is much applied in both the engineering and
the integrated assessment literature. We suggest a certain terminology for the various resulting regions of the
state space and perform a detailed formal classification of the possible states with respect to the possibility of
avoiding or leaving the undesired region. Our results indicate that before performing some form of quantitative
optimization such as of indicators of human well-being for achieving certain sustainable development goals, a
sustainable and resilient management of the Earth System may require decisions of a more discrete type that
come in the form of several dilemmas, e.g., choosing between eventual safety and uninterrupted desirability, or
between uninterrupted safety and larger flexibility.

We illustrate the concepts and dilemmas drawing on conceptual models from climate science, ecology, coevo-
lutionary Earth System modeling, economics, and classical mechanics, and discuss their potential relevance for
the climate and sustainability debate, in particular suggesting several levels of planetary boundaries of qualita-
tively increasing safety.
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1 Introduction

The sustainable management of systems mainly governed by
an internal dynamics for which one desires to stay in a certain
region of their state space, such as a “tolerable environment
& development (E&D) window” or within “guardrails” in a5

model of the Earth System (Schellnhuber, 1998; Petschel-
Held et al., 1999; Bruckner and Zickfeld, 2008), requires first
and foremost an understanding of the topology of the sys-
tem’s state space in terms of what regions are in some sense
“safe” to stay in, and to what qualitative degree, and which of10

these regions can be reached with some degree of safety from
which other regions, either by the internal (“default”) dy-
namics or by some alternative dynamics influenced by some
form of management. In the context of Earth System analy-
sis for studying anthropogenic climate change (Schellnhu-15

ber, 1998, 1999), management options may correspond to
global climate policies for mitigation of greenhouse gas
emissions (Edenhofer et al., 2014) or technological interven-
tions such as geoengineering (Vaughan and Lenton, 2011)
and much debated criteria for desirability include the resem-20

blance of a Holocene-like state or the provision of certain lev-
els of human well-being. In this setting, it may be very hard
to advance the definition of meaningful “planetary bound-
aries” and a corresponding “safe operating space for human-
ity” (Rockström et al., 2009a; Steffen et al., 2015) and relate25

them to sustainable development goals without such an in-
depth analysis.

Also the question whether it suffices to influence the sys-
tem by active management for only a limited time to reach
a safe region or whether it might be necessary to repeat30

active management indefinitely or even continue it unin-
terruptedly in order to avoid undesired state space regions,
which is closely related to the “sustainability paradigms”
of Schellnhuber (1998), seems quite relevant in view of ur-
gent problems such as the climate policy debate. E.g., if suit-35

able climate-change mitigation policies such as certain forms
of energy market regulation can transform the economic sys-
tem in a way that allows one to eventually deregulate the mar-
ket again, then for how long can one delay mitigation until
this feature is lost and only permanent regulation can help?40

Or, if certain adaptation or geoengineering options might be
cheaper than mitigation but require an uninterrupted manage-
ment or lead to a less well-known region of state space (Klei-
don and Renner, 2013), which of these qualitatively different
properties is preferable?45

We will see that such questions about a “safe” or “safe
and just operating space” (Rockström et al., 2009b; Raworth,
2012; Scheffer et al., 2015; Carpenter et al., 2015) may lead
to decision dilemmas that cannot as easily be analysed in a
purely optimization-based framework, but that are highly rel-50

evant for the design of resilient Earth System management
strategies. A summary of these dilemmas is contained in Ta-
ble 1 (the possible examples from Earth System management
mentioned there are discussed in the next section).

The paradigm of optimal control, which is much applied55

in both the engineering, on the one hand does not provide
sufficient concepts for such a qualitative analysis and on the
other hand typically requires quite a lot of additional knowl-
edge, in particular, some or other form of quantitative eval-
uation of states, e.g., in terms of indicators of human well-60

being. Of course, the integrated assessment literature, al-
though also using optimization as a basic tool, has realized
since long that the spatiotemporal distribution of wealth and
the diversity and uncertainty of impacts imply that the prob-
lem is hard to frame in terms of a single objective function65

and has used several techniques to deal with this multi-issue
multi-agent decision problem, including certainty-equivalent
discount rates and hyperbolic discounting (Dasgupta, 2008),
cost-efficiency instead of cost-benefit analyses (Edenhofer
et al., 2010), lexicographic preferences (Ayres et al., 2001),70

and many-objective decision making (Singh et al., 2015), to
name only a few, but although qualitative constraints appear
in many of them, the actual analyses then typically still focus
on quantitative assessments.

In this article, we will complement the above-mentioned75

set of assessment tools by deriving in a purely topological
way a thorough and precise qualitative classification of the
possible states of a system with respect to the possibility of
avoiding or leaving some given undesired region by means
of some given management options. Our results indicate that80

in addition to (or maybe rather before) performing some
form of quantitative (constrained) optimization, the sustain-
able and resilient management of a system may require de-
cisions of a more discrete type, e.g., choosing between even-
tual safety and permanent desirability, or between permanent85

safety and increasing future options, etc. This appears even
more so in the presence of strong nonlinearities, multistable
regimes, bifurcations, and tipping elements (Lenton et al.,
2008; Schellnhuber, 2009; Keller et al., 2005), where small
state changes due to random perturbations or deliberate man-90

agement may not only have large consequences but can lead
to qualitative and possibly irreversible changes.

To indicate the wide scope of applicability of our con-
cepts in various subdisciplines of Earth System Science, we
illustrate the concepts and dilemmas with conceptual models95

from climate science, ecology, coevolutionary Earth System
modeling, economics, and classical mechanics.

In contrast to the somewhat related but more formal ap-
proach of sequential decision problems in discrete-time sys-
tems (Botta et al., 2015), we focus on the more easily ap-100

plicable class of continuous-time systems and their models
here. Our classification is based on a distinction between de-
fault and alternative trajectories of a system, and suitably
adapted reachability concepts from control theory and the
important but vast field of viability theory (Aubin, 2009;105

Aubin et al., 2011; Aubin and Saint-Pierre, 2007; Martin,
2004; Rougé et al., 2013; Frankowska and Quincampoix,
1990). Since physical models of global-scale processes or
other macroscopic systems are usually of a statistical physics
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Table 1. Preview of dilemma types discussed in the article.

Name Option 1 Option 2 Possible example

“Glade” dilemma higher desirability/flexibility safety adaptation/mitigation
“Lake” dilemma uninterrupted desirability eventual safety great transformation
“Port” dilemma higher flexibility higher desirability land-use change
“Harbour” dilemma uninterrupted desirability eventually higher desirability/flexibility space colonization
“Dock” dilemma uninterrupted safety eventually higher desirability/flexibility new technologies

nature in the sense that they represent the aggregate effects110

of many micro-scale processes by suitable approximations,
their proper interpretation typically requires one to expect
small (actually or seemingly) random perturbations. We take
this into account here by strengthening the usual notion of
reachability to one of stable reachability, and by requiring115

the featured subsets of state space to be topologically open
(instead of closed) sets, so that infinitesimal perturbations
cannot kick the system out of them.

In the next subsection (Sec. 1.1), we will briefly summa-
rize our main concepts with the help of a metaphorical il-120

lustration, before introducing the corresponding formal no-
tation in Sec. 2 in a concise way, reserving a more detailed
formal treatment for Appendix A. The framework is then ex-
emplified at the hand of several low-dimensional, concep-
tual models from various subdisciplines of Earth System Sci-125

ence including climate science, ecology, and coevolutionary
social-environmental Earth System modelling (Sec. 3) in or-
der to indicate the wide scope of applicability of our con-
cepts. A thorough analysis of more realistic and thus higher-
dimensional models of the Earth System we have to leave for130

future studies since that would require further improvement
of the numerical methods and algorithms employed for find-
ing region boundaries. We conclude with a discussion and
outlook in Sec. 4.

1.1 Metaphorical framework135

As a start, let’s take the common metaphor that “we’re all in
the same boat” literally and represent the state of the Earth
System with all its natural and socio-economic parts at each
point in time by a single small boat floating or being rowed
somewhere on a rather complex system of waters such as in140

Fig. 1.
The boat can only be on water, not on land, will gener-

ally float along with the stream that represents the inherent
dynamics of the Earth System over hundreds and thousands
of years (the “default trajectory”), but may also be rowed in145

more or less different directions depending on how strong the
surge of the stream is, and this possibility of rowing repre-
sents mankind’s agency in deliberately influencing the Earth
System’s course to some extent by some or other form of
what we will call “management” below. Let us assume that150

the main qualitative distinction with regard to where human-
ity wants their boat to be is represented by a division of the
whole region into a desirable, “sunny” region on the left and
an undesirable, “dark” region on the right, both containing
several parts of the waters that may be connected in any155

imaginable ways, and with the natural water flow possibly
drawing the boat back and forth between these two regions.
The sunny region is meant to consist of all those possible
states of the natural and socio-economic parts of the Earth
System in which some generally agreed environmental and160

living standards are met, such as those defined by the human
rights charter or the sustainable development goals (global
goals) recently adopted by the United Nations. An alterna-
tive definition of the sunny region has been put forward in
the planetary boundary framework (Rockström et al., 2009a;165

Steffen et al., 2015), where states lying within the corridor
of Earth System variability during the Holocene that human
societies are adapted to are considered as desirable.

We will show in this article that in such a setting, no mat-
ter how the waters look exactly, the general situation is in170

a certain sense always equivalent to the situation depicted
in Fig. 1. There will in general be a certain sunny water re-
gion where one does not need to row at all in order to stay
in the sun forever but can simply lean back and let the boat
float around inside that region. In the picture, this region is175

the top-left tranquil tarn, but in general this region may also
consist of several disconnected parts which we will call the
shelters to emphasize their desirable and safe nature. Indeed,
we will argue below that these shelters may be the most nat-
ural candidates for being called a “safe and just operating180

space for humanity”, only that we may not yet be in them. In
the Earth System, there may be several such shelters, one of
which might correspond to resilient states of the world (Folke
et al., 2010) where humanity lives reconnected to the bio-
sphere (Folke et al., 2011) and no active intervention or con-185

stant large-scale management is needed.
Connected to the shelter(s), there will in general also be

other parts of the sunny region where it would not be safe
to just lean back since the flow would then draw the boat
into the dark after some time, but from where the shelters190

can still be reached by some suitable rowing, as show to the
left of the “danger” sign in the image. For their “almost-safe”
character, we will call such regions glades. If the glade is for
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Figure 1. Metaphorical summary of concepts introduced in Section 1.1 inspired by Schellnhuber (1998). It depicts a river flowing from the
mountains to the sea while going through sunny (left) and dark parts (right) where humanity can float and row on a boat. In the shelter, no
rowing is needed to remain in the sun. One can row against the stream direction in slowly flowing parts, shown with long thin arrows, but in
fast parts marked with swirls this is not possible. This setting gives rise to a number of qualitatively different regions of the system’s state
space that can be found in any manageable dynamical system as well: upstream regions such as glades and lakes from where the shelter can
be reached, downstream regions such as the backwaters from where one can at best stay in the sun by management, and several types of
worse regions, all labeled here and explained in the text. See also Figs. 2 and 3.

some reason more desirable or offers more flexibility in terms
of where one may row, one may face a dilemma when in a195

glade, i.e., a qualitative decision problem, namely whether
to prefer staying in the safety of the shelter or in the more
desirable but unsafe glade.

The shelters may also be reached by rowing from some
places within the dark region (e.g., to the right of the “dan-200

ger” sign) or through such a dark region from some other
sunny places (such as those above the “keep out” sign).

Among these latter sunny places from where the shelters can
be reached only through the dark, there will generally be
some places where one may alternatively stay forever in the205

sun by continuous rowing instead of passing through the dark
and leaning back eventually. Such special places such as the
one above the “keep out” sign will be called lakes here, and
they are characterized by a moderate surge towards a dark
place that one can row against and by the decision dilemma210
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Figure 2. Decision tree summarizing the partition of a manageable dynamical system’s state space w.r.t. stable reachability of the desired
region or the shelters (main cascade), and the finer partition of the manageable region. The color scheme (grey undesired regions, green
upstream regions, yellow downstream regions, red eddies and abysses, lighter meaning better) is also used in the remaining figures.

that results from the question of whether one should indeed
do so or rather row to a shelter through the dark.

All these regions together will be called the upstream re-
gion for reasons that should become clear soon. In any sys-
tem’s state space, the upstream consists of all states from215

which the shelters can be reached by management, and it is
partitioned into one or several shelters, glades, dark upstream
parts, lakes, and some remaining sunny upstream parts where
it is not possible to stay in the sun forever. In Fig. 1, the up-
stream ends where the rapids left of the “keep out” sign begin220

since there the stream becomes so strong that it gets impos-
sible to row against it to eventually reach a shelter. Once the
boat has left the upstream via such a rapid, there is no hope of
leaning back eventually and stay in the sun, and for this rea-
son the borders of the upstream may be called the “no regrets225

planetary boundaries”, forming a middle level of a hierarchy
of planetary boundaries we will suggest in Sec. 4.

Further down the stream there will typically be places
where it is still possible to stay in the sun forever, only that
one has to row over and over again to do so, such as in the230

slow-moving side branch below the “keep out” sign in the
picture. Such regions, called backwaters here, are similar to
lakes, only without the option of rowing to a shelter, so that

the lake dilemma does not occur since the only chance one
has is to row against the slow surge to stay in the backwa-235

ter. While the upstream was defined by being able to reach
a shelter, the downstream is now defined as all places from
where a backwater but not a shelter can be reached, includ-
ing the backwaters, some dark parts such as the slow moving
dark part just right of the backwater in the picture, and maybe240

some remaining sunny downstream parts from where one
may reach a backwater only through the dark. An example
for a backwater could be a “machine world” where human-
ity can fully control nature to its very minute detail. While
they can stay within the sunny region for infinite time by this245

management, there is no way of reaching a shelter anymore
because the ecosystem has been changed irreversibly.

The waterfall in Fig. 1 indicates that besides the upstream
and downstream regions, where it is possible to stay in the
sun eventually, there will in general be further, less hopeful250

places the system may be in, from where one cannot avoid
entering the dark over and over again. In some of those, one
can at least make sure that one also spends some time in the
sun over and over again, as depicted by the kayak in the pic-
ture. Since this is typically connected to some form of cyclic255

motion, we will call such regions eddies. In some eddies, fail-
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Figure 3. Illustration of port, harbour and dock dilemmas intro-
duced in Section 1.1. As in Fig. 1, humanity can float in and row a
boat on a complex waterway. From the upper port city (upper dark
blue region), one can get to some unknown region to the left and
to another, nicer port city (lower dark blue) at the shore through a
rapid (hatched blue) which cannot be traversed in the other direc-
tion. This choice between desirability and flexibility forms a port
dilemma. The nicer port city has two harbours (middle blue re-
gions), of which the right one is more desirable, and between which
one can switch only through an undesired region where pirates loom
(circular area). Boats in the left harbour face the harbour dilemma
of choosing between either avoiding the undesired region by all
means or eventually reaching a place of higher desirability. Finally,
in the left harbour there are two safe docks (light blue regions), of
which the top one is more desirable, and between which one can
switch only through an unsafe part of the harbour from which one
may be drawn into the undesired region if the engine fails. Boats in
the bottom dock face the dock dilemma of choosing between unin-
terrupted safety and eventual higher desirability.

ing to row correctly may push the boat into an even less de-
sirable region, called an abyss, from where one can no longer
avoid ending up in the dark forever eventually, as in the ring-
shaped abyss shown inside the eddy in the figure. Finally, the260

dark region from where there is no escape, depicted in the
center of the abyss, will be called a trench.

This completes our main partitioning of the Earth Sys-
tem’s or any other manageable system’s state space into qual-
itatively different regions: Upstream and downstream defined265

by being able to reach shelters or backwaters, abysses defined
by not being able to avoid ending up in a trench, and eddies
in between, defined by being at least able to switch between
sun and dark forever. Fig. 2 summarizes all these regions in
the form of a decision tree, where one can identify the region270

the system is in by answering a small number of questions.
That our partitioning is indeed complete and can be given a
suitable and unambiguous mathematical form for all kinds of
systems is shown in the next section.

275

While in Fig. 1, each of the introduced set of system states is
just one topologically connected region, in general most of
these sets are composed of several disjoint regions, so there
may be several shelters, glades, lakes, etc. On a finer level,
these may be analysed further by looking at which parts may280

be reached from which other parts, and this leads to a finer,
hierarchical partition into ports, rapids, harbours, docks, etc.
and to several new types of dilemmas, as shown in Fig. 3.

All of the five types of dilemmas listed in Table 1) can
easily occur in the collective “management” or governance285

of the Earth System by humanity. A glade dilemma may oc-
cur if adaptation is seen as preferable to mitigation for wel-
fare reasons but turns out to be a riskier option due to a
higher uncertainty of the corresponding climate impacts. A
lake dilemma can arise if a great transformation of the global290

energy system towards a carbon-free economy would tem-
porarily lead to welfare losses in poorer countries. A port
dilemma may come from the option of increasing welfare
by extending industrial agriculture causing biodiversity loss
(decreasing flexibility) due to the related large-scale land-use295

change. A harbour dilemma could occur in the future when
colonization of other planets (increasing flexibility) becomes
feasible but extremely costly. Finally, a dock dilemma arises
whenever a very promising new technology with some un-
known risks and side-effects (such as genetically engineered300

food production) could be introduced on a planetary scale.

2 Formal framework

We will now put all of the above on thorough mathematical
footing. Let us assume a manageable dynamical system with
desirable states, given by the following components:305

(i) A dynamical system with a state space X , a default
dynamics represented by a family of default trajecto-
ries τx(t), and some basic topology on X (e.g., the Eu-
clidean topology, see Appendix A1 for more detail).

(ii) A notion of desirable states represented by an open set310

X+ ⊆X , called the sunny region, whose complement
X− =X −X+ we call the dark.

(iii) A notion of management options represented by a fam-
ilyMx of admissible trajectories µ for each x ∈X .

We assume that one can switch immediately to any trajec-315

tory µ ∈Mx whenever in state x. We say the system floats
when it follows a default trajectory, and that we may row the
system along any other admissible trajectory.

Note that although, formally, we consider deterministic
autonomous systems only, non-deterministic systems can320

be incorporated by considering probability distributions as
states, time-delay systems can be treated similarly, and ex-
ternally driven or otherwise explicitly time-dependent sys-
tems can be covered by including time t as a variable with
ṫ= 1 into the state vector. Also, if management involves325
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some form of inertia, e.g., if not the propelling vector v of
a boat but only its acceleration v̇ can be changed discontinu-
ously, the proper way to model this in our framework would
be to treat v as part of the state.

2.1 Qualitative distinction of regions330

w.r.t. sustainable manageability of desirability

The main idea of the coarsest of our classifications of states
is to first identify (i) a safe region where management is un-
necessary, called the shelters S, and (ii) a less safe but larger
manageable region M where one can permanently avoid the335

dark at least by management. Then we classify all states
with regard to whether and how X+,S, and M can be sta-
bly reached from the current state by management. For each
state, we ask: (iii) Can S be stably reached, and if so, can
the dark be avoided on the way? (iv) If not, can M be stably340

reached? (v) If not, can we stably reach X+ over and over
again, or at least once again? We will see that these criteria
lead to a partition of state space into a “cascade” consisting
of five main regions, upstream U , downstream D, eddies E,
abysses Υ, and trenches Θ. Each of these will then be split up345

further into sets such as glades G, lakes L, and backwaters
W , etc., by asking further qualitative questions. In choos-
ing these figurative terms, we try to avoid a too technically-
sounding language and rather extend the useful and common
metaphor of “flows” and “basins” in a natural way without350

trying to match their common-language meanings too accu-
rately.

To acknowledge the fact that all real-world dynamics and
management will be subject to at least infinitesimal noise and
errors, we base the formal definition of these state space re-355

gions on certain notions of invariant open kernel, sustain-
ability, and stable reachability, whose symbolic mathemat-
ical definitions and algebraic properties are detailed in Ap-
pendix A2.

2.2 Shelters, manageable region,360

upstream & downstream

The invariant open kernel of a set A⊆X , denoted Aι◦, is
the largest open subset of A that contains the default trajec-
tories of all its own points. The shelters are the invariant open
kernel of the sunny region,365

S = (X+)ι◦. (1)

S contains all sunny states whose default trajectories stay in
the sunny region X+ forever without any management even
when infinitesimal (or small enough) perturbations occur. In
other words, when inside S, one will “stably” stay in X+ by370

default.
We call an open set A ∈ T sustainable (in the basic sense

of the word, simply meaning that it can be sustained) iff it
contains an admissible trajectory for each of its points. The
sustainable kernel of a set A⊆X , denoted AS , is the largest375

sustainable open subset of A. We call the sustainable kernel
of the sunny region the manageable region:

M = (X+)S ⊇ S. (2)

In other words, when inside M , one can stably stay in X+

by management.380

In Appendix A2, we introduce a suitable notion of stable
reachability to overcome two problems with the classical no-
tion of (plain) reachability known from control theory. For
now, let us assume we know what we mean when saying that
a state y or a set Y ⊆X is stably reachable from some state x385

through some set A⊆X , denoted x A y or x A Y . Us-
ing this notion of stable reachability for the choice A=X
(other choices of A will be used in the next section), we can
now define the upstream U as the set of states from where the
shelters S can be stably reached at all. Likewise, the down-390

stream D consists of all states from which the manageable
region M but not the shelters can be stably reached:

U = ( XS)⊇ S, (3)
D = ( XM)− ( XS) = ( XM)−U ⊇M −U. (4)

2.3 Trenches, abysses, eddies & the main cascade395

On the other, dark end of what we will call the main cascade,
we first define the trenches Θ as that region in the dark from
which one cannot stably reach the sunny region even once,

Θ =X − ( XX
+) (5)

(this concept approximately corresponds to the “catastrophe400

domains” of Schellnhuber (1998)).
Now we turn to the region from where one cannot avoid

ending up in the trenches. We define the abysses Υ as the
closure of this region, minus the trenches:

Υ = {x ∈X |∀µ ∈Mx∃ t> 0 : µ(t) ∈Θ}−Θ. (6)405

The closure is taken since already an infinitesimally small
perturbation from a point in this closure can make the
trenches unavoidable.

Finally, the eddies E are the remainder of X , i.e., the part
from where the manageable region cannot be stably reached410

but the trenches can be avoided:

E =X −U −D−Υ−Θ

= (X − ( XM))∩ (X − (Υ + Θ)). (7)

Thus, when in the eddies, even though one can reach the
sunny part over and over again, one cannot stay there forever415

but has to visit the dark repeatedly.
A connected component of Θ,Υ, or E will be called an

individual trench, abyss, or eddy, and the latter two typically
have sunny and dark parts.

420
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The system C = {U,D,E,Υ,Θ} is a partition of X which
we call the main cascade because of the following mutual
reachability restrictions:

U 6 

X D 6 

X E 6 

X Υ 6 

X Θ. (8)

In other words, one might at best be able to go in the “down-425

stream” direction by default or by management, from up-
stream to downstream to the eddies to the abysses to the
trenches, but not in the other, “upstream” direction (see also
Fig. 2).

2.4 The glades and lake dilemmas, backwaters,430

and the manageable partition

Some of the states in the manageable region M may be in
U = ( XS) but not in ( X+S). This motivates the defi-
nition of two subsets of M via the relation of sunny stable
reachability, X+ , namely (i) the glades G, from where the435

shelters can be stably reached through the sun, and (ii) the
lakes L, from where the shelters can be stably reached only
through the dark:

G= ( X+S)−S, (9)
L=M ∩U − ( X+S) =M ∩U −S−G. (10)440

Glades and lakes are two particularly interesting types of
regions since in both one has a qualitative decision prob-
lem. The glade dilemma occurs if a glade is for some reason
more desirable than its shelter, since then one has to decide
whether to stay in the more desirable but unsafe glade or row445

to the less desirable but safe shelter. The lake dilemma ex-
ists in every lake: shall one stay in the sun by rowing over
and over again, but risking to float into the dark if the paddle
breaks, or shall one move into a shelter, accepting a tempo-
rary passage through the dark, to be able to recline in safety450

eventually? In other words, the lake dilemma is a choice
between uninterrupted desirability and eventual safety. Be-
low we will encounter more qualitative dilemmas of this and
other types.

While {S,G,L} is a partition of M ∩U , also the down-455

streamD may contain a manageable part, the backwatersW .
This is the region where one may stay in the sun forever by
rowing over and over again, but where one may not stably
reach the shelters at all, not even through the dark:

W =M ∩D =M −U. (11)460

This completes the manageable partition

M = S+G+L+W. (12)

Also, both U and D may contain points outside M , which
we call the dark upstream/downstream,

U− = U ∩X−, D− =D∩X−, (13)465

and the remaining sunny upstream/downstream,

U (+) = (U ∩X+)−M, D(+) = (D∩X+)−M, (14)

leading to the upstream and downstream partitions

U = S+G+L+U (+)+U−, D =W +D(+)+D−. (15)

Finally, one can divide the eddies and abysses into sunny and470

dark parts:

E± = E ∩X±, Υ± = Υ∩X±. (16)

All the sets introduced so far are summarized in Fig. 2 in
the form of a decision tree that allows for a fast classification
of individual states.475

2.5 Finer distinction of regions
w.r.t. mutual reachability of different types

In addition to the glade and lake dilemmas introduced above,
there exist at least three further types of qualitative decision
problems, all related to the question of which parts or subre-480

gions of the above introduced regions may be stably reached
from which other parts, and whether corresponding transi-
tion pathways exist that do not leave the shelters or at least
the sunny region, or only through the dark. In order to study
these questions, we introduce three additional, successively485

finer partitions derived from the reachability relations  X

(stable reachability) and  X+ (stable reachability through
the sun) that we used already above, and from the even more
restrictive relation S (stable reachability through the shel-
ters).490

2.5.1 The ports and rapids partition & network,
and the port dilemma

While from each state inU , one can stably reach some part of
S, one cannot in general navigate freely inside S or U or any
other member of the main cascade C. Let us call a maximal495

region in which one can navigate freely a port (see Appendix
A3 for more thorough formal definitions and proofs of the
claimed properties). Each port is completely contained in one
of the sets U,D,E,Υ−,Θ, and none can intersect Υ+, so the
notion of ports fits well into the hierarchy of regions that be-500

gan with the main cascade and the manageable partition. But
there are also transitional states not belonging to any port
since one cannot return to them. So, to extend the system of
all ports into a partition of all of X , we also have to classify
these non-port states, and we do so by asking which ports505

they can reach and from which ports they can be reached.
States that are equivalent in this sense form what we call
a rapid. It turns out that U and D are then partitioned into
ports and rapids, and so is each individual eddy, abyss, and
trench. The reachability relations between ports and rapids510

form a directed network that concisely summarizes the over-
all structure of all management options.
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Fig. 1 shows the very simple case of a linear network: the
whole upstream is one port, the sunny downstream and the
adjacent fast-moving part of the dark downstream form a515

rapid, the backwater and the slow-moving part of the dark
downstream form another port, the waterfall is another rapid,
the eddy is a port again, and the abyss and the trench are
rapids. In the examples below, we will however see that much
more complex ports and rapids networks may occur in mod-520

els, and one can prove that any acyclic graph may occur as
the ports and rapids networks of some system.

The ports and rapids partition is helpful in the discussion
of a certain type of dilemma that results from two different
objectives which may not be easily balanced: (i) the objective525

of being in or reaching a state with high intrinsic desirabil-
ity, e.g., as measured by some qualitative preference relation
finer than the mere distinction between “desirable” and “un-
desirable”, or even by some quantitative evaluation such as a
welfare function; and (ii) the objective of retaining an amount530

of flexibility as large as possible by being in or reaching a
state from which a large part of state space is reachable. Flex-
ibility may be important in particular in situations in which
there is some uncertainty about future management options
and/or future preferences (Kreps, 1979). We call this a port535

dilemma.

2.5.2 The harbours and channels partition & network,
and the harbour dilemma

Since it does not take into account the definition of the de-
sirable region X+ at all, ports and rapids are not directly540

compatible to the regions from the manageable partitionM
since their members may overlap in complex ways. However,
we can construct a very similar but finer partition based on
stable reachability through the sun ( X+ ) instead of (plain)
stable reachability, restricted to the sunny region, and the re-545

sult turns out to be compatible withM.
A maximal region in which one can freely navigate with-

out leaving the sun is called a harbour. A region of states
that do not belong to any harbour but from which the same
harbours can be reached through the sun and which can be550

reached from the same harbours through the sun is called a
channel. Since each harbour or channel lies completely in a
port or a rapid, the harbours and channels form a finer par-
tition than the ports and rapids and form a finer layer of the
reachability network in which the links represent reachability555

through the sun instead of mere reachability.
The harbours-and-channels partition allows one to identify

decision problems involving (i) the objective of staying in a
desirable state and (ii) the objective of eventually reaching a
state with higher desirability or flexibility, which is called a560

harbour dilemma here.

2.5.3 The docks and fairways partition & network,

and the dock dilemma

Note that although the harbours-and-channels partition is
finer than that into ports and rapids, there is still one impor-565

tant region that can have nontrivial overlaps with harbours
and channels, namely the shelters S. In order to complete
our hierarchy of partitions and networks of regions, we there-
fore introduce a third and finest partition and network level,
restricted to S, based on the notion of stable reachability570

through the shelters, S .
In complete analogy to the above, a maximal region of

states that are mutually reachable through S is called a dock,
and the non-dock states in S are classified into so-called fair-
ways with regard to their reachability of these docks. Again,575

each dock or fairway lies completely in a harbour or channel,
and they form a third layer of the reachability network whose
links now represent the safest form of reachability, namely
through the shelters.

Finally, the docks-and-fairways partition is helpful in the580

discussion of dilemmas involving (i) the objective of staying
in a safe state (i.e., in the shelters) and (ii) the objective of
eventually reaching a state with higher desirability or flexi-
bility. We call this a dock dilemma.

2.6 Summary of the introduced hierarchy of partitions585

and networks

Summarizing, we have now a hierarchy of ever-
finer partitions of the system’s state space at
our hands. We began with the main cascade
C = {U,D,E,Υ,Θ}, its refinement into the partition590

{S,G,L,U (+),U−,W,D(+),D−,E+,E−,Υ+,Υ−,Θ}
(see Fig. 2), and the further refinement by topological
connectedness into individual shelters, glades, lakes, back-
waters, eddies, abysses, and trenches. These partitions
represent the qualitative differences in stable reachability595

of the shelters or the manageable set, thus allow for a first
classification of states w.r.t. the possibilities of sustainable
management, and may reveal decision problems of the
type of glade or lake dilemma which will occur in many
of the examples below, where one has to choose between600

higher safety and higher desirability or flexibility or between
uninterrupted desirability and eventual safety.

A different refinement of C into the ports-and-rapids net-
work is still based on stable reachability alone but contains
other details suitable for the identification and discussion of605

possible port dilemmas that involve a choice between higher
desirability and higher flexibility. Inside the desirable re-
gion X+, this partition can be refined into the harbours-
and-channels network suitable for the discussion of harbour
dilemmas that involve a choice between uninterrupted desir-610

ability and eventually higher desirability or flexibility, and
further into the docks-and-fairways network suitable for the
discussion of dock dilemmas that involve a choice between



10 Jobst Heitzig et al.: Topology of sustainable management in the Earth System

uninterrupted safety and eventually higher desirability or
flexibility (Table 1).615

These three networks may also be interpreted as a three-
level “network of networks” with nodes representing state
space regions of different quality and size. A network-
theoretic analysis of it using methods such as the node-
weighted measures of Heitzig et al. (2012) may especially620

be interesting in the context of varying system parameters
and bifurcations such as those in Fig. B2, but is beyond the
scope of this article.

3 Examples

In this section, we will apply the introduced frame-625

work to several illustrative examples from natural and
co-evolutionary Earth System modeling, ecology, socio-
economics, and classical mechanics. The examples have
been chosen not for their realism but for their simplicity, to
show the broad scope of potential applicability of our con-630

cepts, and the relevance of the identified types of decision
dilemmas in both the natural and socio-economic compo-
nents of the Earth System.

3.1 Carbon cycle & planetary boundaries

Our first example is from natural Earth System modeling and635

illustrates which of the above-introduced regions occur most
often for systems that possess only a single, globally stable,
and desirable attractor.

Anderies et al. (2013) proposed a conceptual model of the
global carbon cycle capturing its main features while keeping640

the model sufficiently low-dimensional to be able to discuss
the planetary boundaries concept with it. We use their model
for pre-industrial times, which has three dynamical variables
cm, ct and ca = 1−cm−ct representing the maritime, terres-
trial, and atmospheric shares of the fixed global carbon stock.645

The dynamics is of the form

ċm = am(ca−βcm), ċt = f(ca, ct)−αct,

where am,β are diffusion parameters, f is a function rep-
resenting photosynthesis and respiration, and α governs the
human offtake rate from the terrestrial carbon stock. See An-650

deries et al. (2013) for details and parameter values.
Since the parameter α can be considered the natural hu-

man management option for this system, we assume the de-
fault flow has a value of α= α+ = 0.5, while management
can reduce it by half to α= α− = 0.25, which results in the655

trajectories shown in Fig. 4. Both have a unique stable fixed
point in the interior of the state space which is globally at-
tractive for all states with ct > 0.

In order to roughly represent the planetary boundaries re-
lating to climate change, biosphere integrity, and ocean acid-660

ification (Rockström et al., 2009b; Steffen et al., 2015), we
require a “sunny” state to have sufficiently low atmospheric
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Figure 4. Phase portrait of the pre-industrial carbon cycle model
of Anderies et al. (2013). Arrows indicate default/unmanaged dy-
namics (pale blue) and alternative/managed dynamics (dotted dark
blue) from reducing the human offtake rate by half. Filled dots: cor-
responding stable fixed points. Grey area: undesired region defined
by (i) upper bounds for maritime carbon cm (white horizontal line,
representing a planetary boundary related to ocean acidification)
and atmospheric carbon 1−ct−cm (white diagonal line, related to
a climate change boundary) and a lower bound for terrestrial carbon
ct (white vertical line, representing an ecosystem services planetary
boundary). Coloured areas and labels: derived state space partition
(see text), colors as defined in Fig. 2: a shelter S around the globally
stable fixed point of the default dynamics, a glade G from where S
can be reached by management without violating the bounds, and a
remaining sunny upstream U (+) from where one cannot avoid vio-
lating the bounds temporarily.

carbon, at least a minimum value of terrestrial carbon, and
not too large maritime carbon, leading to a dark region of the
shape shown in Fig. 4 in grey. If, as shown, the unmanaged665

fixed point is sunny, one obtains a purely upstream situation
with a shelter surrounding the fixed point, a glade, and a re-
maining sunny upstream U (+) as shown in the figure. For
our (quite arbitrarily) chosen parameter values, a trajectory
starting in the sunny upstream is likely to first cross the cli-670

mate boundary and then the biosphere boundary before get-
ting back into the sunny region, whereas it seems quite un-
likely to cross the acidification boundary.

In this example, all non-upstream regions are empty, and
so is the lake region, hence no lake dilemma occurs. On the675

other hand, if one considers a higher ct to be preferable, we
get an example of the glade dilemma since the managed fixed
point in the less safe glade has higher ct than the unmanaged
fixed point in the safer shelter. Note that this is neither a port,
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Figure 5. Competing plant types example, showing all upstream regions and illustrating the lake dilemma. A bistable system of two com-
peting plant types with two simultaneous management options (depicted in separate plots only for discernability). Management by a general
harvesting quota (dotted arrows shown left) can ensure desirable long-term harvests of the less productive type x1 (lake L). Management
by temporary protection of the more productive type x2 (dashed arrows shown right) can cause a transition to the desirable fixed point (in
the shelter S), but only through the undesired region of low harvests (gray region). The state space partition boundaries resulting from both
options together (white curves) and a desirable minimum harvest boundary (white diagonal) follow some admissible trajectory at each point.

harbour, or dock dilemma since both points are in the same680

port and harbour and only the unmanaged one is in a dock.
If, instead, we had chosen the minimum value for ct to

be larger than the unmanaged equilibrium value, the shelter
would be empty and the whole situation would change from
upstream-only to either a downstream-only or an abyss-and-685

trench situation. This type of topological bifurcation will be
studied in Example 3.4. In the next example, we will see a
lake dilemma instead of a glade dilemma.

3.2 Competing plant types & multistability

The second example, from ecology, demonstrates how the690

lake dilemma may occur in a multistable system with a sunny
and a dark attractor.

In this fictitious example, two plant types 1,2 compete
for some fixed patch of land, modify the soil, and are har-
vested. Their growth follows a logistic-type dynamics, with695

land cover proportions x1,2 ∈ [0,1] following the equations

ẋ1 = x1(K1(x1,2)−x1)−h1x1,
ẋ2 = rx2(K2(x1,2)−x2)−h2x2.

In this, r > 1 is a constant productivity quotient, h1,2 are the
harvest rates, and the two dynamic capacities K1(x1,2) =700 √
x1(1−x2)6 1 andK2(x1,2) =

√
x2(1−x1)6 1 represent

the fact that each type modifies the soil quickly to its own
benefit but to the other type’s disadvantage (see Supplement
1 for a discussion of the model design).

For our illustration, we assume that on the default trajecto-705

ries, both harvest rates h1,2 equal some rather high value h+,
leading to low equilibrium harvests. We assume management
can repeatedly choose between this default and two types
of alternative trajectories. Type 1 has a lower value for both
harvest rates, h1,2 = h− < h+, representing management by710

restricting harvests politically in order to yield higher long-
term harvests, but without aiming to change the plant mix, as
depicted in Fig. 5 (left). Type 2 management option has har-
vest rates h2 = 0 and h1 = 2h+, representing management
by temporarily protecting type 2 in order to change the plant715

mix to the higher productivity plant; we assume that this
moratorium results in more intense harvesting of type 1, as
depicted in Fig. 5 (right). We assume that both options exist
simultaneously at all times (the separate plots of Fig. 5 are
only for better discernability of the trajectories). We set the720

desirable region to where x1+x2 > ` for some ` > 0 in order
to ensure some minimum harvests.

For the choice r = 2, h+ = 0.2, h− = 0.1, `= 0.65 of the
figure, the desirable high productivity stable fixed point of
the default dynamics at≈ (0,0.79) is in the sunny region and725

is thus contained in a shelter S. The latter is delimited by the
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default trajectory that meets the boundary to the undesired re-
gion tangentially. S can be stably reached from all states with
x2 > 0, hence the upstream is U = {(x1,x2)|x2 > 0}. The
border of the glade G next to S can be found by backtrack-730

ing the “widest” admissible trajectory that meets the bound-
ary to the undesired region tangentially; this turns out to be
a type-2 management trajectory as seen in Fig. 5 (right). This
shows how the boundaries of regions may often be found
by identifying tangential or otherwise significant points and735

backtracking the default and alternative trajectories leading
to them.

The lower productivity stable fixed point of the default dy-
namics (with h1,2 = h+) at ≈ (0.52,0) is undesired for this
choice ofX+. From it one can not only navigate to S but can740

also (and faster) get to the higher productivity stable fixed
point of the first type of managed dynamics with h1,2 = h−,
at ≈ (0,0.79), and stay there as long as management holds.
Hence the region around (0,0.79) is part of the manageable
region M . The exact boundary of this region (which soon745

turns out to be a lake, L) is the “widest” admissible trajectory
that meets the boundary to the undesired region tangentially;
in this case, this trajectory turns out to be a type-1 manage-
ment trajectory as seen in Fig. 5 (left). To get from this type
1-dominated region to the type 2-dominated shelter S via the750

other management option of protecting type 2, one has to
cross the undesired middle region in which both types coex-
ist at a low level due to soil conditions that are suboptimal
for both types. Hence the region around (0,0.79) is a lake.
The associated lake dilemma is similar to a glade dilemma755

in that staying in a lake is unsafe as in a glade, but it differs
in the reason why one may want to stay there: While staying
in a glade may be attractive simply because the glade may
be more desirable than the shelter in some quantitative sense,
staying in a lake may seem attractive since that avoids having760

to pass through the dark to reach safety.
This form of the lake dilemma can also occur in other mul-

tistable systems when one of the attractors is in the dark but
sufficiently close to the sunny region so that constant man-
agement can sustain the system in a sunny place near that765

attractor, and when other management options may push the
system towards another, sunny attractor after crossing the
dark.

Note that in this example, the lake dilemma falls together
with a port dilemma since after leaving the lake for the shel-770

ter, one cannot return. If we choose a slightly larger sunny
region by lowering ` to `= 0.45, the unmanaged fixed point
with y = 0 gets into X+ and the former lake around it now
becomes a second shelter, which might be called a shel-
ter/lake transition. But from this shelter the other, more desir-775

able shelter can still only be reached through the dark. Since
the two shelters correspond to two harbours in the reacha-
bility network, this means the former lake dilemma has been
converted into a harbour dilemma.

The example also shows that the more management op-780

tions exist, the less trivial it is to find the boundaries be-
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Figure 6. Substitution of a dirty technology. Coevolution of the cu-
mulative production of a dirty technology x1 and a clean one (x2)
without (pale blue curves) and with (dotted dark blue curves) a sub-
sidy for the clean technology. Undesired region with too high future
usage of the dirty technology colored in grey. Knowledge stocks
x1,2 were transformed to z1,2 = x1,2/(0.3+x1,2) in order to cap-
ture their divergence to +∞.

tween regions even in two-dimensional systems. For higher
dimensions, one will usually have to rely on specialized nu-
merical algorithms such as the Viability Kernel Algorithm of
Frankowska and Quincampoix (1990) from viability theory.785

3.3 Substitution of a dirty technology

Our third example concerns a purely socio-economic part of
the Earth System that bears some similarity to the preced-
ing example but features regions from both ends of the main
cascade: upstream and abyss/trench, without having the in-790

termediate regions of downstream and eddies.
Instead of plants, in this example a certain produced good

(e.g., electric energy) comes in two types which are econom-
ically perfectly substitutable but whose production processes
use two different technologies, one “dirty” and one “clean”795

(e.g., conventional and renewable energy). The production
costs C1,C2 are convex functions of production output per
time yi and decrease over time via a learning-by-doing dy-
namics that is similar to Wright’s law (Nagy et al., 2013):

Ci(yi) = γiy
1+σi
i /(1 +σi)x

αi
i .800

In this, xi is cumulative past production (with ẋi = yi), γi
are cost factors, σi > 0 are convexity parameters, and αi > 0
are learning exponents. We assume that demand D depends
linearly on price,D(p) =D0−δp, δ > 0, that demand equals
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production, D = y1+y2 (“market clearance”), and that price805

equals marginal costs, p= ∂C/∂yi = γiy
σi
i /x

αi
i , due to per-

fect competition among producers. One can then uniquely
solve for the produced amounts yi, getting some formula
yi = fi(x1,x2). This results in a two-dimensional dynamical
system with state variables x1,x2 and equations810

ẋi = fi(x1,x2).

Let us putD0 = 1, δ = 1, σi ≡ 1/5, αi ≡ 1/2, and assume
that the default dynamics has γi ≡ 1, so that the long-term
default behaviour is p(t)→ 0, D(t)→ 1. If the dirty tech-
nology 1 is the traditional one, so that x1(0)> x2(0), we815

have x1(t)→∞, x2(t)→ x̂2 <∞, y1(t)→ 1, and y2(t)→
0, i.e., usage of the clean technology 2 will die out. If in-
stead x1(0)< x2(0), technology 1 will die out. Hence the
system is bistable as in the plant example, but with attrac-
tors at infinity. To depict the diverging behaviour, we used820

the transformation zi = xi/(1 +xi) in Fig. 6.
The main dynamical difference to the plant example is

however not the diverging behaviour, but has to do with the
choice of management options. While in the plant example,
the choice of management options led to an upstream-only825

situation in which the more desirable fixed point could be
reached from everywhere, in this example we will get regions
from which the desirable fixed point cannot be reached and
which are thus non-upstream. We consider the management
option of lowering γ2 to a value of, say, 1/2 by subsidis-830

ing the clean technology 2 to induce a technological change
(Jaffe et al., 2002; Kalkuhl et al., 2012). This leads to the al-
ternative dynamics depicted in Fig. 6, showing that for some
initial states with x1 > x2 one can now get x2(t)→∞ and
y1(t)→ 0. The goal of keeping the usage of the dirty tech-835

nology below some limit, y1 < ` < 1, corresponds to a desir-
able region in terms of x1,x2, whose border can be computed
as x2 = x1(1/`−1−1/`4/5

√
x1)2/5, see Fig. 6. That goal is

automatically fulfilled in the top-left shelter region, can also
be sustained by management (subsidies) in the glade region840

below it, and can at least be reached eventually from the re-
maining sunny upstream U (+) below the glade and from the
dark upstream U− which is delimited by the management
trajectory that meets the upper right corner.

But from below the latter trajectory, the shelter cannot be845

reached. In other words, when in U−, one has to act fast in
order not to loose the option of reaching S. From the dark
part denoted Θ, not even the sunny region be reached, hence
that region is a trench, while the sunny part to its left is the
abyss leading to that trench. There are no intermediate re-850

gions (downstream or eddies) between upstream and abyss
in this example.

3.4 Combined population and resource dynamics

Our fourth example models the coevolution (in the sense of
joint time evolution) of a natural Earth System component855

coupled with a socio-economic Earth System component and
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Figure 7. Combined population and resource dynamics. Coevolu-
tion of a population x and a resource stock y. In all cases, φ=
4, r = 0.04. When the globally stable fixed point of the default dy-
namics (pale blue) falls into X+, only upstream regions occur (top-
left, γ0 = 4·10−6 > γ1 = 2.8·10−6, δ =−0.1,κ= 12000,xmin =
1000,ymin = 3000). When it falls into X− instead, but the sta-
ble fixed point of the alternative management trajectory (dot-
ted dark blue) is in X+, then only downstream regions oc-
cur (top-right, γ0 = 8 · 10−6 < γ1 = 13.6 · 10−6, δ =−0.15,κ=
6000,xmin = 1200,ymin = 2000). Otherwise (bottom, γ0 = 8 ·
10−6 < γ1, δ =−0.15,κ= 6000,xmin = 4000,ymin = 3000), the
analysis depends on whether one can repeatedly reach X+ by
switching between default and alternative trajectories: For γ1 =
16·10−6 (bottom-left), only eddies occur, while for γ1 = 11.2·10−6

(bottom-right), only abysses and trenches occur.

shows how different parameters may qualitatively move the
resulting state space topology through the whole main cas-
cade, from an upstream-only situation via downstream-only
and eddies-only to an abyss-and-trench situation.860

The model was used in Brander and Taylor (1998) to ex-
plain the rise and fall of the native civilization on Rapa
Nui (Easter Island) before western contact, but it may also
be interpreted as a conceptual model of global population-
vegetation interactions. It is derived from simple economic865

principles and leads to a a modified Lotka-Volterra model
with a finite resource. The human population x is preying
on the island’s forest stock y which itself follows a logistic
growth dynamics:

ẋ= δx+φγxy, ẏ = ry(1− y/κ)− γxy870

for some parameters γ,δ,κ,φ,r representing growth and har-
vest rates and the stock’s capacity.

We assume management will either reduce the default har-
vest rate γ0 to some smaller value γ1 < γ0 to avoid over-
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Figure 8. Gravity pendulum fun-ride with management by one-
sided acceleration and undesirable fast rotations. The 2π-periodic
coordinate θ is the pendulum’s inclination angle. If its angular ve-
locity ω exceeds ±`, people get sick (grey region). Since staying in
L (balancing almost upright) orG (balancing somewhat inclined) is
more exciting than in S (resting downward), we have both a glade
and a lake dilemma.

exploitation of the resource, or increase it to a larger value875

γ1 > γ0 to avoid famine. Our choice of the sunny region re-
lies on two principles. The absolute population should not
drop below a threshold xmin and the relative decline in pop-
ulation under the default dynamics, −ẋ/x, should not ex-
ceed a value of `. Hence X+ = {x > xmin and y > ymin =880

max(0,−(`+ δ)/φγ0)}.
The resulting state space partition is depicted in

Fig. 7 for φ= 4, r = 0.04 and different choices of
γ0,γ1, δ,κ,xmin,ymin. One either gets an upstream-
only situation, a downstream-only one, an eddy-only one,885

or an abyss-and-trench situation, depending on whether
the unmanaged and managed fixed points belong to the
desired or undesired region. In Appendix B2, these kinds of
transitions are more formally interpreted as bifurcations.

An interesting case occurs when the whole state space is890

a single eddy as in Fig. 7 (bottom-left): One can then repeat-
edly visit the sunny region by suitably switching between a
low default harvest rate and a managed higher harvest rate,
but one cannot avoid getting back into the undesired region
of a low or fast declining population. An “optimal” manage-895

ment strategy would then lead to slowly but strongly oscillat-
ing behaviour.

3.5 Gravity pendulum fun-ride

While in the above examples typically only some of the pos-
sible regions were non-empty for each parameter combina-900

tion, the following example from classical mechanics dis-
plays a rich diversity of state space regions that coexist at a
single choice of parameter values. Despite an extremely sim-

ple dynamics, it features both a glade and a lake dilemma, an
eddy, and a trench at the same time.905

In the model, people sit in a fun ride resembling a gravity
pendulum with angle θ and angular velocity ω and default
dynamics given by

θ̇ = ω, ω̇ =−sinθ.

An optional additional clockwise acceleration of the pendu-910

lum of magnitude a > 0 (“management”) leads to alternative
admissible trajectories on which for some time interval(s)
one has ω̇ =−sinθ− a. The sunny region is where |ω|< `,
for some ` > 0 representing a safety speed limit above which
people might get sick.915

The unique shelter S is delimited by the default trajectory
leading through the points θ = 2kπ, ω =±` that surrounds
the stable resting state of θ = ω = 0, see Fig. 8. If a state lies
on a default trajectory that has ω > 0 (counterclockwise pen-
dulum motion) at least some of the time, then there is an ad-920

missible trajectory from it leading into the shelter, generated
by the management strategy of “braking” whenever ω > 0.
Hence the upstreamU equals the region strictly above the de-
fault trajectory with ω < 0 that connects the unstable saddle
point at θ = (2k+ 1)π, ω = 0 (pendulum balancing upright)925

with itself.
Just left of the shelter is the unique gladeG. Depending on

the parameter values, the stable fixed point of the managed
dynamics (hanging pendulum inclined by constant accelera-
tion) may either belong to the shelter or to the glade. In the930

latter case (Fig. 8), we have a glade dilemma since the in-
clined position is preferred to the resting position by the rid-
ers but is unsafe since when the engine breaks, people will
get sick.

An even more exciting position is close to the upright935

balancing saddle point, at θ slightly larger than (2k+ 1)π
and ω� 1, where there is an admissible trajectory that stays
close to there (by braking repeatedly for short intervals while
staying almost upright), so that this point is in the manage-
able region M . This is a typical example of how a region940

close to a saddle point of the default dynamics may become
manageable due to an alternative feasible trajectory that has
a slightly shifted saddle point, so that in the diamond-shaped
region between the two saddle points, one can concatenate
unmanaged and managed trajectories into periodic orbits.945

However, for choices such as a= 0.6 and `= 0.5 (Fig. 8),
there is no admissible trajectory leading from the exciting re-
gion with θ ≈ (2k+1)π, ω ≈ 0 into the shelter without enter-
ing the region with |ω|> `. In that case the diamond-shaped
region is a lake and we have a lake dilemma.950

Finally, the region below and including the default trajec-
tory that touches the line ω =−` from below is the trenches
since one cannot brake in that direction, and the region be-
tween the trench and the upstream is the eddies. Downstream
and abysses are empty in this example.955
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3.6 Bifurcations with manageable parameter

This final example system is designed to illustrate the rela-
tionship of reachability and bifurcations of a dynamical sys-
tem that can be managed through a parameter and shows bi-
furcations of the type typically associated with tipping ele-960

ments of the Earth System (Schellnhuber, 2009).
It has a two-dimensional state space X = {(r,y)}, where

the “fast” variable y ∈ R has a default dynamics

ẏ = h(y|r) =−(4 + r2)3y3 + (2r2− 1)(4 + r2)y+ er − 10

that cannot be managed directly, and r ∈ R is a “slow” vari-965

able with (approximately) no default dynamics (ṙ = 0) which
however can be changed by management up to a velocity at
most 100 and with arbitrarily large acceleration, leading to
admissible trajectories with ṙ ∈ [−100,100] and ẏ = h(y|r).
We assume that values of y 6−1/3 are undesirable.970

If r is instead interpreted as a parameter of the one-
dimensional system ẏ = h(y|r), the set X can be interpreted
as its bifurcation space in which one can plot a bifurca-
tion diagram consisting of the loci of stable (solid lines)
and unstable (dotted lines) fixed points, as shown in Fig. 9.975

As one can see, there are three saddle-node bifurcations at
r1 ≈−2.2, r2 ≈ 1.735, and r3 ≈ 4.9 with monostable pa-
rameter regimes r1 < r < r2 and r > r3, and bistable param-
eter regimes r < r1 and r2 < r < r3. Individual and paired
saddle-node bifurcations (with often result from fold bifurca-980

tions) occur frequently in bistable Earth System components
such as the hysteretic Thermohaline Circulation (Stommel,
1961; Rahmstorf et al., 2005), monsoonal soil-vegetation
feedbacks (Janssen et al., 2008), or other tipping elements
(Schellnhuber, 2009). Hysteresis also occurs on other spatial985

and temporal scales, e.g. in local hydrology (Beven, 2006)
and in long-term glacial climate dynamics (Ganopolski and
Rahmstorf, 2001).

The main part of the resulting network of ports and rapids
of our example system is depicted in Fig. 10. On its coars-990

est level, there are two ports, each containing one of the two
connected loci of stable/unstable fixed points, and a rapid in
between through which one can pass from the left to the right
port but not back. If the right port seems more attractive, e.g.
because it allows a higher value of y, we have a port dilemma995

since by leaving the left port for the right one, we loose flex-
ibility in terms of reachable regions.

The right port contains two harbours, similarly connected
by a narrow “internal” channel, but also contains another
“exit” channel leading from the right harbour to the dark re-1000

gion. Note that on the leftward pointing dashed management
trajectory in the middle of the bifurcation diagram, there is
a leftmost point from where one can still “turn around” and
reach (if only unstably) the right part without entering the
dark region; this point is a corner of the right harbour (but not1005

belonging to it, for stability reasons), and below it is a chan-
nel leading to another harbour in the bottom-left. Again, if
the right harbour seems more attractive, we have a dilemma,

Figure 9. Bifurcations with manageable parameter. Loci of sta-
ble (solid black lines) and unstable (dotted lines) fixed points of
ẏ =−(4+ r2)3y3 +(2r2− 1)(4+ r2)y+ er − 10. Leftmost and
rightmost admissible management trajectories (dashed arrows) and
their starting points (dots). Border (grey line) between sunny region
y >−1/3 and the dark. See Fig. 10 for an analysis.

this time a harbour dilemma since in order to reach the right
harbour from the left one, we have to pass through the dark.1010

Finally, the right harbour contains two docks again con-
nected by a fairway, plus some more fairways. Again, we get
a dilemma if the top-right dock is more attractive than the
top-left one: the dock dilemma is that in order to reach the
top-right dock from the top-left one, one has to pass through1015

the unsafe middle region and risk ending up in the dark if
management breaks down.

4 Discussion and Conclusions

We have presented a formal classification of the possible
states of a dynamical system such as the Earth System into1020

regions of state space which differ qualitatively in their
safety, the possibilities of reaching a safe state, the possi-
bilities of avoiding undesired states, and in the amount of
flexibility for future management.

Based on an assumed main division of the system’s states1025

into only two classes, desirable (“sunny”) and undesirable
(“dark”), we have constructed a hierarchy of partitions of a
system’s state space, whose member regions we suggested
to name by metaphorical names either corresponding to the
general image of a boat floating or rowing on a complex1030

water system, such as “upstream”, “downstream”, “eddy”,
“abyss”, “trench”, “lake”, and “backwater”, or correspond-
ing to the image of a “shelter” surrounded by a “glade”. To
capture the nature of and relationships between the different
regions, we have introduced the notion of stable reachabil-1035

ity and the corresponding three-level reachability network
of “ports”, “harbours”, “docks”, “rapids”, “channels”, and
“fairways”, and illustrated our concepts with conceptual ex-
ample models from climate science, ecology, coevolutionary
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Figure 10. Main part of the three-level reachability network of ports and rapids (top), harbours and channels (middle), and docks and
fairways (bottom), and related dilemmas in the bifurcation example. Arrows indicate stable reachability (top), stable reachability through the
sun (middle), and stable reachability through the shelters (bottom). Some further arrows between rapids, channels and fairways have been
omitted here.
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Earth System modelling, economics, and classical mechan-1040

ics. Most of the different regions can readily be found in most
models for either most or at least selected parameter settings.
A notable exception are the “eddies” which, due to their cir-
cular nature, can be expected to occur much more rarely in
real-world, non-conservative systems, especially when ther-1045

modynamic or otherwise irreversible processes are involved,
such as soil degradation. Example 3.4, however, illustrates
how eddies may occur in coevolutionary systems and might
incentivize management cycles that lead to undampened pe-
riodic ups and downs. It must remain an open question here1050

whether this effect might be an additional explanation for
empirically observable cycles such as business or resource
cycles when management is involved.

The introduced concepts have then been used to point out
a number of qualitatively different decision problems, the1055

glade, lake, port, harbour, and dock dilemmas. In our opin-
ion, one particularly nasty form of decision problem is the
lake dilemma, where one has to choose between uninter-
rupted desirability and eventual safety, and Example 3.2 indi-
cates that this dilemma may easily occur at least in ecological1060

systems or other multistable systems with a sunny attractor
and another one slightly in the dark. Since the transformation
of socio-metabolic processes or complex industrial produc-
tion systems may resemble the soil transformation of Exam-
ple 3.2, one may also expect the lake dilemma to occur in1065

the socio-metabolic and economic subsystems of the Earth,
e.g., in the context of a great transformation leading to de-
carbonisation of the world’s energy system. The form of lake
seen near the saddle point in the pendulum Example 3.5 can
also occur in other nonlinear oscillators, e.g. the Duffing os-1070

cillator or models of glacial cycles that resemble it such as
Saltzman et al. (1982); Nicolis (1987), when a management
option exists that has a slightly shifted saddle point. This in-
dicates that the lake dilemma may also occur in purely phys-
ical subsystems of the Earth System.1075

We argue that our concepts may be especially useful in
the context of the current debate about Planetary Boundaries
(PBs), a possible Safe and Just Operating Space (SAJOS)
for humanity, and the necessary socio-economic transitions
to reach it or stay in it. We suggest that the region delim-1080

ited by some identified set of Planetary Boundaries in the
sense of Rockström et al. (2009a) and Steffen et al. (2015)
and some similar socio-economic limits, e.g., those relating
to the United Nations sustainable development goals (Ra-
worth, 2012), should be interpreted in our framework as a1085

natural choice for the desirable region X+, although their
definitions already contain some reasoning about the conse-
quences for the respective subsystems when the boundaries
are violated. Such boundaries might be called the Ultimate
Planetary Boundaries (UPBs), and they are typically defined1090

by some simple thresholds for relevant indicators as in Rock-
ström et al. (2009a); Steffen et al. (2015), not taking into ac-
count the overall system’s inherent dynamics much. In this
sense, UPBs are typically “non-interacting”. Based on the

UPBs, one may then try to identify one or more smaller shel-1095

ter regions S that can be considered a Safe and Just Operating
Space (SAJOS) in the sense that, once there, no further large-
scale management in the form of global policies is necessary
to stay within the limits for all times (or at least for a suffi-
ciently long planning horizon). The borders of these shelters1100

are also a form of PBs but are much more restrictive than
the UPBs we started with, and we suggest to call them Safe
Planetary Boundaries (SPBs).

If it turns out that the current state of the Earth is out-
side the shelters, one should then aim next at trying to de-1105

cide whether it is in the upstream. If so, knowledge about
whether it is in a glade or lake or not, and which safe docks
can be stably reached will be necessary in order to choose a
management path. In the glade case, one can still reach the
shelter without ever violating the UPBs by appropriate man-1110

agement, hence we suggest to call the border of shelters and
glades together the Provident Planetary Boundaries (PPBs).

In the lake case, one has to decide instead whether a tem-
porary violation of the UPBs can be justified by the eventual
safety of the shelters. In addition, a port dilemma may ne-1115

cessitate a decision between higher desirability and higher
flexibility at this point. Only after these qualitative decisions
it seems advisable to optimize the chosen type of manage-
ment pathway by means of more traditional control and op-
timization theory, hopefully using accurate enough quanti-1120

tative estimates of the involved options, costs, and benefits.
Once in the shelters, one may start caring about improving
the state further by moving between docks to either improve
desirability or flexibility, but this may require a risky tempo-
rary passage through a sunny but unsafe region (which poses1125

a dock dilemma) or even a passage trough the dark (which
poses a harbour dilemma). Of course, many combinations
of these qualitative and quantitative criteria may appear in
the actual global decision process, e.g., in the form of lexi-
cographic preferences, decision trees, or more sophisticated1130

welfare measures or other quantitative objective functions
that take the topology suitably into account1.

If we are not in the “upstream” of the Earth System,
prospects are worse. Violating the limits can then only be
avoided by management, either eventually forever (if in the1135

downstream), or only repeatedly but with repeated viola-
tions occurring (if in the eddies), or even only for a limited
time with an ultimate descent into the undesired region (if
in the abysses or already in the trench). We suggest to call
the upstream borders the No Regrets Planetary Boundaries1140

(NRPBs).
If the diagnosis reads “eddy”, “abyss” or “trench”, one

may repeat the analysis with a less ambitious, “second best”
definition of the desirable region by choosing less restrictive
UPBs, or revert to quantitative optimization, e.g., to mini-1145

1and that may relate to some form of market (or other game
theoretic) equilibrium or else be governed by some suitable policy
intruments, as kindly suggested by an anonymous referee.
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mize some damage function along the system’s trajectory. On
the other hand, as long as one is in the “manageable region”
M (shelters, glades, lakes, and backwaters), the UPBs need
never be transgressed if managed wisely, hence we propose
to call the borders of M the Foresighted Planetary Bound-1150

aries (FPBs).
This completes our suggested hierarchy of PBs from the

relatively looser UPBs via the successively narrower FPBs
and NRPBs, then the PPBs, to the narrowest SPBs that de-
fine the SAJOS. While UPBs are “non-interacting”, FPBs,1155

PPBs, NRPBs, and SPBS will typically have a more complex
geometry in the system’s state space and are thus “interact-
ing boundaries”. This means that they cannot be expressed
as simple “threshold” for individual indicators but as condi-
tional thresholds for several indicators that depend on each1160

other as shown by the curved region boundaries in the exam-
ples, e.g., in the carbon cycle model of (Anderies et al., 2013)
in Sec. 3.1. Obviously, the real world is less black and white
than suggested by the idealised division into “desirable” and
“undesirable”, so the actual location of these bounds will in1165

reality be somewhat vague, but this does not change the fact
that the different bounds and regions represent qualitatively
different states of the system, not just quantitative shades of
grey.

1170

It should be noted that one strategy to decide the dilemmas
described throughout this work is to follow certain “sustain-
ability paradigms” such as those suggested by Schellnhu-
ber (1998). For example, the “pessimization paradigm” is
based on the basic precautionary principle of “avoiding the1175

worst” and, hence, can be interpreted as suggesting to stay
in or aim for the shelter. In this way, the “pessimization
paradigm” decides the glade and lake dilemmas in favour
of safety. In turn, the “optimization paradigm” could be in-
terpreted to decide all but the harbor dilemma in favor of1180

uninterrupted or (eventually) higher desirability. The “stabi-
lization paradigm”, which seems to fit best the popular no-
tions of “Sustainable Development”, reflecting a “longing for
stable equilibria” in the coevolutionary dynamics of human
societies and the biophysical Earth System (Schellnhuber,1185

1998), might imply staying in a lake favouring uninterrupted
desirability over eventual safety in the sense of this work.
Finally, the “equitization paradigm” might imply choosing
higher flexibility, e.g., in terms of a larger set of remaining
options for future generations in the sense of intergenera-1190

tional justice, in all dilemmas but the lake dilemma. As also
argued by Schellnhuber (1998), the remaining “standardiza-
tion paradigm” is entirely based on static choices of norms or
development corridors instead of dynamical systems or “geo-
cybernetic” principles and, hence, cannot directly decide any1195

of the dilemmas. However, this paradigm can be viewed as a
way for identifying desirable domains in the Earth System’s
state space in the first place and, thereby, facilitate a subse-
quent topological classification of state space structure.

Contemplating sustainability paradigms gives rise to other1200

relevant qualitative decision problems. For what might be
called an “optimization/pessimization dilemma”, consider
the debate on geoengineering by solar radiation manage-
ment (Lenton and Vaughan, 2009; Vaughan and Lenton,
2011) as a strategy for averting some of the consequences1205

of global climate change that are induced by anthropogenic
emissions of greenhouse gases (Stocker et al., 2013). Ac-
cording to the recent update of the planetary boundary frame-
work by Steffen et al. (2015) and the corresponding defini-
tion of desirability (see Sec. 1.1), the Earth System is cur-1210

rently in the dark region of its state space, because core
planetary boundaries such as those related to climate change
and biosphere integrity have likely already been transgressed.
Following current assumptions on the feasibility of manage-
ment options (Edenhofer et al., 2014), assume further that the1215

Earth System is currently in the dark upstream. In this situa-
tion, efforts for mitigation of greenhouse gas emissions, e.g.,
by means of global energy market regulations, as well as con-
servation and restoration of biosphere integrity would corre-
spond to navigating the Earth System from the dark upstream1220

towards the shelters following the “pessimization paradigm”.
In turn, massive investments in solar radiation management
as an alternative to mitigation could be seen as manoeu-
vring the Earth System into the glades or lakes going along
with a severe loss of resilience, since interruption of these1225

efforts due to global crisis or technological failure would
lead to very rapid and catastrophic climate change (Barrett
et al., 2014). In short, starting in the dark upstream, does
one choose to navigate to a glade or lake because this ap-
pears economically cheaper on the shorter term or politically1230

more feasible (“optimization paradigm”) or does one aim
for the shelters rightaway, even if this is more expensive on
the shorter term (“pessimization paradigm”)? Note, however,
that geoengineered Earth System states within the glades or
lakes would be expected to have a considerably reduced de-1235

sirably in the long-term compared to the shelters, since cur-
rent proposals for solar radiation management can only con-
trol a very small set of Earth System properties such as global
mean temperature, while regional temperature patterns and
the hydrological cycle would change strongly (Kleidon and1240

Renner, 2013; Kleidon et al., 2015), going along with corre-
sponding climate impacts.

We hope that the theoretical considerations outlined here
may be of some help to sharpen the important debate of1245

how a transition to a safe desirable state of the Earth Sys-
tem can be managed. To this end, future studies should ap-
ply the proposed framework for comparing different Earth
System governance strategies in the form of various man-
agement options (e.g., mitigation of greenhouse gas emis-1250

sions vs. geoengineering) and different notions of desirabil-
ity (e.g., resemblance of a Holocene-like state or satisfaction
of certain standard of human well-being) in terms of their
feasibility and resilience. Furthermore, the structural stability
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of future development pathways generated by Integrated As-1255

sessments Models through optimizing utility functions based
on certain notions of human well-being could be evaluated.
For achieving these aims, performant computer algorithms
need to be developed for automatically generating the pro-
posed topological charts also for higher-dimensional Earth1260

System models given a set of management options and de-
sirability criteria, e.g., building on algorithms from viabil-
ity theory (Frankowska and Quincampoix, 1990), the graph-
theoretical analysis of phase space transition networks (Pad-
berg et al., 2009), and flow networks from fluid dynam-1265

ics (Ser-Giacomi et al., 2015; Froyland and Padberg-Gehle,
2015). While the examples discussed in this work have been
limited to two dynamical variables for facilitating the visu-
alization of the corresponding topological charts, investiga-
tion of more detailed models of Earth System dynamics calls1270

for advanced visualization techniques (Nocke et al., 2015) as
well as the application and further development of quantita-
tive measures of the size (Menck et al., 2013; Hellmann et al.,
2015; van Kan et al., 2015) and shape (Mitra et al., 2015) of
the phase space regions of interest. The fact that the intro-1275

duced state space partitions depend on qualitative rather than
quantitative properties of states may also make them a natural
tool for the analysis of complex but qualitative or “general-
ized” models in the spirit of Kuipers (1994); Petschel-Held
et al. (1999) or Lade et al. (2013, 2015b, a).1280

Appendix A: Formal derivation of partitions and
properties

We use sloppy set theoretic notation when no confusion
arises: union A+B =A∪B, difference A−B =A \B,
power set 2A = {B ⊆A}. Proofs only require an under-1285

standing of general topological spaces, in particular of open-
ness and continuity, but not of any higher-level concepts from
differential topology or the like.

A1 Assumptions and notation

For a more formal treatment than in the main text, we assume1290

a manageable dynamical system with desirable states, made
of the following ingredients:

A state space X 6= 0 with some Hausdorff topology T ⊆
2X (i.e., a system of open sets that separate each two points)
on it whose elements we call states or points (e.g., X ⊆ Rn1295

with Euclidean topology).X may be compact or unbounded,
finite- or infinite-dimensional, etc.

A flow (= deterministic continuous-time autonomous dy-
namical system) on X (e.g., a model of human-nature co-
evolution or any other Earth System model) given by a fam-1300

ily of continuous (“business-as-usual” or) default trajectories
τx : [0,∞)→X with τx(0) = x and ττx(t)(t

′) = τx(t+ t′)
for all initial conditions x ∈X and all relative time points
t, t′ > 0. We don’t require further smoothness properties of
the flow, like differentiability, to avoid having to assume a1305

richer topological structure for X than just a general topo-
logical space, and to avoid unnecessarily complicated no-
tions and familiarity with, e.g., differential geometry. Al-
though flows are often represented by ordinary differential
equations, their solutions are sometimes not unique, hence1310

our notion of flow is in terms of trajectories instead, to allow
us to distinguish, e.g., a 1D flow with ẋ=

√
x and τ0(t)≡ 0

from the flow that has also ẋ=
√
x but τ0(t) = t2/4.

An open nonempty set X+ ∈ T of desirable states, called
the sunny region, e.g., defined by means of some notion1315

of “tolerable E&D window” (Schellnhuber, 1998). We call
the complement X− =X −X+ 6= 0 the dark (region). We
require openness for convenience so that infinitesimal per-
turbations can’t lead from sunny to dark part, and trajecto-
ries cannot touch the sunny region without entering it for a1320

strictly positive amount of time. Although in most of our ex-
amples,X+ is a simply shaped, connected, convex, and often
compact set, none of these properties is required for the the-
ory presented here except topological openness.

To represent “management options”, a family of nonempty1325

setsMx of admissible trajectories from each x ∈X that in-
cludes τx and is closed under switching between trajectories
at any time, i.e., if µ ∈Mx, t > 0, x′ = µ(t), and µ′ ∈Mx′ ,
then the trajectory defined by µ′′(t′′) = µ(t) for t′′ 6 t and
µ′′(t′′) = µ′(t′′− t) for t′′ > t is also in Mx. This require-1330

ment corresponds to the so-called semigroup axiom of math-
ematical control theory (Sontag, 1998). Note that we do not
allow any explicit time dependency of flow or management,
but such dependencies can as usual be encoded by including
time as a state variable. Also, if management can change a1335

parameter of the model, that parameter has to be transformed
to a (slow) state variable with zero default dynamics of its
own to meet our framework.

A2 Open invariance, sustainability, and stable
reachability1340

The invariant open kernel of a setA⊆X , denotedAι◦, is the
largest open subset of A that contains the default trajectories
of all its own points. Its existence and uniqueness is nontriv-
ial and will be proved below. Note that Aι◦ may be empty.
Each (topologically) connected component of S = (X+)ι◦ is1345

called an individual shelter.
We call an open set A ∈ T sustainable iff for all x ∈A,

there is µ ∈Mx with µ(t) ∈A for all t> 0. Again, the
openness requirement ensures a minimal form of stability
against small perturbations. The sustainable kernel of a set1350

A⊆X , denoted AS , is the largest sustainable open subset of
A Again, existence and uniqueness will be proved below. In
Viability Theory (Aubin, 2001) AS roughly corresponds to
the “viability kernel” of A, see the discussion in Supplement
3. Also AS may be empty.1355
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Lemma 1 (Existence and uniqueness). For all A⊆X:

1. There is a unique largest (default-trajectory-) invariant
and open subsetAι◦ ⊆A, containing all other such sets.

2. Every invariant and open set is sustainable. In particu-
lar, S is.1360

3. There is a unique largest sustainable subset AS ⊆A
with AS ⊇Aι◦, containing all other such sets.

Proof.

1. Let I(A) be the system of all open subsets B ⊆A for
which τx(t) ∈B for all x ∈B,t > 0. The proposition1365

is proved by showing that I(A) is a kernel system, i.e.,
contains the empty set (which is trivial) and contains
the union

⋃
B of any of its subsets B ⊆ I(A). The latter

follows from the fact that the system of all open sets,
T , is a kernel system by definition, and if x ∈

⋃
B, then1370

x ∈B ∈ B, hence τx(t) ∈B ⊆
⋃
B for all t > 0. Now

Aι◦ =
⋃
I(A) ∈ I(A).

2. Since τx ∈Mx.

3. Similarly, the system S(A) of all sustainable subsets
B ⊆A is a kernel system: If x ∈

⋃
B, then x ∈B ∈ B,1375

hence there is µ ∈Mx with µ(t) ∈B ⊆
⋃
B for all t >

0. Now AS =
⋃
S(A) ∈ S(A). 2. implies AS ⊇Aι◦.

Q.E.D.

Next, we introduce a suitable notion of stable reachability to1380

overcome two problems with the classical notion of (plain)
reachability known from control theory, where a state y is
reachable from another state x iff it lies on some admissible
trajectory starting at x (Sontag, 1998).

First, we want a stable fixed point y of the default dy-1385

namics to be counted as stably reachable from a (sufficiently
small) neighbourhood of itself although one might only get
arbitrarily close to y instead of getting to y in finite time.
Second, we want stable reachability to imply that small per-
turbations along the way can’t render the target unreachable.1390

To solve this conceptual task in a mathematically convenient
way, we define stable reachability here via the following bi-
nary relation between sets. We call an open set C ∈ T a
forecourt for some set Y ⊆X , denoted C Y , iff one can
approach Y arbitrarily closely from everywhere in C with-1395

out leaving C, or, more precisely, iff for all x ∈ C, there is
µ ∈Mx so that for all open sets Z ∈ T with Z ⊇ Y , there
is t > 0 with µ(t) ∈ Z and µ(t′) ∈ C for all t′ ∈ [0, t]. Now,
for a state x ∈X and some set A⊆X , we say that another
state y ∈X or another set Y ⊆X are stably reachable from1400

x through A, denoted x A y or x A Y , iff x is in some
subset of A that is a forecourt for {y} or Y , respectively. The
set of states from where Y can be stably reached through A
is denoted ( AY ). (This is a stable version of what Aubin
(2001) would call a “capture basin” of Y ). Note that in these1405

definitions, the order in which the logical quantifiers “for all”
and “there exists” appear is critical for some of the resulting
properties. If Y is open, the definitions can be somewhat sim-
plified:

Proposition 1 (Stable reachability).1410

For all A,A′,C,Y ,Z ⊆X and x,y,z ∈X:

1. If Y is open, then (i) C Y iff for all x ∈ C, there is
µ ∈Mx so that there is t > 0 with µ(t) ∈ Y and µ(t′) ∈
C for all t′ ∈ [0, t]; and (ii) x A Y iff there is and open
C ⊆A with x ∈ C and for all x′ ∈ C, there is µ ∈Mx′1415

so that there is t > 0 with µ(t) ∈ Y and µ(t′) ∈ C for
all t′ ∈ [0, t].

2. If x A Y , then x is in the interior (= largest open
subset) of A, A◦, and there is an open set B 3 x with
x′ A Y for all x′ ∈B. Hence, each set of the form1420

( AY ) is open.

3. Transitivity:

x A y A′ Z =⇒ x A+A′ Z,

x A y A′ z =⇒ x A+A′ z.

In particular, A is a transitive (but not necessarily re-1425

flexive) relation.

4. If A is open, it is stably reachable from each of its ele-
ments. In particular, since S = (X+)ι◦ ⊆ (X+)S =M
is open, S is also included in U = ( XS).

Proof.1430

1. (i) Assume C Y ∈ T and let x ∈ C. Then, by defini-
tion of forecourts, there is µ ∈Mx so that for all open
sets Z ∈ T with Z ⊇ Y , there is t > 0 with µ(t) ∈ Z
and µ(t′) ∈ C for all t′ ∈ [0, t]. Since Y is open, it is
such a Z, proving the first direction.1435

For the other direction, assume that for all x ∈ C, there
is µ ∈Mx so that there is t > 0 with µ(t) ∈ Y and
µ(t′) ∈ C for all t′ ∈ [0, t]. Let x ∈ C, choose such a
µ ∈Mx and t > 0, and let Z ∈ T with Z ⊇ Y be an
open set. Then µ(t) ∈ Y ⊆ Z as required.1440

(ii) By definition of stable reachability, x A Y iff
there is an open B ⊆A with x ∈B Y . By (i), B 
Y iff for all x′ ∈B, there is µ ∈Mx′ so that there is
t > 0 with µ(t) ∈ Y and µ(t′) ∈B for all t′ ∈ [0, t].

2. Assume x A Y . Then x ∈X for some open B ⊆A,1445

hence x ∈B ⊆A◦. Also, B Y hence x′ A Y for
all x′ ∈B. Hence ( AY ) contains an open neighbour-
hood of each of its points and is thus open itself.

3. We show this by concatenating suitably chosen admis-
sible trajectories between points close to x,y,Z. Let1450

x A y A′ Z, choose open setsB ⊆A,B′ ⊆A′ with
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x ∈B {y} and y ∈B′ Z, and putB′′ =B+B′ ⊆
A+A′, then x ∈B′′ and B′′ is open. To show that
B′′ Z, we let x′′ ∈B′′ and show that there is µ ∈
Mx′′ so that for all open W ′′ ⊇ Z, there is t > 0 with1455

µ(t) ∈W ′′ and µ(t′) ∈B′′ for all t′ ∈ [0, t].

If x′′ ∈B′, there is such a µ with µ(t′) ∈B′ ⊆B′′ for
all t′ ∈ [0, t] since B′ Z.

If x′′ /∈B′ instead, x′′ ∈B {y}, hence we find ν ∈
Mx′′ so that for all open W ⊇ {y}, there is t > 0 with1460

ν(t) ∈W and ν(t′) ∈B for all t′ ∈ [0, t]. Since B′ is
such aW , we find t′′ > 0 with ν(t′′) ∈B′ and ν(t′) ∈B
for all t′ ∈ [0, t′′]. For y′ = ν(t′′) ∈B′ Z, we then
find ν′ ∈Mx′′ so that for all open W ′′ ⊇ Z, there is
t > 0 with ν′(t) ∈W ′′ and ν′(t′) ∈B′ for all t′ ∈ [0, t].1465

Now define µ by putting µ(t′) = ν(t′) for t′ ∈ [0, t′′]
and µ(t′) = ν′(t′− t′′) for t′ > t′′. Then µ ∈Mx′′ be-
cause of our assumptions onM, and for all open W ′′ ⊇
Z, there is t > 0 with ν′(t) ∈W ′′ and ν′(t′) ∈B+B′ =
B′′ for all t′ ∈ [0, t], as required.1470

The z case follows from putting Z = {z}. Transitivity
is the special case of A′ =A.

4. For x ∈A ∈ T , we show x A A by showing A A.
Let x′ ∈A. By 1., we have to find µ ∈Mx′ and t > 0
with µ(t′) ∈A for all t′ ∈ [0, t]. Since A is open and τx′1475

is continuous, τx′ is such a µ.

Q.E.D.

A3 Partitions

A topologically connected component of Θ =X −
( XX

+), Υ = {x ∈X |∀µ ∈Mx∃ t> 0 : µ(t) ∈Θ}−Θ,1480

or E =X −U −D−Υ−Θ will be called an individual
trench, abyss, or eddy, and the latter two typically have
sunny and dark parts. Some further properties of these
introduced partition sets are:

Proposition 2 (Main cascade).1485

1. U = ( XS) and the union D+U = ( XM) are
open, Θ =X − ( XX

+) and Υ + Θ are closed, the
union E+D+U =X−Υ−Θ is open, and the system
{U,D,E,Υ,Θ} forms a partition of X .

2. For all u ∈ U,d ∈D,e ∈ E,y ∈Υ,θ ∈Θ, we have1490

u 6 

X d 6 

X e 6 

X y 6 

X θ.

3. If W = ∅, also D = ∅.

Proof.

1. Openness follows from Prop. 1,1., the parti-
tion covers X by definition of E, and the1495

only nontrivial disjointness is that between the
open set D+U = ( XM) and the closed set
Υ + Θ = {x ∈X |∀µ ∈Mx∃ t> 0 : µ(t) ∈Θ}. If x is

in both sets, there is also x′ ∈ ( XM)∩{x ∈X |∀µ ∈
Mx∃ t> 0 : µ(t) ∈Θ}, but then there is µ′x ∈Mx,1500

t′ > 0 with µ′x(t′) ∈M , and by definition of M there is
then also some µ ∈Mx with µ(t) ∈X+ for all t> t′.
But, by assumption, there is t> 0 with µ(t) ∈Θ. Since
Θ∩X+ = 0, we have t < t′, but by definition of Θ, this
contradicts µ(t′) ∈X+. Hence such an x cannot exist.1505

2. Because of transitivity and 1., d X u ∈ U = ( XS)
would imply d X S and thus d ∈ U ∩D = ∅;
e X d ∈D = ( XM)−U would imply e X M
and thus e ∈ (U +D)∩E = ∅. If one could
reach the eddies from the abysses, one could1510

avoid the trenches: Assume y X e /∈Υ + Θ =
{x ∈X |∀µ ∈Mx∃ t> 0 : µ(t) ∈Θ}. Since the latter
is closed, its complement is open, so there is µ ∈My

and t > 0 with µ(t) /∈Υ + Θ. For x= µ(t), we find
µ′ ∈Mx and t′′ > 0 with µ′(t′) /∈Θ for all t′ > t′′.1515

Concatenating µ with µ′ gives a similar member of
My , in contradiction to y ∈Θ. Finally, if θ X y and
θ ∈Θ, then y ∈Θ by definition of Θ, hence y /∈Υ.

3. This follows from ( XM)−U =D = ( XW ).

Q.E.D.1520

Note that in the (pathological) no-management case in which
Mx = {τx}, the upstream U = ( XS) is basically (i.e., up
to boundary effects due to our openness requirement) the
basin of attraction of S, the downstream D = ( XM)−1525

( XS) is then empty, the trenches basically equal the
invariant kernel of X−, the abysses basically equal the
rest of the basin of attraction of the trenches, and the ed-
dies is basically the union of those trajectories that will
forever alternate between X+ and X−. In that case also1530

some of the finer regions may coincide or be empty, and
one can represent their relationship also by means of sym-
bolic dynamics (Beim Graben and Kurths, 2003): Assign
each state x a symbolic sequence representing the sequence
of its trajectory’s transitions between the sunny (+) and1535

dark (−) regions, and use the wildcard ∗ to denote repe-
titions of zero or more symbols. Then (up to peculiarities
that may occur for boundary states) S =M = (+), U− =
(−)(+−)∗(+), U (+) = (+−)(+−)∗(+), G= L=D = ∅,
E+ = (+−)∞, E− = (−+)∞. Υ+ = (+)(−+)∗(−), Υ− =1540

(−+)(−+)∗(−), and Θ = (−).

To formally define the ports-and-rapids partition, we say that
a set P ⊆X is portish iff it has x X y for all x,y ∈ P , is
topologically connected, and does not intersect two different1545

eddies, abysses, or trenches. A maximal portish set is called
a port.

We show below that each two ports are disjoint, each port
is completely contained in one of the sets U,D,E,Υ−,Θ,
none can intersect Υ+, each returnable state (i.e., an x with1550
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x X x) is in a port, but no transitional state (x with x 6 X

x) is.
In the pendulum example of Fig. 8, the returnable points

are those in U +D because of the periodic frictionless de-
fault flow and the possibility of counteracting small pertur-1555

bations by braking or accellerating at some later point of the
perturbed trajectory. In the eddies and below, this is not pos-
sible after an accelerating perturbation, hence those regions
are transitional. In the plant types example of Fig. 5, there
are also transitional regions, e.g. to the top and right where1560

all admissible trajectories lead down and left; and in the tech-
nological change example of Fig. 6 all points are transitional
because of the positive growth of the knowledge stocks.

To extend the system P of all ports into a partition of
all of X that is finer than the main cascade C, we say1565

that two non-port states x,y are port-equivalent iff they are
in the same member of C, do not lie in two different ed-
dies, abysses, or trenches, and if x X P ⇔ y X P and
P  X x⇔ P  X y for all P ∈ P . Each maximal topolog-
ically connected set of port-equivalent states is now called1570

a rapid. This ensures that not only U and D are partitioned
into ports and rapids, but so is each individual eddy, abyss,
and trench. The ports and rapids together form the ports and
rapids partition, PR, which is finer than C.

1575

A set H ⊆X is harbourish iff it has has x X+ y for
all x,y ∈H , is topologically connected, does not intersect
two different lakes, eddies, or abysses, and does not in-
tersect two different connected components of S+G. A
maximal harbourish set is called a harbour. Let H be the1580

system of all harbours. Two non-harbour states x,y ∈X+

are harbour-equivalent iff they are in the same member of
{S+G,L,U (+),W,D(+),E+,Υ+}, do not lie in two differ-
ent lakes, eddies, or abysses, do not lie in two different con-
nected components of S+G, and if x X+ H ⇔ y X+ H1585

and H  X+ x⇔H  X+ y for all H ∈H. Each maximal
topologically connected set of harbour-equivalent states is
called a channel and lies completely in either one port or one
rapid (see below for a proof), hence The resulting harbours
and channels partition of X+,HC, is finer than PR.1590

A set O ⊆X is dockish iff it has x S y for all x,y ∈O,
is topologically connected and does not intersect two dif-
ferent shelters. A maximal dockish set is called a dock. Let
O be the system of all docks. Two non-dock states x,y ∈ S1595

are called dock-equivalent iff they belong to the same shel-
ter and x S O⇔ y S O and O S x⇔O S y for all
O ∈ O. Each maximal topologically connected set of dock-
equivalent states is called a fairway and lies completely in
either one harbour or one channel, hence the resulting docks1600

and fairways partition of S, OF , is finer thanHC.

Proposition 3 (Ports, rapids, harbours, etc.).

1. Each two ports [or harbours or docks] are disjoint.

2. Each port lies completely in one of U,D,E,Υ−,Θ, no
port intersects Υ+.1605

3. Each harbour [or dock] lies completely in one port [or
harbour].

4. Each channel [or fairway] lies completely in one mem-
ber of PR [orHC].

5. These partitions are successive refinements of each1610

other: C,PR,HC,OF .

6. If a harbour H intersects some of the regions S+G, L,
U+, W , or D+, it is already completely contained in
that region.

Proof.1615

1. Assume y ∈A∩A′ for two different maximal portish [or
harbourish or dockish] sets A,A′ and put B =A+A′.
But then B is itself portish [or harbourish or dockish]
because stable reachability is transitive. This contradicts
the maximality of A and A′.1620

2. By Prop. 2,2., if x P y P x then x and y they must
belong to the same member of C, hence each port lies
completely in one of them.

To show that a port P ⊆Υ is already in Υ−, assume
x ∈ P ∩Υ+ ⊆X+ ∈ T . We will now construct a con-1625

tradiction by constructing an admissible trajectory from
x that avoids Θ forever. Since x X x and X+ is open,
there is an open setA⊆X+ with y X x for all y ∈A.
Since τx is continuous and A open, we find t0 > 0 with
τx(t) ∈A for all t ∈ [0, t0]. Let y = τx(t0) and pick a1630

µ ∈My that returns arbitrarily closely to x. Let A be
the set of all open A⊆X+ with x ∈A, and choose
a tA > 0 with µ(tA) ∈A for all A ∈ A (this requires
the Axiom of Choice which we will assume here).
Let t1 = infA∈A supB∈A,B⊆A tB > 0. Since y ∈Υ+Θ,1635

there is t′ > 0 with µ(t′′) ∈Θ for all t′′ > t′, hence
tA 6 t′ for all A ∈ A and thus t1 6 t′. Next we show
that µ(t1) = x. If µ(t1) = y 6= x, one can chooseA ∈ A
and C ∈ T with y ∈ C and A∩C = ∅ (this is the only
point where we need the Hausdorff property). Since µ is1640

continuous, there are tl < t1 and tu > t1 with µ(t′) ∈ C
for all t′ ∈ [tl, tu]. By definition of t1, there is A′ ∈ A
with supB∈A,B⊆A′ tB ∈ [t1, tu]. PuttingA′′ =A∩A′ ∈
A, we then also have supB∈A,B⊆A′′ tB ∈ [t1, tu], hence
there isB ∈ AwithB ⊆A′′ ⊆A and tB > tl and hence1645

µ(tB) ∈ C by choice of tl. But µ(tB) ∈B ⊆A by
choice of tB . Hence µ(tB) ∈A∩C = ∅, a contradiction.
So µ(t1) = x after all. Finally we concatenate τx[0, t0]
and µ[0, t1] infinitely many times and get an admissible
trajectory from x that avoids Θ forever.1650

3. Since S refines X+ , which refines X .
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4. Since dock-equivalence refines harbour-equivalence,
which refines port-equivalence.

5. Follows from 2.–4.

6. This follows directly from the definitions of S+1655

G,L,U+,W, and D+ by means of X and X+ and
the transitivity of those relations.

Q.E.D.

A4 Remarks1660

– In general, Aι◦ may be properly smaller than both the
interior (Aι)◦ of the largest invariant subsetAι ofA and
the largest invariant subset of A◦, (A◦)ι. The three sets
can only be shown to be equal under additional smooth-
ness assumptions on τ and µ ∈Mx.1665

– The set of all states that are stably reachable from x need
not be closed or open and need not contain any of the
intermediate states that lie on the trajectories µ ∈Mx

used in stable reachability.

– x A Y does not imply x y for any y ∈ Y , since,1670

after a perturbation, other points in Y may be reachable
than before.

– For two points x,y in the same port, harbour, or dock
A, one may still not have x A y since the interme-
diate states on the trajectories from x to y may not be1675

stably reachable from x and thus may not belong to A.
In other words, perturbations may still push the system
temporarily out of a port, harbour, or dock, but one can
then return to the same port, harbour, or dock. For this
reason, the directed reachability network is typically1680

acyclic but may contain reachability cycles in patholog-
ical situations.

– Any attractor A with the return property (e.g., a sta-
ble fixed point or limit cycle, and most strange and
chaotic attractors) of the default dynamics lies com-1685

pletely within one port, hence within one member of C.
If A⊆X+ then already A⊆ S and A lies completely
within one dock.

– The scope of possible connection topologies that may
occur as the reachability network of a managed system1690

contains at least all acyclic finite or countably infinite
directed graphs, as can be seen by the following con-
struction: given an acyclic directed graph, one can con-
struct a topologically equivalent network of water bowls
which are connected by water tubes leading from a ded-1695

icated “drain” at the bottom of the source ball to a com-
mon entrance at the top of the target ball. Let water flow

into all balls without incoming tubes and out of all out-
going tubes through grilles, determining the default dy-
namics of a small submarine floating in the water. Then1700

assume the submarine can be propelled strongly enough
to move freely inside each ball and to each drain, but not
strongly enough to leave the ball through the entrance at
the top, against the direction of the water flow. By mak-
ing parts of the balls and tubes opaque and moving some1705

of the drains from the bottom to the sides of the ball, the
construction can be extended to show that also all inter-
nally consistent three-level acyclic networks can occur
as the three-level network of ports, harbours, and docks.

Appendix B: Further examples1710

B1 One-dimensional potential function

This simple model shows how almost all of the introduced
state space regions (except eddies and dark abysses) may al-
ready occur in a one-dimensional system ẋ=−df/dx that
is defined by a potential function f(x) and already for sim-1715

ple desirable regions such as X+ = ]0,∞[, as depicted in
Fig. B1.

Our example has a default dynamics along the blue line
downwards at a speed proportional to slope, but management
is able to move upwards instead on the thin blue lines where1720

the slope is small enough (for |df/dx|< 3/2). The chosen
undesirable region of x6 0 is indicated in grey. The shelter
consists of the two segments just left of point a and it can be
stably reached from everywhere properly left of a, hence that
whole region constitutes the upstream. The manageable re-1725

gion is the union of shelter, glade, lake, and backwater, and it
can be stably reached from everywhere properly left of point
b, hence the downstream is the right-open interval from a to
b.

That there are no eddies and no dark abysses in this exam-1730

ple is typical for systems without any circular flows and with
a sufficiently simply shaped X+.

There are two ports, the two closed intervals where the
default flow is slow, one in the upstream and one in the
downstream. Note that the latter is only partially contained1735

in the backwater. One rapid lies to the left of the left port, an-
other between the left port and point a, and these two rapids
are port-equivalent since both can reach the left but not the
right port. Similarly, the right port is surrounded by two port-
equivalent rapids. Finally, there is a singleton rapid consist-1740

ing only of the point a and a last one formed by point b and
all that is to the right of it; from these two port-equivalent
rapids, no port can be stably (!) reached.

B2 Bifurcations of a directly manageable flow

If a system passes through a bifurcation, the classification1745

of states by the criteria outlined above will typically change.
Let us examine some archetypical cases that can occur in
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Figure B1. A system moves along the blue line: downward by de-
fault (pale blue arrows), but in some regions management can move
it in the opposite direction (dark blue arrow) in order to avoid the
undesired “dark” region. Shelters, manageable region, upstream &
downstream (boldface, Section 2.2) and other regions from the main
cascade (top line, Section 2.3). Regions from the finer manageable
partition (below, Section 2.4). See Fig. 2 for a systematic summary
of these concepts. Bottom: three-level reachability network (Section
2.5).

the exemplary case where management can directly affect
the flow by changing the default derivative ẋ= F (x) of a
one-dimensional system by at most one unit, so that the ad-1750

missible trajectories are those with ẋ ∈ [F (x)−1,F (x)+1].
(See Example 3.6 above for the case where management is
via changing a parameter instead).

Assume X+ = {|x|< `} for some `� 1, and the de-
fault flow has a subcritical pitchfork bifurcation, say F (x) =1755

x3− rx, where for r > 0 the stable fixed point x0 = 0 is sur-
rounded by two unstable ones at x± =±

√
r and becomes

unstable itself for r 6 0, as depicted by the solid and dot-
ted pale blue lines in Fig. B2 a). Then for r > 0, we have a
shelter-and-glade situation with a shelter S = ]−

√
r,
√
r[ and1760

two gladesG= ]−g(r),−
√
r]+[
√
r,g(r)[ where g(r)>

√
r

is the upper solution to the equation F (g(r))− 1 = 0, in-
dicating the limit above which also the extreme manage-
ment with ẋ= F (x)−1 cannot move the system downwards
(dashed dark blue lines). But for r 6 0, the shelter disappears1765

and the glades merge and are converted into a backwater
W = ]− g(r),g(r)[. In both cases, this is surrounded by two
sunny abysses Υ+ = ]−`,−g(r)]+[g(r), `[ and two trenches
Θ = ]−∞, `] + [`,∞[ (outside the depicted area). One may
call this transition a backwater/glade bifurcation. As an early1770

warning signal of an imminent breakdown of a shelter in such
a backwater/glade bifurcation, one may consider the volume
of the shelters Vol(S) in terms of some natural measure onX
as a measure of “shelter stability”, similar to the concept of
basin stability for unmanaged systems without desirable re-1775
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Figure B2. Parameter changes can change the quality of states
due to bifurcations. Top-left: backwater/glade bifurcation and later
port pitchfork bifurcation caused by a subcritical pitchfork bi-
furcation of the default flow (similar in the supercritical case).
Top-right: glade/backwater/abyss transition caused by a saddle-
node bifurcation, with the second critical value marked in red.
Bottom-left: shelter/backwater/abyss transition caused by the tran-
sition of a stable fixed point into the deep dark. Bottom-right: shel-
ter/backwater/lake/upstream transition caused by the transition of a
stable fixed point through a dark strip.

gion (Menck et al., 2013; Ji and Kurths, 2014; Schultz et al.,
2014; van Kan et al., 2015) and to the recently introduced
survivability measure for unmanaged systems with a desir-
able region (Hellmann et al., 2015).

The port surrounding the unstable fixed point x= 0,1780

P0 = ]− g(r),g(r)[, where g(r) is the solution to F (g(r)) +
1 = 0, eventually also splits in three ports P0 and P±, sep-
arated by two rapids R±; their borders are depicted by the
dashed red lines. But this happens only at a larger value of
r, namely at r = 3/ 3

√
4≈ 1.9, after which the two unstable1785

fixed points x± can no longer be reached from each other.
The corresponding ports and rapids network has these ar-
rows: P−

 

X R−

 

X P0 X R+ X P+. One may call
this transition a port pitchfork bifurcation.

An interesting case is a saddle-node bifurcation such as1790

the one in Fig. B2 b), with F (x) =−r−x2 and a critical pa-
rameter value r = 0 at which the stable and unstable fixed
points at x=±

√
−r collide and disappear. First, at the crit-

ical point, the shelter caused by the stable fixed point and
its glade are transformed into a backwater. Then, somewhat1795

later (at r = 1), the maximally value of ẋ achievable by man-
agement becomes negative and the backwater ceases to exist
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so that only the sunny abyss remains. One may call this a
glade/backwater/abyss transition.

If a stable fixed point approaches and eventually enters1800

deeply into the dark region, this may also be called a form
of “bifurcation” that causes a similar transition in the classi-
fication of states. If F (x) =−r−x and X+ = {x > 0}, as
in Fig. B2 c), then again two changes occur: At r = 0, the
shelter-and-upstream situation of r < 0, with S = ]0,∞[ and1805

U− = ]−∞,0], converts into a backwater-and-downstream
situation withW = ]0,∞[ andD− = ]−∞,0]. Then at r = 1,
this further converts into an abyss-and-trench situation of
r > 1 with Υ+ = ]0,∞[ and Θ = ]−∞,0]. One could thus
call this a shelter/backwater/abyss transition.1810

Finally, a transition with three steps is caused if the fixed
point passes through a narrower strip of dark, as in Fig. B2 d),
where again F (x) =−r−x but now X+ = {|x|> 1/4}.
Here the shelter is again first transformed into a backwater
at r =−1/4, but then into a lake L when the fixed point1815

leaves the dark again at r = +1/4, and even later into a re-
maining sunny upstream U (+) once the maximally achiev-
able value of ẋ at the upper boundary of the dark, i.e., at
x= 1/4, becomes negative. We suggest to call this a shel-
ter/backwater/lake/upstream transition.1820
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