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Supplement 1: Competing plant types model design

Although it is known that many plants modify the soil in
ways that benefit their own growth, e.g. via influencing
microbial communities and biogeochemical cycling (e.g.,
Kourtev et al. (2002); Read et al. (2003)) and empirical evi-5

dence exists that this has effects on interspecies plant compe-
tition (e.g., Poon (2011)), we know of no formal model that
would allow to study the resulting feedbacks between two
plants and is simple enough for the purpose of illustrating
our theory in an adequate amount of space. The best existing10

candidate models seem to be the four-dimensional model of
a two-species plant-soil-feedback by Bever (2003) (see also
Kulmatiski et al. (2011)) and the spatially resolved model
of an invading plant by Levine et al. (2006), which however
does not model other species explicitly. For this reason, we15

chose to design a conceptual model of two fictitious plant
types each of which grows according to the well-established
logistic growth dynamics leading to an initially exponential
growth that is dampened by intraspecies competition. In or-
der to keep the state space dimension at only two dimensions20

so that state space diagrams can be plotted, we refrained from
modelling the soil characteristics via dynamic variables as in
the other models, and instead represented the soil modifica-
tion effect by simply assuming that the two species’ undamp-
ened growth rates are proportional to some carrying capaci-25

ties K1,K2 that the current soil composition implies for the
two species, and that K1,K2 depend directly on the existing

two populations x1,x2 in some simple way. In order to study
the effect of soil modification alone, we did not include other
interspecies interactions such as direct interspecies compe-30

tition for resources. Levine et al. (2006) also assume damp-
ened growth with a basic rate that depends on the existing
population, but they only focus on a single species and as-
sume a fixed carrying capacity, which we find somewhat im-
plausible in view of the empirical evidence presented in Poon35

(2011). Because we wanted to produce a conceptual model
that illustrates the topological landscape in a multistable sys-
tem, we needed to make sure the actual functional form we
chose for K1,K2 produces a multistable system. This was
achieved by assuming that the effect of the two populations40

x1,x2 on the two carrying capacities K1,K2 is nonlinear in
the sense that the marginal soil improvement by plants of
the same species is declining with higher populations while
the marginal effect of plants of the other species is increas-
ing with their population. We are not claiming that this is45

so in real-world plant-soil-feedback systems, but believe that
the alternative assumption of a linear relationship seems un-
likely. We then chose a very simple formula for K1,K2 that
has these properties:

K1(x1,2) =
√
x1(1−x2)6 1,50

K2(x1,2) =
√
x2(1−x1)6 1.
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Supplement 2: Complete main cascade example

We include this synthetic example (without figure) to show
that all of the regions from the main cascade and the manage-
able partition may be nonempty at once. In order to produce55

eddies, it needs to be at least two-dimensional. For simplic-
ity, our example has a circularly symmetric default dynamics
in 2D polar coordinates r,φ:

ṙ = f(r) =−r(r− 2)(r− 3)(r− 5)(r− 6)(r− 8)(r− 11)

(9 + r)3
,

φ̇= g(r) = r(r− 5.5)(r− 8)(r− 8.5)(r− 11)/100.60

It has a stable fixed point at r = 0, stable limit cycles at
r ∈ {3,6,11}, unstable ones at r ∈ {2,5,8}, and changes in
rotational direction at r ∈ {5.5,8.5} (between limit cycles)
and on the stable limit cycles at r ∈ {8,11}.

We assume the management options are so that the admis-65

sible trajectories are those with ṙ ∈ [f(r)− 1/5,f(r) + 1/5]
and φ̇= g(r), i.e., one can row only radially, with a rel-
ative speed of at most 1/5 and arbitrarily large accelera-
tion. For r in the intervals R1 ≈ [.01,1.8], R2 ≈ [3.65,4.05],
R3 ≈ [6.7,7.7], and R4 ≈ [11.05,∞), we have f(r)<−1/570

so that no stopping or rowing “outwards” is possible in the
corresponding rings, while rowing “inwards” is always pos-
sible. If we choose the sunny region to be the (not circularly
symmetric) half-plane X+ = {y = r sinφ > 1}, then the up-
stream U is the interior of the region outside R3, with ap-75

prox. r > 7.7; the downstream D is the half-open ring be-
tween the outer bounds of R2 and R3, with approx. r ∈
(4.05,7.7]; the unique trench is slightly larger than the disc
r 6 1; the unique abyss is approx. the ring with r ∈ (1,1.8)
including R1; and the unique eddy equals approx. the ring80

with r ∈ [1.8,4.05] including R2.

Supplement 3: Relationship to viability theory

The vast mathematical literature on viability theory (VP),
summarized in (Aubin, 2009; Aubin et al., 2011), also treats
the question of which regions of state space can be reached85

from which others when a system’s dynamics has some ad-
ditional degrees of freedom that may represent unknown in-
ternal components such as human behaviour, or unknown ex-
ternal drivers, or options for management or control.

Its fundamental concepts of viable domain, viability ker-90

nel, and capture basin correspond to our notions of sustain-
able set, sustainable kernel, and sets of the form KA, but
the concepts differ in that we require these sets to be topo-
logically open, to account for possible infinitesimal pertur-
bations. In VP, these and other sets are usually required to95

be closed instead, and while this has some advantages for
proving deep results such as certain convergence properties,
it also requires VP to focus on a more restrictive class of sys-
tems (differential inclusions and/or Marchaud maps, vector
spaces as state spaces) than we do. While our purely topo-100

logical existence proof only relies on the fact that the sus-
tainable sets form a kernel system, the proof that a viability
kernel exists is harder and requires additional smoothness as-
sumptions on the system of possible trajectories.

On the other hand, we have added the distinction between105

default and alternative trajectories here to be able to talk
about the consequences of having to manage a system only
temporarily or repeatedly. Consequently, our notion of shel-
ter has no counterpart in standard VP, and our notion of in-
variance differs from theirs since it refers to the default dy-110

namics only.
Similarly, our notion of stable reachability differs in two

important ways from VP’s notion of reachability: On the one
hand, we require it to be “safe” against infinitesimal perturba-
tions, on the other, we allow a trajectory to need infinite time115

to reach a target exactly (which does not count as reachable
in VP) if it can reach arbitrarily small neighbourhoods of the
target in finite time, so that in our theory, asymptotically sta-
ble fixed points are reachable via the default dynamics. This
difference can easily be seen in a slightly changed version120

of the main text’s Fig. C2 (top-right): Assume ẋ=−r−x2
and ṙ ∈ [−1,0], i.e., management can only move to the left.
While in our theory, the stable branch is stably reachable
from below, it is not so in VP since that takes infinite time.

Despite these differences, algorithms such as the tangent125

method and the viability kernel algorithm by Frankowska
and Quincampoix (1990) are quite helpful in our context, too,
and we have the following approximate correspondences:
U ≈ capture basin of S; M ≈ viability kernel of X+; U +
D ≈ capture basin of M (this was also called a “resilience130

basin” in Martin (2004); Rougé et al. (2013)); E+ + Υ+ ≈
the “shadow” of X+; and Θ≈ “invariance kernel” of X−.
In the reachability network of networks, the union of ports
and rapids “between” two given ports P,P ′ (and similarly
for harbours and docks) corresponds to what is called a “con-135

nection basin” between P and P ′ in VP.
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