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Power Grid Stability & Resilience
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in face of Climate Change
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POWER GRID STABILITY
AND MITIGATION OF CLIMATE CHANGE

* Mitigation (GHG emissions reduction)
requires renewable energy

* Renewable energy generation fluctuates strongly
* wind strength/direction, sunshine, cloudiness may vary fast

* Large fluctuations must not destabilize the power grid!

> Make grid stable under
largely fluctuating generation!

- Jobst Heitzig et al. ~Stability and Resilience of Power Grids



FLUCTUATING RENEWABLE GENERATION

Aggregate solar and wind production in Germany:
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POWER GRID RESILIENCE
AND ADAPTATION OF CLIMATE CHANGE

* Climate change will increase frequency and severity of
extreme weather events

> large (local) perturbation in a power grid
> local transmission line trips > redistribution of power flow

> If grid is not resilient (cannot cope with the redistribution),
further lines trip > cascading failure > interregional blackout!

> Make grid resilient to
perturbations of all magnitudes!
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EXTREME WEATHER EVENTS

Ftornado O severe wind & large hail @ heavy rain
- Yfunnel cloud % gustnado < dust dewil

#z heavy snowfall/'snowstorm @ ice accumulation & avalanche ¢ damaging lightning
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STAKEHOLDER ISSUES

Increasing fluctuations/dynamics

Integrated systemic assessment * temporary supply/demand mismatches
* interactions with other * novel control mechanism
energy systems/infrastructure * storage
* “system services”
exchange power,
provide stability households,

fiqns
Regulati supply~/
egulating " L power /
institutions et P
gi{oduce
& distribute
/ power
Consultancies : Island grids

otherbower
producers__1 |ntegrating more renewables

* changing operational rules
* virtual power plants

* better optimisation of operations
* sharp increase in share

Scarce computational resources
* operations: simulation timing
* planning: no. of considered variants
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2.
Stability and Resilience

of Complex Systems
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A SUCCESS STORY:
STABILITY UNDER small PERTURBATIONS

Alexandr M. Lyapunov (1857-1918)

Small perturbations are easier
to study than large ones!

* if a perturbation is small,
the complex system's reaction
is equivalent to the reaction of
a much simpler, “linearized” system

* mathematically, only linear algebra
(eigen value theory) is needed

* states/modes of a system
can be classified into “stable”,

» o«

“semistable”, “unstable”, etc. L7 Ty e 2.
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PROBLEMS
WITH THIS LINEARIZATION APPROACH

* The classification into stable, semistable, unstable
is mainly qualitative

* Quantification of stability/resilience is more difficult

* Power grids are complex
non-linear systems

® For non-linear systems, Leas
the linearization approach tells almost noth/ng about
the impact of /arge fluctuations or perturbations!

> Other concepts are needed!

Jobst Heitzig et al.  Stability and Resilience of Power Grids 11



BASINS OF ATTRACTION &
THE IMPACT OF /arge PERTURBATIONS

Metaphor: a marble dispersed in honey
Highly viscous fluid (honey)

Local curvature at B

B Basin B of fixed point B

Xp Xg Xc X

D
D

L

Jobst Heitzig et al.  Stability and Resilience of Power Grids 12



BASIN STABILITY = S1ZE OF BASIN OF ATTRACTION
QUANTIFIES STABILITY

Example: simplistic model of a bistable forest/savanna

basin of attraction of forest state basin of attraction of savanna
given subcritical aridity state given supercritical aridity
1.0 =
~ -
S .
O c -—-
v P CF Menck et al. (2013) How basin stability
() QL) complements the linear-stability
8 ) paradigm. Nature Physics 9:89-92
%)
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O
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0o Q]
- =
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critical aridity™.. = slower than C)
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BASIN STABILITY = S1ZE OF BASIN OF ATTRACTION
QUANTIFIES STABILITY
I]azure

Example: simplistic model of a bistable forest pbySIC
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RESILIENCE VS. STABILITY

Working definition here:

Stability = perturbations will not push the system
out of its normal state for long
Resilience = the system can find a new stable states
by reorganizing itself (automatically)
L) A
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3.
Network Basin Stability

D
D

applied to Power Grids
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CASE STUDY:
STYLIZED SCANDINAVIAN TRANSMISSION GRID

Each node is a generator o<,
ﬁ.t-.“rf

or consumer of on
unit of power X




SIMULATE RETURN TO NORMAL OPERATING MODE
AFTER A LARGE PERTURBATION AT A SINGLE NODE

1. Pick a single node




SIMULATE RETURN TO NORMAL OPERATING MODE

AFTER A LARGE PERTURBATION AT A SINGLE NODE

2. Simulate random | 2 A
. Simulate random large SOS—H >
perturbation there & ﬁ-‘-?

see whether in
basin of attraction
of normal mode
(green) or
not (white)




SIMULATE RETURN TO NORMAL OPERATING MODE
AFTER A LARGE PERTURBATION AT A SINGLE NODE

Dynamics of grid node i (simplest approx., “swing equation”):
phase: %Hi = w;
frequency: %wi =P, — Dw; — K - Zj A;jsin(0; — 6;)

Parameters:
P; net power input at node
o dissipation constant
K coupling constant
Ajj adjacency matrix

(1 if linked, O otherwise)
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SIMULATE RETURN TO NORMAL OPERATING MODE
AFTER A LARGE PERTURBATION AT A SINGLE NODE

consumer () generator []
I 5 [ Y Y I
increasing basin stability

3. Color code =
probability of
returning to

normal mode

First insight: Dead ends
decrease stability!

Menck PJ et al. (2014) How dead ends
undermine power grid stability.
Nature Communications 5:3969
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SMART WIRING =
ADD A FEW LINES AT OPTIMAL POSITIONS

consumer () generator [] < —
| Y Y Y by
increasing basin st;a:.EiIitv_g,.-r -----
1

Sweden

N2sl 4 )

M |

-

Morwany / .

Finland

Menck PJ et al. (2014) How dead ends

undermine power grid stability.
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Complex Networks Analysis

of Power Grids
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STATISTICAL ANALYSIS OF NETWORK TOPOLOGIES

R

so far successfully
applied to
climate dynamics,
neuro, trade, ...




7> e THE POWER GRID IS A GLOBAL SYSTEM,
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CHARACTERISTICS OF POWER GRID TOPOLOGIES

D

50 - 10,000 nodes
Exponential degree distribution pr, ~ € —k/v

with 1.5 <y <2 2 not Erdos-Renyi random or sca/efree

Very sparse: average node degree approx.
e 2.8 for transmission grids (tree + 40% additional lines)

* 2 (tree) for distribution grids (almost no redundant lines)

Large average path length O(VN)
due to spatial embedding » not small-world

Low clustering coefficient > not “random geometric”

2> how to generate synthetic grids for simulations?

DB‘

o
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MoDEL FOR GENERATING SYNTHETIC

PoOWER GRID TOPOLOGIES

* Initial layout
* given initial node locations, 102 |

* construct the “minimal spanning tree”

Real world _

Synthetlc N s

3
107,

¢ then add some redundant lines

* Growth phase

* either connect a new node to the closest existing node

* and to some other node for redundancy

* or put a new node somewhere along an existing line

* Trade off between global and local redundancy

* by maximizing (1 + internal grid distance)" / (spatial distance)

* where r is a redundancy control parameter

Schultz et al. (2014) A Random Growth Model for
Infrastructure Networks. EPJ ST 223(12):2593-2610

Power Grids and Other Spatially Embedded

Jobst Heitzig et al.  Stability and Resilience of Power Grids
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MINIMAL SPANNING TREE
(MST)

® optimizes one-time
construction costs

® no redundant lines

> one tripping line already
causes a partial blackout

Jobst Heitzig et al.

Stability and Res
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P(K=K) / P(K>kK)
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GROWN TREE, LINK
TO NEAREST NEIGHBOUR

* optimizes node-wise
extension costs

* initial long lines appear
sub-optimal later

¢ still no redundant lines

— Jobst Heitzig et al. Stability and Res
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MST +
GLOBAL REDUNDANT LINES

(large r parameter)

* meshlike structure,
many “large” circles

> very few dead ends
> improved basin stability

but:
* few triangles

> cascading failures may occur

— Jobst Heitzig et al. Stability and Res
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MST + RSO,
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RESILIENCE AGAINST CASCADING FAILURES

VS. BASIN STABILITY

fraction of nodes-with
Ftineritical basin stability ]

mean fraction of hode -

- in largest remaining comporient

after a failure cascade. - ——7m
"""""""""""" - ==+ trans

.......
-
-~

01
local r globa]]
redundancy redundancy

Plietzsch A, Schultz P, Heitzig J, Kurths J (2015)

Local vs global redundancy - tradeoffs between

resilience against cascading failures and
frequency stability. Submitted to EP/ ST

Jobst Heitzig et al.
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Relative frequency 9

D

RELATIONSHIP BETWEEN BASIN STABILITY
AND STANDARD NETWORK STATISTICS

Relationship to average neighbour's degree

d 1

o
o
V)

L 79%

Poor : 0.75 1

Fair © High
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0.01} | B
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Relationship to shortest path betweenness
e 1

b(@) Typical example
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Menck P) et al. (2014) How dead ends

undermine power grid stability
Nature Communications 5:3969
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EVEN CLEARER RELATIONSHIP TO
SPECIALLY ADAPTED NETWORK STATISTICS

predicting “poor” basin stability nodes

current flow betweenness
(Newman, Social Networks 2005)

current in

current out

<
o
£ 075 ©
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c 2 c o
‘» 0.50 UV S5 —
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0.25 0.00 o~ ® S
0.00 N X 0.00 0.25 0.50 0.75 100 % v 3
0.00 ) N5
0 N 2N 3N false alarm ratio EEE
VCFB 382
A N N

from topology only, using
node strength,
average neighbours' strength,

a capacity-weighted clustering coefficient
and effective resistance closeness centrality

1.00

ROC:
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Smart Wiring
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LESSON: KNOW WHICH TYPE OF REDUNDANCY
AFFECTS WHICH ASPECT OF STABILITY/RESILIENCE!

* |n general, additional (“redundant”) lines improve stability

* Traditional “N-1" criterion:
grid must stay connected when one appliance/line fails

® But: adding a line may also destabilise another grid region
(Braess' paradox)

* Different types of redundancy:

* |ocal redundancy (high clustering, short detours) helps
avoiding long failure cascades leading to large blackouts

* global redundancy (high connectivity, low path length, long-range
connections) more important for dynamic stability

®* in view of economic constraints: good trade-off needed

Jobst Heitzig et al.  Stability and Resilience of Power Grids
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LESSON: SOME “MOTIFS” SHOULD BE
AVOIDED OR PRODUCED

* Hub nodes: use as “stability anchors”!

® connect new lines preferably to them
than to their immediate neighbours

* Dead ends/dead trees: avoid!
® connect pairs of leaf nodes (improves local redundancy)

* connect leaf node to a hub in another part of grid
(global redundancy)

* “Detour” nodes: produce!

* e.g. connect neighbours of hubs with each other
(local redundancy)

- Jobst Heitzig et al. ~Stability and Resilience of Power Grids
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TAKE HOME MESSAGES

The (node-wise) basin stability concept can help
to find weak points in power grids by simulation.

Adjusted topological statistics can speed this up
by preselecting potentially critical nodes.

Suitable random generators for power grid topologies
enable ensemble simulations in power grid research.

Thank you for your attention -
I'm curious for your comments!

Contact: heitzig | hellmann | schultz @pik-potsdam.de
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