

Potsdam Institute for Climate Impact Research

GAME THEORY FOR CLIMATE COALITIONS: Strategies for Compliance & Hierarchical Coalition Formation

Jobst Heitzig (PIK RD IV) with contributions by Kai Lessmann and Yong Zou

Statistics Norway, Oslo, 10 January 2012

Overview

- Problem: GHG emissions and free-riding
- Game theoretic framework
- Existing literature
- General model of the emissions game

- Making agreements self-enforcing: The LinC strategy
- Outlook & Conclusion

Problem: GHG emissions and free-riding

BASIC FACTS

Emission of greenhouse gases (GHG: CO2, methane, ...)

- **Global warming** (increase in global mean temperature)
- Climate change (diverse regional effects, extreme events)
- Damages (economic, loss of life & biodiversity, ...)
 - conservative estimates: IPCC's 4th assessment report 2007

GHG distribute fast & climate is a globally connected system

- Damages at place X independent from place of origin of GHG
 - hence abatement (emissions reduction) is a public good
- Country X can hope that damages in X will be avoided because GHG emissions in *other* places will be reduced!
 - Free-riding = "The others will solve the problem for me"

"Non-cooperative" game theoretic framework

Two Approaches to Studying Games

Basic distinction: How can agreements be enforced?

• "Cooperative" game theory assumes that players can reach binding agreements which are enforced by measures that are not themselves analysed (e.g. powerful courts)

- "Non-cooperative" game theory assumes that agreements might at best be self-enforcing strategies studied inside the game model (e.g. using threats of reciprocation)
- "Nash's program" tries to base the former on the latter

Non-Cooperative Formulation of the Emissions Conflict

- Countries can choose their own emissions levels
- Large **externalities**
 - *Globally,* a social planner would choose low emissions
 - *Individually,* marginal costs of emissions reductions soon exceed the individual benefits of avoided damages
- If a player treats the emissions levels of the others as *given* (at whatever level), it is best to emit a lot
 - Nash equilibrium payoffs are inefficient (similar to Prisoners' Dilemma)
- International agreements are not easily enforceable
- Free-rider incentive: Even if I *agree* with others to emit less, I can profit even more by *not complying*

My Basic Approach at a Solution in the Non-Cooperative context

- To make the others cooperate and reduce emissions, I have to reach a self-enforcing agreement with them that
 - encourages to emit less (by sharing the reduction burden)
 - discourages free-riding
- The latter can only be done via *threats*, so it requires a game model that allows for **reacting** on others' actions
 - e.g., using issue linkage (trade, ...)
 - or a game with a small number of different *stages*
 - or a **repeated game** with infinitely many similar *periods* allowing for **strategies** that react suitably to non-compliance

EXAMPLES OF STRATEGIES
IN THE REPEATED PRISONERS' DILEMMAdefectcoop.• Trigger strategies
• Grim: Cooperate as long as
the other never defected before0defect10• SymT: Cooperate as long as
no player ever defected before533

- Tit For Tat (TFT)
 - Start to cooperate, then do what the other did the last time
- Getting Even (GE) avoids the "echoing" problem of TFT
 - Start to coop., then defect if the other has defected more often in the past
- Contrite Tit For Tat (CTFT)
 - Start to coop., then defect whenever the other is in "bad standing"
 - A player is in "bad standing" iff, in the previous period, he defected although CTFT told him to cooperate
 - We will use a similar recursive idea in the emissions game!

Some Formal Stability Concepts in Games with Stages or Periods

Equilibrium Concepts

TFT

GE

pure strat. eq., Nash, correl. no *individual player* wants to switch strategy right away **strong Nash, coal.-proof, ...** no *group of players* wants to switch strategies right away

subgame-perfect no *individual player* wants to switch strategy *after any history* groupwise subg.-perfect no group of players wants to switch strategy after any history

• Renegotiation-Proofness (Farrell & Maskin '89, Bergin & MacLeod '93)

weakly reneg.-proof (WRP) after no history it profits all players to pretend history was different

strongly reneg.-proof after no history it profits all players to *switch to a different WRP agreement*

Jobst Heitzig Game Theory fo

"strong perfect": future payoffs are Pareto-efficient after each history

DISCOUNTING AND FOLK THEOREMS

• **Discounting** future payoffs $P_i(t)$

Exponentially (with a constant discount factor δ)

- Utilities (= discounted long-term payoffs) $U_i(t) = \sum_{t' \ge t} P_i(t) \delta^{t'-t}$
- Hyperbolically (with a declining discount rate)
- ...? (inter-generational discounting seems a hard philosophical question)
- Folk Theorems are of this form:
 - For a repeated game and a given payoff vector: If both fulfil some conditions and if δ is close enough to 1, there is a (usually Grim-like) strategy vector that realizes these payoffs and has some stability property X
 - No known folk theorem seems to suffice in our case...

Existing literature

in the non-cooperative framework

The Emissions Game as a Multi-Player Repeated Prisoners' Dilemma

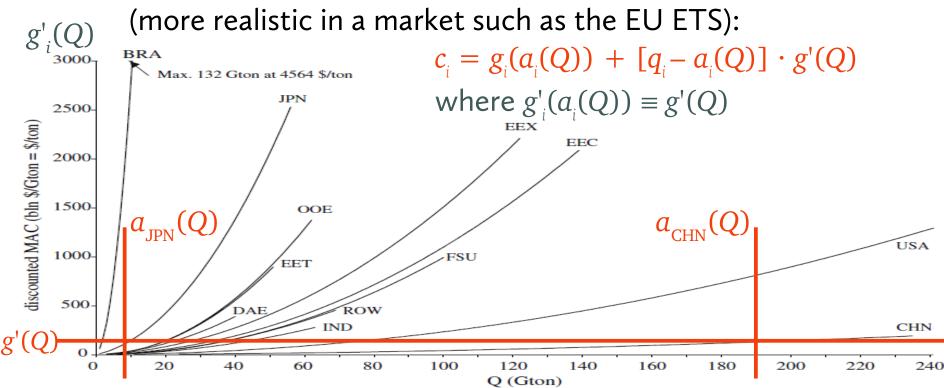
- Cooperate = emit little
 Defect = emit much
- Froyn & Hovi 2008 present a CTFT-like strategy which...
 - punishes a *unilateral* deviation with defection by a carefully chosen subset of other players
 - is **subgame-perfect** (but not groupwise)
 - is **weakly renegotiation-proof** (but not strongly)
- Asheim & Holtsmark 2009 show that this still works if...
 - emissions levels can be chosen more freely
 - the game has a certain *symmetric* payoff structure

Scott Barrett's Work

- Many eloquent papers on the problem since 1989
- Overall rather pessimistic findings
- But CAUTION!
 - Mostly uses quite specific and symmetric payoff structures (results don't always carry over to other payoff structures)
 - Formal arguments sometimes incomplete or even flawed
 - Game-theoretic terminology and definitions sometimes nonstandard
- E.g., the pessimistic claim in his chapter in the Handbook of Environmental Economics (2005), p. 1491–93, is implicitly disproved by Asheim & Holtsmark 2009

A General Model of the Emissions Game

with Emissions Trading



A General Model of the Emissions Game with Emissions Trading (1)

- Repeated game in **periods** (e.g. 4-year), between *n* countries or regions
 - Critical simplification: Same payoff structure in all periods (in reality, GHG gases are stock pollutants & technology lowers costs)
- Individual contribution of player i in period t is
 q_i(t) = reference emissions net emissions
 - may be negative, since large amounts of permits might be traded!
- Total contributions Q(t) lead to
 - total period costs C(t) = g(Q(t))
 - for some convex function g with $g(Q \le 0) = 0$
 - individual period benefits $B_i(t) = f_i(Q(t))$
 - for increasing functions f with $f_i(Q=0) = 0$ and $\lim_{Q \to -\infty} f_i(Q) = -\infty$
 - e.g. discounted consumption losses for *i* avoided after *t*

A General Model of the Emissions Game with Emissions Trading (2)

- Total period costs g(Q) are shared in some way, leading to individual period costs c_i
 - e.g. proportionally: $c_i = q_i \cdot g(Q)/Q$
 - or with marginal cost pricing based on indiv. cost fcts. g_i

Example: Individual Costs If Cost Functions Are Equal

- Typical in the literature (without emissions trade):
 - quadratic individual costs

$$c_{_{i}} = q_{_{i}}^{^{2}}/2$$

- Similar structure with emissions trading:
 - quadratic individual cost functions: $g_i(x) = x^2/2$
 - marginal cost pricing requires $g'_i(a_i(Q)) = g'_j(a_j(Q))$ hence $a_i(Q) = a_j(Q) = Q/N$, $g(Q) = Q^2/2N$, g'(Q) = Q/N
 - individual costs: $c_{i} = g_{i}(a_{i}(Q)) + [q_{i} - a_{i}(Q)] g'(Q)$ $= (Q/N)^{2}/2 + [q_{i} - Q/N] Q/N$ $= q_{i}Q/N - Q^{2}/2N^{2}$

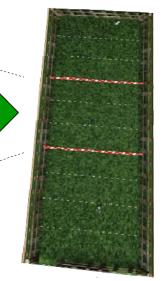
A General Model of the Emissions Game with Emissions Trading (3)

- Individual period payoffs $P_i(t) = f_i(Q(t)) c_i(t)$
 - or a concave increasing function of this, e.g. $\log[f_i(Q(t)) c_i(t)]$
- Usual assumptions of classical non-coop. game theory
 - Common knowledge of rationality
 - All know that all know that ... that all are rational
 - Complete information
 - For all *i*, *j* and t' < t, $q_i(t')$ is known to *i* before she chooses $q_i(t)$
- Goal: find a strategy vector that
 - realizes the optimal emissions level
 - has as good stability properties as possible

A Crucial Consequence of Convexity

- If g, g_i are convex, both sharing rules are also convex in a sense: there is a "cost sensitivity" γ(Q) so that
 - reducing contribution q_i by some amount x > 0lowers the costs c_i by at most $x \cdot \gamma(Q)$
 - redistributing some amount x > 0 from q_{-i} to q_i raises the costs c_i by at least $x \cdot \gamma(Q)$
 - with proportional sharing, $\gamma(Q)$ equals average costs: $c_i = q_i \cdot g(Q)/Q$, $\gamma(Q) = g(Q)/Q$
 - with marginal cost pricing, $\gamma(Q)$ equals marginal costs: $c_i = g_i(a_i(Q)) + [q_i - a_i(Q)] \cdot g'(Q), \quad \gamma(Q) = g'(Q) \equiv g'_i(Q)$
- This relationship between the effects of reducing and redistributing contributions motivates the strategy LinC...

Making agreements self-enforcing: The LinC strategy (Heitzig, Lessmann, Zou 2011)



SOLUTION: THE STRATEGY "LINC" (LINEAR COMPENSATION OF SHORTFALLS)

- $Q^* = global optimum contributions, maximizing the total payoff$
- Let q_{j}^{*} be any allocation of Q^{*} into individual targets (emissions trading makes the total payoff independent of this allocation!)
- Define dynamic liabilities $l_i(t)$
 - initially equal to the targets: $l_i(1) = q_i^*$
 - always comply with your liability: put $q_i(t) = l_i(t)$
- After each *t*, compute the **shortfalls** $d_i(t)$
 - $d_j(t) = l_j(t) q_j(t)$ if $q_j(t) < l_j(t)$, otherwise $d_j(t) = 0$
 - $\overline{d}(t) = (average shortfalls in t) = \sum_{j} \frac{d_j(t)}{n}$
- Redistribute the liabilities linearly for compensation:
 l_i(t+1) = q^{*}_i + [d_i(t) d
 (t)] · α with a sufficiently large α

SMALL EXAMPLE: GROWING CARROTS IN A COMMUNITY GARDEN $l_j(t+1) = q^*_j + [d_j(t) - \overline{d}(t)] \cdot \alpha$

- Assume n = 3, optimal contributions $Q^* = 30$, and individual targets $q^*_{A} = q^*_{B} = 9$, $q^*_{C} = 12$
- Initial liabilities equal the targets: $l^*_{(A,B,C)}(1) = (9,9,12)$
- B falls short by $d_{B}(1) = 3$ units, so next period's liabilities are redistributed, say using $\alpha = 2$: $l_{(A,B,C)}^{*}(2) = (6,15,9)$
- In that period, all fulfil their liabilities, so in period 3, they are back to normal: $l^*_{(A,B,C)}(3) = (9,9,12)$

$l_{j}(t+1) = q^{*}_{j} + [d_{j}(t) - \overline{d}(t)] \cdot \alpha$

Results: IF All Players Apply LinC, this is...

- **Pareto-efficient** in every subgame ("strongly perfect")
 - because of emissions trading, it only matters that $Q(t) = Q^*$
- hence strongly renegotiation-proof
 - no deviating group can hope to afterwards convince the others to overlook their deviation or to switch to a new strategy
- a strong Nash equilibrium in every subgame (proof later) ("groupwise subgame-perfect")
 - no group of players can increase their joint discounted future payoffs by deviating from LinC, even when some deviations have already happened, assuming that the other players will apply LinC
- timely, proportionate & robust against small errors
 - If $d_i(t) \sim N(0,\sigma^2)$, then $l_i(t+1) q^*_i \sim N(0,\sigma^2\alpha^2(n-1)/n)$
 - errors do not accumulate (similar to "trembling hands perfectness")

$l_j(t+1) = q^*_j + [d_j(t) - \overline{d}(t)] \cdot \alpha$

PROOF OF GROUPWISE SUBGAME-PERFECTNESS (1)

- Contributing too much does never pay (otherwise it would raise the total payoff which is impossible since Q* is optimal)
- **Proof of** *one-shot* groupwise subgame-perfectness: If some proper subgroup *G* of players deviates in one period *t* only, together contributing an amount *x* too little, then...
 - Joint shortfalls are $d_{g}(t) = l_{g}(t) d_{g}(t) = x$, avg. shortfalls $\overline{d}(t) = x/n$
 - By convexity, G's joint gains in t are less than $\gamma(Q^*) \cdot x$
 - In t+1, the amount of liability that is redistributed towards G is

 $(x-|G|x/n)\cdot \alpha$

- By convexity, G's losses in t+1, discounted because of the delay, are at least $\gamma(Q^*) \cdot x \cdot (1 |G|/n) \cdot \alpha \cdot \delta$
- These losses are larger than the above gains if α is sufficiently large (see paper for details)

PROOF OF GROUPWISE SUBGAME-PERFECTNESS (2)

- Proof of *finite-shots* groupwise subgameperfectness, using a standard argument
 - Assume the shortest length of deviations that can increase some group *G*'s utility is *m*, with a return to LinC afterwards
 - After the first m 1 deviations, the group will not want to deviate another time (because of one-shot subgame-perfectness)
 - Hence alread the first m 1 deviations alone must have been profitable, so there is a shorter profitable sequence of deviations – a contradiction to the choice of m

PROOF OF GROUPWISE SUBGAME-PERFECTNESS (3)

- Sketch of remaining proof: (see paper for details) Assume G plays an *infinite* sequence of shortfalls that pays.
 - If the discounted long-term shortfalls are *finite*, one can find a length *m* so that it would still pay to play only the first *m* shortfalls and then returning to LinC
 - But we proved already that such a finite sequence cannot exist
 - If the discounted long-term shortfalls are *infinite*, one can show that the cut down long-term costs are finite while the long-term benefits decrease infinitely
 - Hence such a sequence of deviations is infinitely bad
 - This is because of a period-by-period **escalation** in which the other players emit more each period as a punishment

Remarks (1)

- The proof requires that individual emissions could *in principle* be raised **unboundedly** (at least step-by-step)
 - If this is not so, a variant with bounded liabilities can be used
 - Then the condition for groupwise subgame-perfectness is more complicated
 - First simulations with estimated cost/benefit models from the literature show that this might still work
- It is essential that both...
 - the deviators are required to make up for their shortfalls
 - similar to the current Kyoto/Marrakach rules
 - the others are allowed to *emit more* as a **punishment**
 - similar to defection as punishment in the Prisoners' Dilemma

Remarks (2)

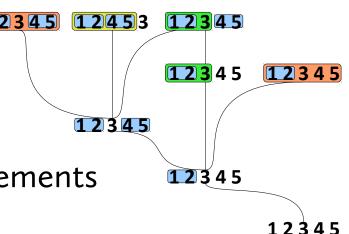
- LinC needs few information to be implemented
 - global emissions target Q^* and some regional allocation q^*_{i}
 - estimate of global marginal costs and benefits at this target
 - monitoring of regional emissions $q_i(t)$
- LinC can stabilize *any* target allocation q_{i}^{*}
 - → Problem of equilibrium selection: Which allocation will be realized?
 - ➔ Negotiations & agreement about the allocation are necessary
 - LinC will mainly be useful to ensure compliance, not to ensure initial participation in a climate coalition
 - "Cooperative" analysis needed to study coalition formation!

Outlook & Conclusion

Possible Political Roadmap using LinC

- One or more "coalitions of the willing" each agree...
 - on an internal Cap & Trade regime with some initial individual caps
 - maybe sub-optimal/pragmatic ("hot air", "grandfathering") to ensure participation
 - internal usage of LinC to ensure compliance
 - requires sufficient monitoring capabilities (e.g. satellite-based)
 - usage of e.g. border taxes against non-members
- Caps get adjusted each time when...
 - **non-members join** a coalition to avoid the border taxes
 - several coalitions merge
 - to be more efficient with a merged emissions market
 - major changes in cost/benefit estimates
 - ...keeping track of shortfalls, not "letting bygones by bygones"
- Hope: eventually, a grand coalition forms
 - and the global cap approaches the optimum

COOPERATIVE FORMULATION OF THE EMISSIONS CONFLICT


- Players can choose to form **coalitions** in some way
 - each coalition tries to maximize its joint long-term utility
 - based on some assumptions on the other players' behaviour
- Free-rider incentive:
 I might gain by leaving/not joining a coalition
 - depending on how coalition(s) will then change
 - models of coal. formation, farsightedness

- If large coalitions are **unstable**, only small ones form
 - resulting global emissions are then inefficiently high

My Basic Approach at a Solution in the Cooperative context

- Assume that already formed coalitions can enter further agreements to form larger coalitions
 - hierarchical agreements, coalitions of coalitions
 - corresponds to some proposals from political science
 - negotiations between groups of players
 - regional climate agreements
 - merging of existing carbon markets
- in a suitable model of hierarchical coalition formation, efficient agreements might be stable (in a suitable sense)

To Do

- Better models of (hierarchical) coalition formation when agreements are **reversible** (as in reality)
 - Some first approaches: Konishi&Ray 2003, my SSRN paper
- Numerical **simulations** of LinC with recent cost/benefit estimates
- Model non-identical periods
 - declining costs due to **technology** (exo- or endogenous)
 - **stock pollutant** nature of GHG
 - long-term **investment** decisions
- Issue linkage, network structure, ...

TAKE HOME MESSAGES

With emissions trading, redistribution of liabilities can be a credible threat against non-compliance

• e.g. simply using linear compensation

If coalitions can build hierarchically, a global coalition might emerge even when externalities are large

Thank you for your attention – I'm curious for your comments!

