Consistently weighted measures for complex network topologies

Jobst Heitzig, J. F. Donges, Y. Zou, N. Marwan, J. Kurths
Potsdam Institute for Climate Impact Research
Transdisciplinary Concepts and Methods
Motivation: Climate Networks

Nodes represent grid cells, cell size varies $\approx \cos(\text{latitude})$

Network measures are based on counting (nodes, links, paths...)

(fictitious example)
Motivation: Climate Networks

Nodes represent grid cells, cell size varies $\approx \cos(\text{latitude})$

Network measures are based on counting (nodes, links, paths...)

Polar regions are over-represented

Results can get biased or show artificial features
Motivation: Climate Networks

Nodes represent grid cells, cell size varies \(\approx \cos(\text{latitude}) \)

Network measures are based on counting (nodes, links, paths...)

Polar regions are over-represented

Results can get biased or show artificial features
Natural idea: Use weights

Cell size ➔ Node weight

(fictitious example)
Natural idea: Use weights

Cell size ➔ Node weight

Almost no network measures use node weights already

Existing measures using link weights don't help
Natural idea: Use weights

Cell size \(\rightarrow\) Node weight

Almost no network measures use *node* weights already

Existing measures using *link* weights don't help

Find node-weighted versions of measures (degree, clustering coeff., betweenness, spectrum, ...)

(fictitious example)
Simple example: The “degree” measure

Nodes v, i, ...
node weights w_v, w_i, ...

Degree:

$$k_v = \text{no. nodes linked to } v$$

Area-weighted connectivity:

$$k'_v = \text{sum of } w_i$$

for all i linked to v

(Tsonis et al. 2006)
Simple example: The “degree” measure

Nodes $v, i, ...$
node weights $w_v, w_i, ...$

Degree:
$k_v = \text{no. nodes linked to } v$

Area-weighted connectivity:
$k'_v = \text{sum of } w_i$
for all i linked to v
(Tsonis et al. 2006)

Better version of weighted degree:
$k^*_v = k'_v + w_v$
Why k^* and not k'?
And what about more complex measures?

Goal: Find the right way of using the node weights w_i in some given measure f
(degree, clustering coeff., betweenness, spectrum, ...)

Idea: Consider what happens to f when the grid is refined!

(fictitious example)
Why k^* and not k'?
And what about more complex measures?

Goal: Find the right way of using the node weights w_i in some given measure f
(degree, clustering coeff., betweenness, spectrum, ...)

Idea: Consider what happens to f when the grid is refined!

Example:
Under typical refinements, f should get more realistic
Redundant refinements / General guideline

Under “redundant” refinements \(f \) should *not* change
Redundant refinements / Guiding notion

Under “redundant” refinements → f should not change

This vague requirement helps to find the weighted formula f^* for a given measure f!
Redundant refinements / Guiding notion

Under redundant refinements, f should not change

This vague requirement helps to find the weighted formula f^* for a given measure f!

Guiding notion: Call f^* "node splitting invariant" if it doesn't change under this kind of node splitting:
Example: Clustering coefficient

Measures how closely linked the neighbours of v are.

Usual formula:

$$C_v = \text{rate of links between neighbours of } v = \sum_i \sum_j a_{vi} a_{ij} a_{jv} / k_v (k_v - 1)$$

Node splitting invariant formula:

$$C^*_v = \sum_i \sum_j a'_{vi} w_i a'_{ij} w_j a'_{jv} / k^*_v k^*_v$$

= link density in the region linked to v

In this, $a_{ij} = 1$ means i and j are linked, and $a'_{ij} = 1$ means i and j are linked or equal.
Useful techniques for formula construction

Consider each node a neighbour of itself (e.g. replace \(a_{ij} \) with \(a'_{ij} \))

Replace edge counts by sums of weight products

Replace node counts by sums of weights

Plug in weighted instead of unweighted measures (\(k^* \) instead of \(k \) in this case)

Verify the result is indeed node splitting invariant!

\[
C_v = \sum_i \sum_j a_{vi} a_{ij} a_{jv} / k_v (k_v - 1)
\]

\[
C^*_v = \sum_i \sum_j a'_{vi} w_i a'_{ij} w_j a'_{jv} / k^*_v k^*_v
\]
Effect in climate networks

Clustering coefficient averaged by latitude

Climate network

Spatially homogeneous random network

\(C_v \)

\(C^*_v \)

(dark is high)
Final example: Newman's random walk betweenness

Measures “importance” of nodes based on Kirchhoff's equations

Unweighted and weighted versions highlight slightly different features
References

Contact

Jobst Heitzig
heitzig@pik-potsdam.de
www.pik-potsdam.de/members/heitzig