
Efficiency in face of externalities when binding

hierarchical agreements are possible

Jobst Heitzig

Potsdam Institute for Climate Impact Research
Transdisciplinary Concepts and Methods

P.O. Box 60 12 03, 14412 Potsdam, Germany
heitzig@pik-potsdam.de

PIK-INTERNAL DRAFT — NOT FOR CIRCULATION!

February 17, 2011

Abstract

A formal framework for the treatment of hierarchical coalition forma-
tion and hierarchical agreements under both the bargaining and blocking
approaches to coalition formation is introduced, and some first positive
results on the possibility of full agreement and the efficiency of hierarchical
agreements in face of externalities are given. In particular, it is shown that
the possibility of hierarchical agreements can lead to efficient outcomes in
the standard Cournot oligopoly example and a certain public good ex-
ample that can be seen as being relevant in the study of International
Environmental Agreements.

1 Introduction

1.1 Motivation

The game-theoretic literature on coalition formation contains many hints that in
face of externalities, outcomes may be inefficient even when binding agreements
are possible and agents are farsighted and have sufficient information [6, 7, 4, 5].
Often, this is due to the fact that a typical model of coalition formation predicts
the formation of several disjoint coalitions or one coalition other than the grand
coalition which are then expected to cooperate no further, so that the outcome
is assumed to be a Nash equilibrium in a non-cooperative game in which the
formed coalitions are the players.

These findings are in sharp contrast to what the Coase “theorem” [1] pre-
dicts, claiming that under the above circumstances agents will find a way of
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reaching an efficient outcome. The purpose of this paper is to analyse the
possibility of efficient outcomes when coalitions can reach additional binding
agreements with each other, i.e., when agreements can be hierarchical, allowing
them to avoid the non-cooperative and usually inefficient Nash equilibrium out-
come. When players are assumed to be farsighted and hierarchical agreements
are possible, they must take into account this possibility from the beginning on,
not only anticipating the forming and splitting of coalitions that leads to a parti-
tion of the players into a “coalition structure”, but also anticipating the forming
of additional coalitions of higher level, leading to a whole coalition hierarchy.

With respect to the important application of International Environmental
Agreements (IEAs), much of the existing literature on these does not assume
either form of farsightednes, and the often pessimistic assessment of the possi-
bilities for efficient IEAs might well be influenced by this shortcoming. I will
present here some hints that when hierarchical agreements are possible, efficient
IEAs might be much more likely than thought.

1.2 Outline

After introducing our main concepts, we proceed roughly analogous to Ray’s
monograph [5]. We first study bargaining models in the spirit of Rubinstein
[8] in which agents, following some protocol, sequentially make and respond to
proposals to form a coalition. Then we study blocking models in the spirit of
the concept of the core, analysing the stability of coalition structures against
blocking or deviations by groups of agents. For each of these two approaches,
we first consider the formally simpler case in which agreements are assumed to
be irreversible, and then the more general case in which any agreement can be
terminated if all signatories agree.

Our models of hierarchical coalition formation are mostly straightforward
modifications of common models of (non-hierarchical) coalition formation, usu-
ally treating coalitions already formed as players in subsequent negotiations. We
find that not only do hierarchical agreements often lead to an efficient outcome
but their sheer possibility sometimes even enables the immediate formation of
the grand coalition without the need to actually use that possibility. In the
special case of fully symmetric partition functions, payoffs are then not only
efficient but also symmetric.

For the example of a symmetric Cournot oligopoly with a linear demand
curve, Ray and Vohra [6, 7] find that both bargaining and blocking models pre-
dict the formation of a small number of coalitions (cartels) which despite the
symmetry of the game must be of different size, so that payoffs are both ineffi-
cient and asymmetric. In our models, we will see that the grand coalition forms
either immediately and payoffs are efficient and symmetric, or forms eventually
and payoffs are efficient and asymmetric, but symmetric in expectation.

The same holds for the structurally equivalent example of a public good
whose production costs are determined by an efficient market with linear marginal
costs, a result that might have important implications in the provision of envi-
ronmental public goods such as greenhouse gas emission reductions.
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a agreement hierarchy
aC agreement between the subcoalitions of coalition C
aC(ν, x) agreed payoff for ν if joint payoffs for C are x
a(ν, η) expected payoff for ν given

final coalition hierarchy η and agreements hierarchy a
A(x, y) set of negotiators affected by move x→ y
C,C ′, . . . coalitions (groups of individuals)
Γ underlying non-cooperative game
Γη derived non-cooperative game between final negotiators
η coalition hierarchy
I set of individuals (players of Γ)
i, j, k, . . . individuals
m . . .
N(η) set of negotiators (players of Γη)
ν, ν′, . . . negotiators (representing individuals or coalitions)
n, nη number of individuals and negotiators
p process of hierarchical coalition formation
% bargaining protocol
S(C) subcoalitions of C (signatories to an agreement aC)
σi ∈ Σi individual strategy
σν ∈ Σν coalitional strategy
σ ∈ Σ strategy vector
ui(σ), uν(σ) individual and joint payoff
v partition function
v(ν, η) expected joint payoff of ν given η
x, y states in ongoing coalition formation
ξ discounted infinite-horizon payoffs

Table 1: List of symbols used in this paper

These first positive results suggest that the possibility of hierarchical agree-
ments is relevant in both the bargaining and blocking approaches, and in both
the irreversible and reversible cases, and the framework presented here might
be a valuable starting point for more detailed analyses in future research.

1.3 Preliminaries

1.3.1 Underlying non-cooperative game

We assume that a finite set I = {1, . . . , n} of individuals faces a one-shot non-
cooperative game Γ with inefficient Nash equilibria, so that it is potentially
profitable to cooperate. Γ has transferable utility, complete information, and
is given in strategic form with a non-empty set Σi of strategies of individual
i ∈ I and payoff functions ui mapping strategy vectors σ ∈ Σ =

∏
i∈I Σi to

real-valued individual payoffs ui(σ) ∈ IR. It is unimportant here whether Σi
consists of pure or mixed strategies. Note that we use the term “individuals”
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instead of “players” or “agents” to avoid confusion later on, and use letters I
and m for individuals since we need the more common letters N and n below
for negotiators.

Before playing Γ, individuals can negotiate either freely or following a certain
protocol to be specified later. During negotiations, groups of individuals can
sign binding agreements about how to share payoffs in Γ, and we assume that
any agreement includes the provision to maximize joint expected payoffs. (If
individuals are risk-averse, payoffs can be replaced by utilities in a suitable way.)

1.3.2 Negotiators and coalition hierarchies

A group C ⊆ I of individuals that has signed an agreement is called a coalition.
The main difference to common models of coalition formation is that we assume
that a coalition can act like a new individual and negotiate further agreements
with other individuals or coalitions, forming larger coalitions. Still, we require
coalitions to be non-overlapping, so members of a coalition cannot sign addi-
tional agreements with outsiders individually. To avoid confusion, we therefore
call a participant ν of negotiations a negotiators, whether ν is an individual or
an already formed coalition that has not yet signed any (additional) agreement
with other negotiators.

At any time during negotiations, we describe the current coalition hierarchy
as a non-empty set η of coalitions, i.e., of non-empty subsets of N , fulfilling
certain conditions: (i) For each i ∈ I, the singleton {i} belongs to η. (ii) If
C, T ∈ η, either C and T are disjoint, or one contains the other. The initial
hierarchy is the smallest possible hierarchy η0, consisting of all singletons. The
set of negotiators at η consists of its maximal elements:

N(η) = {C ∈ η : T ⊃ C for no T ∈ η}. (1)

Note that, formally, N(η) is a partition of the individuals into nη = |N(η)|
(maximal) coalitions, which is usually called a “coalition structure” and denoted
by π in the literature. We use the letter N to emphasize that its members can
be interpreted as players in an ongoing negotiation game. If nη = 1, we say
there is full agreement.

1.3.3 Partition functions and subcoalitions

To evaluate the prospects of all individuals should negotiations end with a hier-
archy η, we have to determine the expected outcome when the final negotiators
become the players of the resulting non-cooperative game. For this, let Γη be
the non-cooperative game induced by Γ in which the players are the negotia-
tors ν ∈ N(η), the strategy set Σν for ν contains combinations σν of strategies
σi ∈ Σi for each i ∈ ν, and payoffs are joint payoffs, uν(σ) =

∑
i∈ν ui(σ). We

use the symbol σ for both a strategy vector in Γη and the induced strategy
vector in Γ. If suitable, one can also allow ν to use correlated strategies, i.e.,
probability distributions over combinations of strategies σi ∈ Σi for each i ∈ ν,
in which case uν(σ) denotes the expected joint payoff of ν. Let us assume that
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all individuals have common beliefs as to what the expected payoffs will be
when Γη is played, and denote these expected payoffs by v(ν, η). If Γη possesses
a unique Nash equilibrium σ, usually v(ν, η) = uν(σ). This function v is called
the (transferable utility) partition function of Γ and builds the basis of all our
analyses. If there are ν, η, η′ such that v(ν, η) 6= v(ν, η′), we say that the game
has externalities, and we assume that this is indeed the case in general. As
the grand coalition I can achieve any possible expected payoff in Γ, v will be
grand-coalition superadditive, i.e.,

V ({I}) > V (η) (2)

for all η, where V (η) =
∑
ν∈N(η) v(ν, η) is the total expected payoff with η. If

even V ({I}) > V (η) for all η 6= {I}, we say that v needs full agreement.
Call v symmetric iff v(ν, η) only depends on ν’s size |ν| (the number of

individuals represented by that negotiator) and on the size distribution of all
ν′ ∈ N(η) (i.e., the information how many negotiators represent coalitions of
size 1,2,3,. . . ). Call v fully symmetric iff v(ν, η) only depends on nη (the number
of negotiators). Note that the underlying game Γ need not be symmetric for v
to be fully symmetric, as the public good example in the next section shows.

Cournot oligopoly. In a Cournot oligopoly with m symmetric firms and
a linear demand curve, Γη is symmetric and has a unique Nash equilibrium,
so that v is fully symmetric, and v(ν, η) = 1/(nη + 1)2 up to a multiplicative
constant, where η represents a hierarchical cartel structure and nη is the number
of competing top-level cartels in it.

If a set S ⊆ N(η) of negotiators forms a new coalition CS , the resulting hierarchy
η+S has a new member CS , and the negotiators ν ∈ S are replaced by a single
negotiator νS . Formally, since negotiators ν ∈ S are identified with coalitions,
both this new negotiator νS and the newly formed coalition CS are equal to the
union of the coalitions in S:

νS = CS =
⋃
S, (3)

η + S = η ∪ {CS}, (4)

N(η + S) = (N(η)− S) ∪ {νS}. (5)

If v(νS , η/S) >
∑
ν∈S v(ν, η) for all η and all S ⊆ N(η), we say that v is (fully)

superadditive, but in general this will not be the case (e.g., in the Cournot
oligopoly).

Conversely, given a coalition hierarchy η and a coalition C ∈ η, the sub-
coalitions of C are the coalitions in η which are maximal proper subsets of
C. Let S(C) ⊂ η designate the set of all subcoalitions of C, and note that
C =

⋃
S(C) = νS(C).
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1.3.4 Agreement hierarchies and preferences

Since the game has externalities and agreements can be hierarchical, a coalition
C will usually not know what their expected joint payoff is at the time they
reach an agreement. Hence agreements must specify payoff allocation rules
rather than actual payoffs. Formally, an agreement between the subcoalitions of
C will be treated as a function aC that maps each value x ∈ IR to an allocation
aC(·, x) of signatory expected payoffs aC(ν, x) for all subcoalitions ν ∈ S(C), so
that each aC(ν, x) is non-decreasing in x and∑

ν∈S(C)

aC(ν, x) = x. (6)

The interpretation is that the subcoalitions of C agree that, once the final
hierarchy and the expected joint payoff x that C can expect from it are known,
they will use a strategy vector in Γ for which the expected joint payoff of each ν ∈
S(C) is aC(ν, x). Since Γ has transferable utility, x can indeed be redistributed
in any way the individuals in C agree on, by chosing a suitable strategy from
ΣC . Because aC(ν, x) is non-decreasing in x, maximizing a signatory’s expected
individual payoff aC(ν, x) is equivalent to maximizing the coalition’s expected
joint payoff x once the agreement is signed.

Often, the agreement will specify that the payoff difference to some offset
value is allocated in some agreed proportions, in which case aC will be of the
form aC(ν, x) = αC(ν) + (x − AC)wC(ν)/WC where αC(ν) ∈ IR, wC(ν) > 0,∑
ν∈C αC(ν) = AC , and

∑
ν∈C wC(ν) = WC . E.g., the weights wC(ν) could be

all equal, or of the form wC(ν) =
∑
i∈C wi with individual weights wi.

An agreement hierarchy for η is now a vector a of agreements aC , one for
each C ∈ η. Given an agreement hierarchy for η, a set S ⊆ N(η) of negotiators,
and a potential agreement aC for C = νS ∈ η/S, and a potential expected payoff
x for C, one can recursively calculate the resulting expected payoff aC(ν, x) of
any coalition ν ∈ η that is part of C, ν ⊂ C: If aC(ν′, x) is already calculated
and ν ∈ ν′, we have

aC(ν, x) = aν′(ν, aC(ν′, x)). (7)

In particular, each potential agreement aC induces an allocation rule for ex-
pected individual payoffs, aC(i, x) = aC({i}, x).

When negotiations end with coalition hierarchy η and agreement hierarchy
a and C ∈ N(η) is a maximal coalition in η, x will turn out to be v(C, η) and
each ν ⊂ C has an expected payoff of

a(ν, η) = aC(ν, v(C, η)). (8)

Hence we say that ν prefers the potentially resulting hierarchy (η,a) to the
potentially resulting hierarchy (η′,a′) iff a(ν, η) > a′(ν, η′).
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2 Public goods with efficient markets

An interesting example that turns out to be equivalent to the Cournot oligopoly
in a special case is that of a public good whose production can be bought on
an efficient market. Each individual i ∈ I chooses to produce a non-negative
amount qi of the public good, leading to total production Q =

∑
i∈I qi, individ-

ual benefits fi(Q) > 0 and total costs g(Q) > 0 that are shared proportionally,
giving individual costs ci(Q, qi) = g(Q)qi/Q. Hence the sets of strategies in Γη
are Σν = [0,∞) and the payoff functions are

uν(q) = fν(Q)− g(Q)qν/Q, (9)

where fν =
∑
i∈ν fi and qν =

∑
i∈ν qi. Note that our example differs from

the public good examples often found in the literature, for which the payoff
functions usually have the form uν(q) = fν(Q) − gν(qν) with costs that only
depend on individual production and are independent from total production.

Assume that marginal costs are non-decreasing, marginal benefits are non-
increasing, and denote average unit costs by h(Q) = g(Q)/Q > 0, with deriva-
tive h′(Q) = (g′(Q)−h(Q))/Q > 0. Then the unique pure-strategy equilibrium
of Γη is given by

qν =
f ′ν(Qη)− h(Qη)

h′(Qη)
(10)

where Qη is the unique solution of

f ′(Qη) = (nη − 1)h(Qη) + g′(Qη) (11)

and f =
∑
i∈I fi. Note that Qη only depends on η via the number of remaining

negotiators, nη. The resulting equilibrium payoffs are

v(ν, η) = fν(Qη) + h(Qη)
h(Qη)− f ′ν(Qη)

h′(Qη)
. (12)

In the special case with linear benefits fi(Q) = βiQ and quadratic costs
g(Q) = Q2, one can easily see that

v(ν, η) = 1/(nη + 1)2 (13)

up to a constant factor, just as in the Cournot oligopoly. Note that then v is
fully symmetric even though the benefit factors βi may differ! This is important
since for fully symmetric v, we will see below that full agreement is probable
when agreements can be hierarchical.

3 Bargaining models with hierarchical agreements

3.1 Irreversible agreements

3.1.1 Agreement in levels

One possibility to define a model of bargaining with hierarchical agreements is to
apply an existing bargaining model without hierarchical agreements iteratively,
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treating the coalitions formed in one round as players in the next round. We
will see that under mild conditions such a process will end after finitely many
rounds with full agreement. Let us start with the model of [7] that generalizes
Rubinstein-Stahl bargaining and can be formulated in our framework as follows:

Simple bargaining protocol. Starting with a set N of negotiators, the pro-
tocol produces a partition π(N) (a “coalition structure”) of N and an agreement
aS for each S ∈ π(N) by a process of successive proposals and responses. In our
framework, we assume that N = N(η) for some already established coalition
hierarchy η, possibly the all-singletons hierarchy η0. We start with an empty
π(N) and a full set of active negotiators T = N . In each step, a proposer ν
from the set of active negotiators T proposes to a set of negotiators S ⊆ T with
ν ∈ S an agreement aS , and then the other members of S sequentially respond
by either accepting or rejecting the proposal until one negotiator rejects or all
have accepted. If all have accepted, the set S is subtracted from the set of active
negotiators T and becomes an element of the partition π(N). If a negotiator j
rejects, T and π(N) remain unchanged, and a new proposer is selected after a
delay of one time unit. The selection of a proposer and the order of responders
is governed by (i) a probability % ∈ [0, 1] with which the rejector of a proposal
gets to be the next proposer, (ii) a function %p that otherwise selects a proposer
%p(T ) for each possible non-empty subset T ⊆ N of active negotiators, and (iii)
a function %r that selects a next responder %r(S′) for each possible non-empty
subset S′ ⊆ N of remaining responders. Hence the initial proposer is %p(N),
the first responder is %r(S′) with S′ = S − {%p(N)}, the second responder is
%r(S′′) with S′′ = S − {%p(N), %r(S′)}, and so on. After a rejection by ν′, the
next proposer is ν′ with probability % and %p(T ) with probability 1 − %. The
simple bargaining protocol ends when T = ∅ and π(N) is a full partition of N ,
and does not end if from some step on all proposals get rejected.

The simple bargaining game consists in applying the simple bargaining pro-
tocol to N = N(η0) and results in the following payoffs: If there were k time
units of delay, each coalition CS with S ∈ π gets a payoff of v(CS , η

′) · δk, where
δ ∈ (0, 1) is some common discount factor, η′ is the coalition hierarchy η plus all
newly formed coalitions, η′ = η∪{νS : S ∈ π(N(η))}. Each CS then distributes
those payoffs according to its agreement aS . If, on the other hand, from some
step on all proposals get rejected, the game does not end and all individuals’
payoffs are zero, where it is assumed that v is non-negative: v(C, η) > 0 for all
C, η.

In [5] it is proved that under our assumption of transferable utility and with
a mild additional condition “NAW”, the simple bargaining game has always a
perfect equilibrium consisting of stationary (Markovian) strategies where the
only source of mixing is in the (possibly) probabilistic choice of a coalition by
each proposer and where the game ends in finite time and with no delays.
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Iterated bargaining game. Starting with η = η0, repeatedly apply the
simple bargaining protocol to find π(N(η)) and each time add the new coalitions
to η, i.e., replace η by η ∪ {νS : S ∈ π(N(η))}. The iterated bargaining game
ends as soon as no further coalitions form, i.e., as soon as π(N(η)) consists only
of singletons. Then each ν ∈ N(η) gets a payoff of v(ν, η)·δk which is distributed
according to the resulting agreement hierarchy a, where k is the total number
of delays.

Our first result shows that the sheer possibility of hierarchical agreements can
lead to immediate full and fair agreement without actually using that possibility:

Theorem 1 In the limit of fast negotiations (with vanishing delay costs, δ →
1), if v is fully symmetric and needs full agreement, and if a rejector always
proposes next (% = 1), then the iterated bargaining game will lead to the imme-
diate formation of the grand coalition in the first round and to a fair agreement
to split V ({I}) equally.

Proof (sketch): We proceed inductively over the number nη of remaining nego-
tiators. For nη = 1, the claim is trivial. Now assume nη′ > 1 and the claim
has been proved for all η with nη < nη′ . By symmetry, it is easy to see that a
proposal by some proposer ν to any set S ⊆ N(η′) will be rejected if it promises
some ν′ less payoff than ν, since otherwise ν′ could reject and then propose a
similar proposal in which only the payoffs of ν and ν′ are exchanged. Hence a
negotiator will either propose a fair split to some set, or make an unacceptable
proposal. If the initial proposer proposes an equal split of V ({I}) to the full set
N(η′) and all responders accept this, he gets V ({I})/nη′ . If instead he proposes
an equal split to a smaller set S, he will know by our induction assumption that
like each S′ ∈ π(N(η′)), S will finally get an equal share of V ({I}), i.e., S will get
V ({I})/|π(N(η′))| and he will get V ({I})/|π(N(η′))||S|. The latter is no larger
than V ({I})/nη′ because nη′ 6 |π(N(η′))||S| if S 6= N(η′). Indeed, for |S| > 1,
it is strictly smaller than V ({I})/nη′ since the remaining negotiators will then
all form singletons to get a payoff of V ({I})/(nη′−|S|+1) > V ({I})/|π(N(η′))|
each, which is the best they can do once S has formed. Hence proposing to a
non-full non-singleton set S leads to strictly smaller payoffs than forming the
grand coalition. Finally, we have to show that it does also not help to form a
singleton in the hope that others will form a non-grand coalition. This is be-
cause unlike in the non-hierarchical case, the other negotiators will then simply
also form singletons, after which all these singletons will come back to the table
in the next round of the iterated bargaining game. Hence the best the initial
proposer can do is to propose an equal split to the full set, and all will accept.
QED.

Cournot oligopoly with n = 5. In the simple, non-iterated bargaining game,
the initial proposer forms a singleton and the next proposer unites the remaining
four by proposing an equal split, so that the first gets 1/(2+1)2 = 1/9 and each
other gets 1/4 · 1/(2 + 1)2 = 1/36, which is both asymmetric and inefficient.
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In the iterated bargaining game, if the initial proposer forms a singleton, the
others will just do the same, so that in the next round all five are back at the
table. If the grand coalition agrees on an equal split, each gets 1/5 ·1/(1+1)2 =
1/20. If the initial proposer would succeed in forming a pair, the other three will
form singletons, so that in the next iteration the pair and the three singletons
would get 1/(4+1)2 = 1/25 < 1/20 each. If the initial proposer would succeed in
forming a triple, the other two will form singletons, so that in the next iteration
the triple and the two singletons would get 1/(3 + 1)2 = 1/16 > 1/20 each,
but the initial proposer would only get a third of the triple’s share, which is
1/48 < 1/20. Likewise, forming a four-player coalition would give the initial
proposer only 1/4 · 1/(2 + 1)2 = 1/36. So the best thing is to immediately
propose a fair split to the grand coalition.

Because it has the same partition function v, the same holds for the public
good example with linear benefits and quadratic costs.

Let us now turn to the non-symmetric case.

Theorem 2 If v needs full agreement and condition “NAW” from [5] is fulfilled,
the iterated bargaining game has a perfect equilibrium in which the game ends
with full agreement in finite time and with no delays.

Proof (sketch): Using a form of backward induction, we construct the equilib-
rium recursively over the number of remaining negotiators nη and prove induc-
tively that (i) each application of the simple bargaining protocol produces at
least one new coalition, and (ii) the resulting expected payoffs b(ν, η) of all nego-
tiators ν ∈ N(η) are efficient,

∑
ν∈N(η) b(ν, η) = V ({I}). For nη = 1, the strat-

egy of the only negotiator I trivially consists in proposing to himself the only
possible agreement, leading to an efficient expected payoff of b(I, {I}) = V ({I}).
Now assume that nη′ > 1 and for each η with nη < nη′ , the equilibrium strategy
vector has been constructed already, leading to efficient expected payoffs bν for
all ν ∈ N(η). We construct the equilibrium strategy vector for η′ as follows:
Let v′ be the partition function defined by v′(ν, η) = b(ν, η) if nη < nη′ , and
v′(ν, η) = v(ν, η) if nη > nη′ . In other words, v′ encodes the fact that when the
current negotiators N(η′) build at least one more coalition, the remaining play
along the equilibrium path will lead to the efficient payoffs b(ν, η). Now let s
be a perfect equilibrium of the simple bargaining game with players N(η′) and
partition function v′, and π(N(η′)) the resulting partition of N(η′). By defini-
tion of v′, this s is a perfect continuation equilibrium of the iterated bargaining
game at the subgame starting at η′. We have to show that π(N(η′)) does not
only consist of singletons.

Assume it does. Then the resulting expected payoffs are given by v(ν, η).
Because v needs full agreement and nη′ > 1, these payoffs are not efficient,
V (η′) =

∑
ν∈N(η′) v(ν, η′) < V ({I}). Let ε = (V ({I}) − V (η′))/nη′ > 0, Then

standard arguments show that any proposer ν ∈ N(η′) could improve her payoff
by proposing to the grand coalition S = N(η′) the agreement aS with aS(ν, x) =
(v(ν, η′) + ε)x/V ({I}) for all ν ∈ S, since that agreement would be accepted by
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all. So s would not be a perfect equilibrium of the simple bargaining game after
all, a contradiction to our assumption. In other words, s produces at least one
new coalition, π(N(η′)) does not only consist of singletons, and the resulting
expected payoffs are efficient by definition of v′. QED.

3.1.2 Agglomerative coalition formation

Although conceptually simple, the above approach seems a little ad hoc since
it is unclear why a newly formed coalition CS only re-enters the negotiation
process as a new negotiator νS after the remaining negotiators have finished the
current round of bargaining. A different approach therefore does not iterate the
simple bargaining protocol but rather modifies it so that after the negotiators
S form a coalition and become inactive, a new negotiator νS immediately joins
the set of active negotiators:

Agglomerative bargaining protocol. Starting with some already estab-
lished coalition hierarchy η and agreement hierarchy a, possibly the all-singletons
hierarchy η0, the protocol produces a coalition hierarchy η′ ⊇ η and a corre-
sponding agreement hierarchy a′ by a process of successive proposals and re-
sponses. We start with (η′,a′) = (η,a). The set of active negotiators always
equals N(η′). In each step, a proposer ν from the set of active negotiators N(η′)
proposes to a set of negotiators S ⊆ N(η′) with ν ∈ S an agreement aS , and
then the other members of S sequentially respond by either accepting or reject-
ing the proposal until one negotiator rejects or all have accepted. If all have
accepted, the newly formed coalition CS and the agreemens aS are added to η′

and a′, hence the set S is subtracted from the set of active negotiators N(η′)
and the new negotiator νS is added to it. If a negotiator ν′ rejects, η′ remains
unchanged, and a new proposer is selected from N(η′) after a delay of one time
unit. The selection of a proposer and the order of responders is governed by
(i) a probability % ∈ [0, 1] with which the rejector of a proposal gets to be the
next proposer, (ii) a function %p that otherwise selects a proposer %p(T ) for
each possible non-empty set T of active negotiators, and (iii) a function %r that
selects a next responder %r(S′) for each possible non-empty set S′ of remaining
responders. After a rejection by ν′, the next proposer is ν′ with probability
% and %p(N(η′)) with probability 1 − %. The simple bargaining protocol ends
when there is full agreement in η′, and does not end if from some step on all
proposals get rejected.

The agglomerative bargaining game consists in applying the agglomerative
bargaining protocol to η = η0 and results in the following payoffs: If there
were k time units of delay, each individual i ∈ I gets a payoff of a′({i}, η′) · δk.
If, on the other hand, from some step on all proposals get rejected, the game
does not end and all individuals’ payoffs are zero, where it is assumed that v is
non-negative: v(C, η) > 0 for all C, η.
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Note that the process bears some obvious similarity to agglomerative clus-
tering procedures used in statistics, and it might be interesting to further study
this relationship, although those usually join only two clusters to get a new
cluster, needing n− 1 steps of cluster formation, while our procedure often uses
only one step of coalition formation and directly forms the grand coalition. For
example, this is so for fully symmetric v, just as it was the case with the iterated
protocol:

Theorem 3 In the limit of fast negotiations (with vanishing delay costs, δ →
1), if v is fully symmetric and needs full agreement, and if a rejector always
proposes next (% = 1), then the agglomerative bargaining game will lead to
the immediate formation of the grand coalition in the first step and to a fair
agreement to split V ({I}) equally.

Proof (sketch): Very similar to theorem 1, we proceed inductively over the
number nη of remaining negotiators. For nη = 1, the claim is trivial. Now
assume nη′ > 1 and the claim has been proved for all η with nη < nη′ . By
symmetry, it is again easy to see that a proposal by some proposer ν to any
set S ⊆ N(η′) will be rejected if it promises some ν′ less payoff than ν, since
otherwise ν′ could reject and then propose a similar proposal in which only the
payoffs of ν and ν′ are exchanged. Hence a negotiator will either propose a fair
split to some set, or make an unacceptable proposal. If the initial proposer ν
proposes an equal split of V ({I}) to the full set N(η′) and all responders accept
this, he gets V ({I})/nη′ . If instead he proposes an equal split to a smaller but
non-singleton set S, he will know by our induction assumption that like each
ν′ ∈ N(η′) − S, S will finally get an equal share of V ({I}), i.e., S will get
V ({I})/(nη′ − |S| + 1) and he will get V ({I})/(nη′ − |S| + 1)|S|. The latter
is smaller than V ({I})/nη′ because nη′ < (nη′ − |S| + 1)|S| if S 6= {ν}, N(η′).
Hence proposing to a non-full non-singleton set S again leads to strictly smaller
payoffs than forming the grand coalition. Obviously, it does also not help to
form a singleton since that leaves η′ unchanged and only leads to a new proposer
who will then propose an equal split to the full set. Hence the best the initial
proposer can do is to propose an equal split to the full set, and all will accept.
QED.

The non-symmetric case is much more complicated and probably requires
techniques similar to those in [5], in particular the notion of equilibrium response
vectors. Leaving a detailed study for future research, we conjecture that similar
to the simple bargaining game, also the agglomerative bargaining game will have
perfect equilibria in stationary (Markov) strategies.

We conclude this section by discussing a simple non-symmetric example
without externalities in which hierarchical agreements enable efficient outcomes:

Simple example A special individual 1 can realize payoff 1 with the help of
one of the other two individuals, or 1 +µ in the grand coalition, where µ < 1/2.
More precisely, I = {1, 2, 3}, v(I, η) = 1 + µ, v({1, i}, η) = 1 for i ∈ {2, 3}
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and all η, and v(C, η) = 0 for all other S. In [5], it is shown that with the
simple bargaining protocol, % = 1 and δ → 1, the result is either the partition
{{1, 2}, {3}} or the partition {{1, 3}, {2}}, with payoff vectors (1/2, 1/2, 0) or
(1/2, 0, 1/2). This is because no initial proposer can make a proposal to the
grand coalition in which she gets more than 1/2, since then one responder would
be promised less than 1/2 and will thus reject and realize a payoff of 1/2 by
proposing an equal split to one other individual. So a pair must form first, after
which the grand coalition can no longer form when hierarchical agreements are
not possible. Hence payoffs are asymmetric and inefficient.

With hierarchical agreements, the payoffs will still be asymmetric but effi-
cient. First study what happens when coalition {1, 2} has already formed. Then
there are only two negotiators left, and because of δ → 1, they will share their
surplus equally in equilibrium, so {1, 2} gets 1 + µ/2 and 3 gets µ/2. Likewise,
when coalition {2, 3} has already formed, it can expect to get 1/2 + µ/2 in the
end, and 1 can expect the same. Now assume no pair has yet formed, and let
mi be the payoff individual i can expect when she is the proposer. Then in each
acceptable proposal to some set S, she has to promise all other j ∈ S at least
mj since otherwise j will reject and realize mj as the next proposer. So the
values mi must fulfil the following relationships:

m1 = max(1 + µ/2−m2, 1 + µ−m2 −m3), (14)

m2 = max(1 + µ/2−m1, 1 + µ−m1 −m2), (15)

m3 = max(1 + µ/2−m1, 1 + µ−m1 −m3), (16)

and, by symmetry, m2 = m3. The solution of this is m1 = 1/2 + µ/2 and
m2 = m3 = 1/2. If individual 1 is the initial proposer, she proposes to either
{1, 2} or {1, 3} a split in which she finally gets 1/2 + µ/2 of the 1 + µ/2 that
coalition expects to get in the end after an additional agreement with the third
player. If individual i 6= 1 is the initial proposer, she proposes to {1, i} a split
in which she finally gets 1/2.

3.2 Reversible agreements

Up until now, we assumed that agreements can be complemented with additional
agreements but are irreversible in that they cannot be reverted once established.
This makes it possible to analyse the process of coalition formation using some
kind of backward induction that is no longer available when we allow agreements
to be terminated.

Let us now assume that a top-level agreement aS(C) with C ∈ N(η) can be
terminated if all its signatories in S(C) agree to do so, and define the following
bargaining protocol similar to [3]:

Ongoing hierarchical bargaining. A state is a pair x = (η,a) where η is
a coalition hierarchy and a is a agreement hierarchy for η. Each of infinitely
many periods t = 0, 1, . . . begins in some going state x = (η,a), and each
individual i ∈ I gets a period payoff of a({i}, η). Then a proposer ν ∈ N(η)
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proposes a move x → y to a new state y = (η′,a′). Define the set of affected
negotiators A(x, y) as follows: If x → y is an elementary move that either (i)
leaves all existing coalitions and agreements unchanged and only adds one new
coalition C with S(C) ∈ N(η) and an agreement aS(C), or (ii) leaves the coalition
hierarchy unchanged and only replaces some individual agreement aS(C) with
C ∈ η by a new agreement a′S(C), leaving all other agreements unchanged,

or (iii) leaves all existing coalitions and agreements unchanged except that it
removes one top-level coalition C ∈ N(η) and its agreement aS(C), then the
affected negotiators are the signatories to that agreement: A(x, y) = S(C). If
x → y is a more complicated move that changes more of η and a, it can be
represented as a unique minimal concatenation x = x0 → x1 → · · ·xk−1 →
xk = y of partial moves xi−1 → xi of the above types (i)–(iii), and we put

A(x, y) =
⋃k
i=1A(xi−1, xi), i.e., each negotiator affected by a partial move is

affected by the whole move.
After the proposal is made, each affected negotiator ν′ ∈ A(x, y) responds

by either accepting or rejecting the proposal, in an order governed by a function
%r as before, until one negotiator rejects or all have accepted. If the proposal
was accepted, the going state in period t+ 1 is (η′,a′), otherwise it is (η,a).

If one assumes that individuals use exponential discounting to derive dis-
counted infinite-horizon utilities from period payoffs, one can then search for
perfect equilibria in history-dependent or stationary (Markov) strategies.

A first general result is this:

Theorem 4 Assume that v needs full agreement and negotiators follow some
perfect equilibrium in stationary (Markov) strategies. Let ξi(x) be the discounted
infinite-horizon utility of i ∈ I when the initial state is x = (η,a), and put
ξν(x) =

∑
i∈ν ξi(x) and Ξ(x) =

∑
i∈I ξi(x). Then:

(1) If the initial state has full agreement, then payoffs will never change.
(2) Assume that the initial state x does not have full agreement and the

proposer is always selected independently from who rejected and who accepted a
proposal. Then the initial proposer ν will make a proposal to change to a state
y with ξν(y) > ξν(x) + (V ({I})−Ξ(x))/|nη|, and that proposal will be accepted.

Proof (sketch): (1) Any state y has Ξ(y) 6 V ({I}). So if a move involving
a changed payoff vector is proposed, at least one ν ∈ N(η) faces a loss in
discounted payoffs and will reject.

(2) Let S = N(η) and define aS so that by aS(ν′, V ({I})) = ξν′(x) +
(V ({I}) − Ξ(x))/|nη| for all ν′ ∈ S. Then if ν proposes aS to S, each ν′ ∈ S
will accept since that guarantees her because of (1) a discounted payoff of
aS(ν′, V ({I})) that is strictly larger than her discounted payoff of ξν′(x) which
she expects upon rejection. So ν can get at least aS(ν, V ({I})) by making this
proposal, or even more by making a different proposal that gets accepted. QED.

Note, however, that this does not imply immediate or even eventual full
agreement since a proposer might find an even better proposal to a smaller
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coalition, as it is the case in the simple asymmetric 3-individuals example at the
end of Section 3.1.2. I conjecture, however, that under quite general conditions,
it will be possible to prove that full agreement must emerge eventually in the
above model.

4 Blocking models with hierarchical agreements

Unlike the bargaining models of the previous section, the blocking approach
avoids the specification of protocols and rather studies the stability of agree-
ments against possible deviations by individuals or groups of individuals. The
basic idea is that a group S of individuals may leave a coalition C if they expect
to be better off in the setting that eventually arises from this. In the definition
of the classical concept of the core, it is assumed that after S has left, the re-
maining individuals C − S stay together, but recent farsighted models [6, 4, 2]
assume that the latter may split further as a reaction, or other coalitions might
form.

4.1 Irreversible agreements

We start again with the assumption that an agreement is not only binding but
also irreversible once it has been signed, so that we can hope negotiations will
end in finite time and the process can be analysed by backwards induction.
Before describing a specific model, let us generalize the idea of agreement in
levels from Section 3.1.1 so that it works with many existing procedures of
non-hierarchical coalition formation.

Assume we have a procedure µ of non-hierarchical coalition formation that
maps a partition function v to a probability distribution of coalition structures
and payoff vectors. More precisely, for each set of negotiators N , let p0(v, π) ∈
[0, 1] be the probability that the model results in a partition π of N if it is applied
to a partition function v for N that maps partitions π of N and coalitions S ∈ π
to payoffs v(S, π). Moreover, let e(v, π) ∈ IRN with

∑
ν∈S eν(v, π) = v(S, π)

for each S ∈ π be the expected value of the payoff vector that results when
the procedure results in the partition π. If the procedure µ could be a specific
bargaining protocol, p and e can be derived from the protocol directly. If µ
refers to some set-valued solution from the blocking approach, e.g., the core, p
and e can be interpreted as representing the common beliefs of all negotiators
about what particular member of the set-valued solution will arise with what
probability under suitable assumptions of rationality.

Call a partition function v for N non-singletons efficient iff∑
S∈π

v(S, π) = v(N, {N}), (17)∑
ν∈N

v({ν}, π0) < v(N, {N}) (18)
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for all partitions π containing a non-singleton coalition, where π0 is the all-
singletons partition.

Now assume that µ has the following property (*): If v is non-singletons
efficient, µ results in a non-singletons partition with positive probability, 1 −
p0(v, π0) > 0. We will argue below that many common procedures µ indeed
fulfil (*). From such a procedure of non-hierarchical coalition formation µ, we
can now construct a procedure of hierarchical coalition formation in levels that
will end with full cooperation after finitely many applications:

Iterative application of µ. Given a partition function v that needs full agree-
ment and an already established coalition hierarchy η, the iterative application
of µ to η is defined recursively over the number of negotiators nη. For each larger
coalition hierarchy η′ ⊇ η, denote the probability that the result will be η′ by
q(η, η′) ∈ [0, 1], and let ξν(η, η′) denote the expected final payoff of ν ∈ N(η) if
the result is η′ with q(η, η′) > 0. We derive q(η, η′) and ξν(η, η′) using backwards
induction as follows, and prove at the same time inductively that q(η, η′) = 0
if η′ has no full agreement: If nη = 1, η has already full agreement, no further
application of µ is needed, and we have q(η, η) = 1, ξν(I, η) = V ({I}), and
q(η, η′) = 0 for all η′ 6= η. For nη > 1, define a non-singletons efficient partition
function vη on N(η) as follows: Let π0 be the all-singletons partition of N(η).
For each negotiator ν ∈ N(η), let vη({ν}, π0) be the non-cooperative payoff to ν
if no further agreements are made and negotiations were to end with hierarchy
η:

vη({ν}, π0) = v(ν, η). (19)

For each other partition π 6= π0 of the set N(η) of current negotiators, let η+π
be the coalition hierarchy that results if this round of negotiations ends with
partition π,

η + π = η ∪ {CS : S ∈ π}, (20)

and for each S ∈ π, let vη(S, π) be the expected payoff the new coalition CS
can get if after this round µ is applied iteratively to η + π:

vη(S, π) =
∑

η′⊇η+π

q(η + π, η′)ξνS (η + π, η′). (21)

Since v needs full agreement,
∑
ν∈(η) v({ν}, π0) < V ({I}) = v(N(η), {N(η)}).

Since all η′ with q(η+π, η′) > 0 have full agreement,
∑
S∈π vη(S, π) = V ({I}) =

v(N(η), {N(η)}). Hence vη is non-singletons efficient. Now apply the procedure
µ of non-hierarchical coalition formation to the set N(η) of negotiators and the
non-singletons efficient partition function vη, leading to probabilities p0(vη, π)
and expected payoffs e(vη, π) with 1 − p0(vη, π0) > 0. In other words, the
application of µ will convert the coalition hierarchy η into the coalition hierarchy
η + π with probability p0(vη, π). Although the result might be η + π0 = η with
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positive probability, the repeated application of µ to the same η will eventually
give a properly larger hierarchy η + π ⊃ η, with probabilities

p(vη, π) = p0(vη, π)/(1− p0(vη, π0)) (22)

and an expected finite number of iterations,

tη = 1/(1− p0(vη, π0)). (23)

The probability that the iterative application of µ to η will result in η′ is now

q(η, η′) =
∑
π 6=π0

p(vη, π)q(η + π, η′) (24)

which is still zero unless η′ has full agreement. The expected final payoff of
ν ∈ N(η) if the result is η′ is

ξν(η, η′) =
∑
π 6=π0

p(vη, π)eν(vη, π). (25)

This completes the recursive derivation of q and ξ and the inductive proof that
the procedure ends in finite time with full agreement and hence with efficient
payoffs.

Typical farsighted blocking approaches fulfil condition (*): Assume v is non-
singletons efficient but still the all-singletons structure π0 will form with cer-
tainty, p0(v, π0) = 1. Since

∑
ν∈N v({ν}, π0) < v(N, {N}), there is an allocation

of the grand coalition’s worth v(N, {N}) into individual payoffs aν > v({ν}, π0)
for all ν ∈ N . Then a proposal to realize a in the grand coalition cannot credi-
bly be blocked by any group S of players, since if they leave, they must expect
(because of farsightedness) that the all-singletons structure π0 will form with
certainty (as assumed) and they would get only

∑
ν∈S v({ν}, π0) <

∑
ν∈S aν .

Hence if no other non-singletons partition has a positive probability of forming,
the grand coalition must have a positive probability of forming and agreeing
on an allocation such as a, contradicting the assumption that the all-singletons
structure will form with certainty. Hence farsighted blocking models must ful-
fil (*) and will thus lead to efficient final payoffs when applied iteratively to
produce hierarchical agreements.

Still, we have to motivate why it might be reasonable to expect that once
a blocking set of negotiators S has left the table, they will later on re-enter
negotiations, but not until a partition of the remaining negotiators has been
established. To this end, let us invoke the following image: Let us assume all
individuals share the following assumptions as to how negotiations will pro-
ceed: Negotiations take place in a sequence of rounds with a non-increasing
number of negotiators, starting with one negotiator for each individual i ∈ I,
and only ending when there is only one negotiator left. At each point in time
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during a round, negotiators will be distributed over meeting rooms, starting
with the grand coalition in one room, and this distribution can be described
by a partition π. The current partition π is known to all negotiators at all
times. Groups of negotiators can leave a room and move to a new room, but
may not join already occupied rooms, hence π can only get finer during a round.
(Most blocking approaches assume this, as it allows for a recursive analysis from
finer to coarser partitions. In principle, however, we might also assume groups
can join a coalition in another room if that coalition agrees to negotiate with
them). Each “negotiating group” S ∈ π is farsighted and estimates the total
payoff aS(π) that they can expect to get in the end if the current partition π
becomes the final coalition structure of this round, by looking forward to what
agreements they can expect the remaining rounds to bring about. Each S ∈ π
will then discuss how to distribute this expected final payoff eS(π) among its
members. At each point in time, the expected payoffs aν(π) of all ν ∈ S reflect
the currently discussed payoff distribution, with

∑
ν aν(π) = eS(π). At each

point in time, S will either be in discussion, in temporary agreement, or will
split in two parts G and S \ G. Since time is essentially continuous, at most
one coalition S splits at any point in time, so that all negotiators can adapt
their expectations to the new situation before considering another split. As
soon as in some round k all coalitions are in temporary agreement, the current
partition π and the temporary agreements become the final coalition structure
πk and agreements of that round, each S ∈ πk will appoint a negotiator νS
for the next round, and these meet again in the central room to proceed with
round k+ 1. If there are externalities, no coalition S has an incentive to finalize
their temporary agreement before they know the coalition structure, i.e., before
all other coalitions are in temporary agreement as well. Hence all coalitions in
round k can indeed be expected to form essentially at the same time, so that
the assumption that negotiations take place in rounds is at least consistent.

Let us now revisit the important example of Cournot oligopolies:

Cournot oligopoly with n = 5. Without hierarchical agreements, a far-
sighted blocking approach gives this result: An allocation of the grand coali-
tions payoff of 1/4 must promise at least one of the five firms, say 1, at most
1/20. If 1 can hope that when it forms a singleton coalition, the other four
will stay together and form a second coalition 2345, both coalitions would get
1/9 > 1/20 each in the resulting non-cooperative Cournot-Nash equilibrium. If
those four would split further in two pairs, say 23 and 45, then 1, 23, and 45
would each get 1/16. Because 2 · 1/16 > 1/9, 2345 cannot distribute their joint
payoff of 1/9 to give each pair at least 1/16. Hence such a split in two pairs
would indeed happen after 1 has left. Given the partition 1,23,45, no further
split is profitable for the deviator, so this partition would be considered stable
by a farsighted blocking approach, as would any other partition into a singleton
and two pairs. Similar arguments show that no coarser partition would be sta-
ble, hence one would expect that each of those 1+2+2 partitions would occur
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with the same probability.
With the possibility of hierarchical agreements, the analysis is different since

a deviating coalition must look forward to payoffs resulting from the whole
hierarchical process. Assume that in some round, there are two negotiators
left. Then the grand coalition between them is stable since it can give both
1/2 · 1/4 = 1/8, while each would only get 1/9 if they stay apart. So, by
symmetry, each of the two can expect to get 1/8.

Now assume that in some round, there are three negotiators left. Then the
grand coalition can expect to get 1/4, a partition into two coalitions can expect
to get 1/8 each (as just argued), and a partition into three singletons can expect
to get 1/16 each. So the only stable agreement in a partition into two coalitions
gives the lone negotiator 1/8 and each member of the pair 1/16, since other-
wise one of the latter would walk away. The grand coalition is not stable here
since it cannot give each member at least 1/8. I.e., with three negotiators, the
result will be one of the payoff vectors (1/8, 1/16, 1/16), (1/16, 1/8, 1/16), and
(1/16, 1/16, 1/8), which is efficient but asymmetric. Still, because of symmetry,
it is sensible to assign equal probabilities to these three outcomes, so that each
of the three negotiators can expect to get 1/12.

Now assume that in some round, there are four negotiators 1,2,3,4 left.

• The all-singletons partition 1,2,3,4 is stable and each gets 1/25.

• The partition 1,2,34 is stable: each coalition can expect 1/12, so the agree-
ment to give both members 1/24 > 1/25 is stable.

• The partition 1,234 is unstable: the triple 234 can expect 1/8, so at least
one of them, say 2, gets at most 1/24 < 1/12 and wants to leave in order
to get 1/12 in the stable partition 1,2,34.

• The partition 12,34 is unstable: the pair 12 expects 1/8, at least one of
them gets at most 1/16 < 1/12 and wants to leave in order to get 1/12 in
the stable partition 1,2,34.

• Finally, the grand coalition 1234 is unstable: at least one of them, say 1,
gets at most 1/16 < 1/12 and wants to leave in order to get 1/12 in one
of the stable partitions 1,2,34 or 1,3,24 or 1,4,23, expecting that in the
unstable intermediate partition 1,234, one of 1,2,3 will leave.

The expected result for four negotiators is thus a partition into a pair and two
singletons, with asymmetric payoffs 1/24, 1/24, 1/12, and 1/12. Still, expected
payoffs are 1/16 for each negotiator because each such partition must be ex-
pected with equal probability.

Finally, we can now analyse the five-firm situation:

• The partition 1,2,3,4,5 is stable and each gets 1/36.

• The partition 1,2,3,45 is stable: each coalition gets 1/16, so the pair can
give each member 1/32 > 1/36.
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• The partitions 1,2,345 and 1,23,45 are unstable: each coalition gets 1/12,
so at least one member of 345 or 45 gets at most 1/24 < 1/16 and wants
to leave.

• The partitions 1,2345 and 12,345 are unstable: each coalition gets 1/8, so
at least one member of 2345 or 345 gets at most 1/24 < 1/16 and wants
to leave.

• Finally, the grand coalition 12345 is unstable: at least one member gets
at most 1/20 and wants to leave to get 1/16 in a partition with a pair and
two other singletons.

The expected result is thus a partition into a pair and three singletons, each of
which gets 1/16.

Summing up, our analysis predicts the following:

• In the first round a two-member coalition forms, say 45, leading to the
hierarchy 1,2,3,45.

• In the second round, two of the four negotiators form a new coalition, say
either 23, leading to the hierarchy 1,23,45, or 345, leading to the hierarchy
1,2,3(45).

• In the third round, again two of the now three remaining negotiators
form a new coalition, so that the resulting hierarchy has one of the forms
1,2(3(45)) or 1,(23)(45) or 12,3(45) up to permutations.

• In the final fourth round, the two remaining negotiators form the grand
coalition, so that the final hierarchy has one of the forms 1(2(3(45))) or
1((23)(45)) or (12)(3(45)) up to permutations. The corresponding payoff
vectors are (1/8, 1/16, 1/32, 1/64, 1/64) or (1/8, 1/32, 1/32, 1/32, 1/32) or
(1/16, 1/16, 1/16, 1/32, 1/32).

In other words, payoffs are asymmetric as in the model without hierarchical
agreements, but are efficient unlike in that model. Two of the possible hierar-
chies, 1((23)(45)) and (12)(3(45)), have the partition into a singleton and two
pairs as an intermediate step after which two of these coalitions sign a further
agreemen. The third possible hierarchy 1(2(3(45))), however, is built in con-
tradiction to the non-hierarchical model since only one initial pair forms which
then succesively collects the remaining firms one by one. This is possible because
although in the non-hierarchical model the move from 1,2,3,45 to 1,2,345 would
imply a loss of 1/25− 1/48 for firm 3, in the hierarchical model the move from
1,2,3,45 to 1,2,3(45) raises 3’s expected final payoff from the non-cooperative
outcome of 1/25 it will get if 1,2,3,45 is the final hierarchy, to the coopera-
tive outcome of 1/24 it can expect if negotiations continue after 1,2,3(45) has
formed.

Again, the same analysis holds for the public good example with linear
benefits and quadratic costs since it has the same partition function v.
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4.2 Reversible agreements

Similar to the model in [4], and using the terminology and notation of Section
3.2, we could define the following model:

Process of hierarchical coalition formation. A process of hierarchical
coalition formation is a discrete-time stochastic process p on the set of states
x = (η,a) such that p(x, y) = 0 for all pairs (x, y) outside a set M of feasible
moves. It leads to discounted infinite horizon payoffs ξi fulfilling ξi(x) = (1 −
δ)a(i, η) + δ

∫
ξi(y)p(x, dy) for all i ∈ I and x = (η,a). We call p an equilibrium

process of hierarchical coalition formation (EPHCF) iff for each pair of states
x = (η,a), y = (η′,a′), the following holds:

(i) If p(x, y) > 0 with y 6= x, the move must be strictly profitable, i.e., all
affected negotiators must strictly profit from the move: ξν(y) > ξν(x) for
all ν ∈ A(x, y).

(ii) If p(x, y) > 0 with y 6= x, no strictly profitable move x → z ∈ M with⋃
A(x, z) ⊆

⋃
A(x, y) must strongly Pareto-dominate x→ y, i.e., ξν(y) >

ξν(z) for some ν ∈ A(x, y), or ξν(y) > ξν(z) for all ν ∈ A(x, y).

(iii) If there is a strictly profitable and not strongly Pareto-dominated move
x→ y ∈M , then p(x, x) = 0.

The rationale of (ii) is that the negotiators in A(x, y) will not initiate a move to y
when another set of negotiators A(x, z) who represent a subset of the individuals
represented by A(x, y) can initiate a move to a state z that is even better for
all of them.

At this point, it remains unclear whether an EPHCF must always exist when
x→ y is a feasible move for all possible pairs of states, and whether it will lead
eventually to full agreement. For a more restrictive choice of feasible moves M ,
in which only one agreement can be changed at a time, one can however prove
the following:

Theorem 5 Assume v needs full agreement.
(1) If adding an agreement to form the grand coalition is always a feasible

move, then the following is an EPHCF: For states x with full agreement, put
p(x, x) = 1. For each state x = (η,a) without full agreement, select one state y
that is the outcome of adding to x a strictly profitable agreement for the grand
coalition, and put p(x, y) = 1.

(2) Let M be the set of elementary moves of type (i), (ii), or (iii) defined in
Section 3.2, and p an EPHCF with feasible moves M . Then the moves x → y
with p(x, y) > 0 and x 6= y build an acyclic graph whose terminal nodes all have
full agreement, and the process will end in a state with full agreement after at
most 2n− 3 steps.
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Proof: (1) When x has full agreement, no strictly profitable move is possible,
hence putting p(x, x) = 0 fulfils conditions (i)–(iii). When x = (η,a) does
not have full agreement, it has inefficient payoffs since v needs full agreement.
Hence there is a proposal aS to the full set of negotiators S = N(η) that gives
each ν ∈ S part of the additional surplus possible in η′ = η + S. Let a′ be a
together with aS , and put y = (η′,a′). Then the move x→ y is feasible, strictly
profitable, and not strongly Pareto-dominated, hence putting p(x, y) = 1 and
p(x, z) = 0 for all z 6= y fulfils conditions (i)–(iii).

(2) Let G be the graph of all moves x → y with p(x, y) > 0 and x 6= y.
First, note that no move of type (ii) that only changes the agreed payoffs can be
profitable since it would need to make at least one signatory worse-off. Hence
each move x→ y with p(x, y) > 0 either adds or removes a top-level agreement.

Acyclicity: For each two states x, y, there is a unique shortest sequence
s(x, y) of feasible moves from x to y that first removes at most n−1 agreements
and then adds at most n − 1 other agreements. For any longer sequence of
feasible moves from x to y there is at least one agreement that is both added
and removed along that sequence, and at most one of these partial moves can be
profitable, hence such a longer sequence cannot build a directed path in G. Thus
G either contains s(x, y) as the unique directed path from x to y or contains
s(y, x) (which is the reverse of s(x, y)) as the unique directed path from x to y,
or contains no directed paths between x and y at all. It cannot contain both
since if the moves on s(x, y) are profitable, their reverse moves are not. Hence
G is acyclic.

Terminal nodes: If x has full agreement, no strictly profitable move is possi-
ble, hence p(x, y) = 0 for all x 6= y by condition (i) and hence p(x, x) = 1, so x
is a terminal node of G. If x = (η,a) does not have full agreement, define y as
in the proof of (1) above. Then the move x → y is feasible, strictly profitable,
and not strongly Pareto-dominated, hence p(x, x) = 0 by condition (iii), so x is
not a terminal node of G.

End: If the starting node has full agreement, it is terminal, so the process
has already ended after zero steps. Otherwise, the process removes at most n−2
agreements and then adds at most n − 1 other agreements before ending in a
state will full agreement after at most n− 2 + n− 1 = 2n− 3 steps. QED.

Note that the 2n−3 bound is sharp as the following EPHCF for the example
at the end of Section 3.1.2 shows: For each state x with full agreement, put
p(x, x) = 1. Now let x = (η,a) be a state without full agreement and put
p(x, y) = 1 for y defined as follows: If no coalitions exist yet (η = η0), let y be
the outcome of any profitable agreement between individuals 1 and 2. If the
coalition {1, 2} or the coalition {1, 3} is already in η, let y be the outcome of
any profitable agreement between that coalition and the remaining individual.
If, finally, the coalition {2, 3} is already in η, let y be the outcome of removing
their agreement. The latter move is profitable since in both x and y, both
individuals 2 and 3 get no period payoff, but in y they will both get positive
payoff after less moves than in x. When play starts with a coalition {2, 3}, it
first removes this agreement, then builds the coalition {1, 2}, and finally builds
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the grand coalition, ending with full agreement after 3 = 2n− 3 steps.

The above proof of (2) relies on the fact that only atomic moves are con-
sidered feasible. Otherwise the acyclicity argument would not hold. Still, even
when complex moves are feasible which simultaneously terminate and initiate
several agreements, it seems plausible that full agreement will be reached. Con-
sider an EPHCF p and an initial state x = (η,a) without full agreement. Then,
by assumption, each individual i ∈ I believes her discounted infinite-horizon
payoffs are ξi(x), and we have inefficient expected payoffs Ξ(x) = V ({I}) − ε
that allow for an additional surplus of ε > 0 when the grand coalition forms.
Let y be any state that results in adding to a an additional agreement to form
the grand coalition and give each i ∈ I some positive share of ε. Then the
move x → y is not only feasible and strictly profitable but will also guarantee
each individual a payoffs that is certainly larger than the expected value of the
usually stochastic payoff they would get if p were followed. It seems plausible
to assume that then the move x→ y has at least a positive probability of being
made. Hence our small set of axioms for an EPHCF should

negotiators would rather sign an agreement that forms the grand coalition
and gives each ν

5 Conclusion

We have seen that the possibility of hierarchical agreements can lead to efficient
outcomes in situations in which the existing literature on (non-hierarchical)
coalition formation predicts inefficiency. By presenting a formal framework of
negotiators and coalition and agreement hierarchies, I hope to have paved some
ground for future work on this important question. Furthermore, the promising
results in the public good example might be valuable in the game-theoretic study
of International Environmental Agreements.
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