"Nonlinear Dynamics and Complex Networks in the Earth System"

Summer term 2016

Mail: jasper.franke@pik-potsdam.de
 chiranjit.mitra@pik-potsdam.de
Topics

Climate Dynamics 1

Modeling the glacial cycles of the Pleistocene

The timing of Pleistocene glaciations from a simple multiple-state climate model

Didier Paillard

Laboratoire de Modélisation du Climat et de l’Environnement, CEA/DSM, Centre d’Etudes de Saclay, 91191 Gif-sur-Yvette, France
Topics
Climate Dynamics 2

Classic box model of the Atlantic Meridional Overturning Circulation
Topics

Climate Dynamics 3

Model of the Great Oxygenation Event

Bistability of atmospheric oxygen and the Great Oxidation

Colin Goldblatt, Timothy M. Lenton & Andrew J. Watson
Model for a self regulation in the earth system

Biological homeostasis of the global environment:
the parable of Daisyworld

(Manuscript received October 20, 1982; in final form February 14, 1983)

ABSTRACT

The biota have effected profound changes on the environment of the surface of the earth. At the same time, that environment has imposed constraints on the biota, so that life and the environment may be considered as two parts of a coupled system. Unfortunately, the system is too complex and too little known for us to model it adequately. To investigate the properties which this close-coupling might confer on the system, we chose to develop a model of an imaginary planet having a very simple biosphere. It consisted of just two species of daisy of different colours and was first described by Lovelock (1982). The growth rate of the daisies depends on only one environmental variable, temperature, which the daisies in turn modify because they absorb different amounts of radiation. Regardless of the details of the interaction, the effect of the daisies is to stabilize the temperature. The result arises because of the peaked shape of the growth temperature curve and is independent of the mechanisms by which the biota are assumed to modify the temperature. We sketch out the elements of a biological feedback system which might help regulate the temperature of the earth.
Overview on tipping points in ecosystems

Catastrophic shifts in ecosystems

Marten Scheffer*, Steve Carpenter†, Jonathan A. Foley‡, Carl Folke§ & Brian Walker∥

* Department of Aquatic Ecology and Water Quality Management, Wageningen University, PO Box 8080, NL-6700 DD Wageningen, The Netherlands
† Center for Limnology, University of Wisconsin, 680 North Park Street, Madison, Wisconsin 53706, USA
‡ Center for Sustainability and the Global Environment (SAGE), Institute for Environmental Studies, University of Wisconsin, 1225 West Dayton Street, Madison, Wisconsin 53706, USA
§ Department of Systems Ecology and Centre for Research on Natural Resources and the Environment (CNRM), Stockholm University, S-10691 Stockholm, Sweden
∥CSIRO Sustainable Ecosystems, GPO Box 284, Canberra, Australian Capital Territory 2601, Australia
Conceptual model for interactions between different carbon stocks

The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries

J M Anderies¹, S R Carpenter², Will Steffen³,⁴ and Johan Rockström⁴

¹ School of Sustainability and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
² Center for Limnology, University of Wisconsin, Madison, WI, USA
³ Australian National University, Canberra, ACT 0200, Australia
⁴ Stockholm Resilience Center, Stockholm University, Kräftriket 2B, SE-114 19 Stockholm, Sweden
Topics

Socio-Ecology systems 2

Model for the interplay between economic growth and atmospheric carbon concentrations

Emergent dynamics of the climate–economy system in the Anthropocene

By Owen Kellie-Smith* and Peter M. Cox

College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, UK

Phil. Trans. R. Soc. A (2011) 369, 868–886
doi:10.1098/rsta.2010.0305
Macrosopic description of complex adaptive networks coevolving with dynamic node states

Marc Wiedermann,1,2,6 Jonathan F. Donges,1,3 Jobst Heitzig,1 Wolfgang Lucht,1,4 and Jürgen Kurths1,2,5,6

1 Potsdam Institute for Climate Impact Research, P. O. Box 60 12 03, 14412 Potsdam, Germany, EU
2 Department of Physics, Humboldt University, Newtonstr. 15, 12489 Berlin, Germany, EU
3 Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 114 19 Stockholm, Sweden, EU
4 Department of Geography, Humboldt University, Rudower Chaussee 16, 12489 Berlin, Germany, EU
5 Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom, EU
6 Department of Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23, 606950 Nizhny Novgorod, Russia

(Received 16 December 2014; published 7 May 2015)
Topics

Socio-Ecology systems 4

Model for the collapse of a small, isolated community like the Easter-Islands

The Simple Economics of Easter Island: A Ricardo-Malthus Model of Renewable Resource Use

By James A. Brander and M. Scott Taylor *

This paper presents a general equilibrium model of renewable resource and population dynamics related to the Lotka-Volterra predator-prey model, with man as the predator and the resource base as the prey. We apply the model to the rise and fall of Easter Island, showing that plausible parameter values generate a "feast and famine" pattern of cyclical adjustment in population and resource stocks. Near-monotonic adjustment arises for higher values of a resource regeneration parameter, as might apply elsewhere in Polynesia. We also describe other civilizations that might have declined because of population overshooting and endogenous resource degradation. (JEL Q20, N57, J10)
Topics

Socio-Ecology systems 5

A more complex treatment of stability

How basin stability complements the linear-stability paradigm

Peter J. Menck1,2,*, Jobst Heitzig1, Norbert Marwan1 and Jürgen Kurths1,2,3
Epidemic spreading on an adaptive network

Many real-world networks are characterized by adaptive changes in their topology depending on the state of their nodes. Here we study epidemic dynamics on an adaptive network, where the susceptibles are able to avoid contact with the infected by rewiring their network connections. This gives rise to assortative degree correlation, oscillations, hysteresis, and first order transitions. We propose a low-dimensional model to describe the system and present a full local bifurcation analysis. Our results indicate that the interplay between dynamics and topology can have important consequences for the spreading of infectious diseases and related applications.
Topics
Socio-Economic systems 4

Modeling different scenarios of a zombie apocalypse

Bayesian Analysis of Epidemics - Zombies, Influenza, and other Diseases
Caitlyn Wirkowski1,*, Brian Blais1,2
1 Science and Technology Department, Bryant University, Smithfield RI 02917
2 Institute for Brain and Neural Systems, Brown University, Providence RI
* Email: cwtkows@bryant.edu
A simple rule for the evolution of cooperation on graphs and social networks

Hisashi Ohtsuki1,2, Christoph Hauert2, Erez Lieberman2,3 & Martin A. Nowak2
Topics
Socio-Economic systems 2

Opinion dynamics on a network

PHYSICAL REVIEW E 74, 056108 (2006)

Nonequilibrium phase transition in the coevolution of networks and opinions

Petter Holme1,2 and M. E. J. Newman2

1Department of Computer Science, University of New Mexico, Albuquerque, New Mexico 87131, USA
2Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 9 March 2006; revised manuscript received 27 September 2006; published 10 November 2006)