

Integrated Assessment Models for the Policy-Science Interface

An IPCC Perspective on the Challenges for AR5

Snowmass July 29-30 2010 Ottmar Edenhofer

Table of Content

- Remarks on the Policy-Science Interface
- How to Deal with Uncertainty
- Consequences for AR5

Table of Content

- Remarks on the Policy-Science Interface
- How to Deal with Uncertainty
- Consequences for AR5

Remarks on the Policy-Science Interface

Three models how to organize the interface:

- Technocratic approach
- Decisionistic approach
- Pragmatic / enlightened approach

The Technocratic Model

The technocratic model:

- Max Weber predicts that this model will abolish democratically legitimized policy making. (Policy makers ask for practical constraints, science offers inherent necessities to legitimize policy making.)
- What does consensus among WGI, II, and III relate to respectively?
- Question not answered in technocratic model, consensus is mostly pretended.

The Decisionistic Model

The decisionistic model:

- This devision of labour presumes: Distinction of facts and values and of targets and means always feasible.
- Goals and possible conflicts and synergies among them are usually re-assessed ex-post in the light of their intended and unintended consequences. This requires a continued dialogue between science and policy makers.

The Pragmatic-Enlightened Model

Legend: Policy Makers
Science
Outcome

IAM's and the Policy-Science Interface

Types of Uncertainty	Method	Implications for the Policy-Science Inteface
Parametric uncertainty	Sensitivity analysis, Monte Carlo Simulation	Exploring the importance of mitigation options/ policy instruments
Model uncertainty/ structural uncertainy	Modelling comparison of 2 nd best scenarios including IPA's	How robust are modelling results → getting a sense of robustness
Qualitative risk assessment	Expert judgment/ expert elicitation	Side costs/ benefits Iteration between targets and means
Decision making under uncertainty/ risk management	Stochastic IPAs, IAMs	Risk management

IAM's and the Policy-Science Interface

Types of Uncertainty	Method	Implications for the Policy Science Interface
Parametric uncertainty	Sensitivity analysis, Monte Carlo Simulation	Exploring the importance of mitigation options/ policy instruments

Sensitivity Analysis

Combinations of different factors determining bio-energy potential

IAM's and Policy-Science Interface

Types of Uncertainty	Method	Implications for the Policy-Science Interface
Parametric uncertainty	Sensitivity analysis, Monte Carlo Simulation	Exploring the importance of mitigation options/ policy instruments
Model uncertainty/ structural uncertainy	Modelling comparison of 2 nd best scenarios including IPA's	How robust are modelling results → getting a sense of robustness
		iooo

ETSAP-TIAM

 MERGE Optimistic ◆ MERGE Pessimistic

MESSAGE-NOBECS

MiniCAM - Base MiniCAM - Lo Tech

FUND

GTEM

IMAGE IMAGE-BECS

POLES SGM WITCH

Getting a Sense of Robustness

modelled under criteria of study

EMF (2009) Overview of EMF 22 International Scenarios

infeasible for

Integrated Policy Assessment Model

Example: The Impact of Delayed Carbon Pricing

Investments in the fossil energy system are reversible

Investments in the fossil energy system are irreversible

Impact of expectations is ambiguous!

How to Deal with Uncertainty

Types of Uncertainty	Method	Meaning within the Pragmatic Model
Parametric uncertainty	Sensitivity analysis, Monte Carlo Simulation	Exploring the importance of mitigation options/ policy instruments
Model uncertainty/ structural uncertainy	Modelling comparison of 2 nd best scenarios including IPA's	How robust are modelling results → getting a sense of robustness
Qualitative risk assessment	Expert judgment/ expert elicitation	Side costs/ benefits Iteration between targets and means

Iteration Between Targets and Means

IAM's and the Policy-Science Interface

Types of Uncertainty	Method	Implications for the Policy-Science Interface
Parametric uncertainty	Sensitivity analysis, Monte Carlo Simulation	Exploring the importance of mitigation options/ policy instruments
Model uncertainty/ structural uncertainy	Modelling comparison	How robust are modelling results → getting a sense of robustness
Qualitative risk assessment	Expert judgment/ expert elicitation	Side costs/ benefits Iteration between targest and means
Decision making under uncertainty/ risk management	Stochastic IPAs, IAMs	Risk management

Three Categories of Risk

Normal Risks

- Scope: Individual, local
- Intensity: Endurable, reversible
- Probability: Normal distribution

Large Scale but Bounded Risks

- Scope: Transnational
- Intensity: Endurable, reversible/irreversible
- Probability: Normal distribution

Systemic Risks:

- Scope: Transnational and transgenerational
- Intensity: Terminal, irreversible
- Probability: Fattened tail

Risk and the Policy-Science Interface

Response	Market (Household Failure)	State/Third Sector (Market Failure)	Global Collective Action (State Failure)
Normal Risks	Gradual adaptation within sectors	Regulation of insurance markets	Regulation of reinsurance markets
Large Scale but Bounded Risks	Weather derivatives	Fiscal support to European heatwave/ hurricane Katrina	Regulation of financial markets in 2009
Systemic Risks Catastrophies	No adequate response known	No adequate response known	Provision of global public good with different technologies (e.g. Weakest Link, Best-Shot)

Table of Content

- Remarks on the Policy-Science Interface
- How to Deal with Uncertainty
- Consequences for AR5

The Representative Clients of AR5 in WG III

- International level: Negotiators, NGO's
- National Policies: Parliaments, governments, national agencies
- Regions: e.g. EU
- Sub-National Level: Cities

Consequences for the AR5 / WGIII

- Pursuing a pragmatic-enlightened approach for the sciencepolicy interface
- Identifying types of risk management
- A few pragmatic guiding questions
 - What are consistent ways to achieve stabilization goals?
 - What is the relative importance of policy instruments and mitigation options?
 - What are "threshold probabilities" undermining your policy options?
 - Getting a sense of unmanageable risks
 - What can go wrong along specific transformation pathways?

Implications for the Scenario Process

mitigation costs for policy relevance

Δ(2°/3°), Δ(3°/4°) **Policies**

Implications for the Scenario Process

Thank you for your attention!

