

tCDR – A Climate Policy Wager? Terrestrial CO₂ Removal: Potentials and tradeoffs in the SDG context

Prof. Dr. Ottmar Edenhofer

SPP 1689 Workshop Potsdam, 22/23 January 2018

Overview

- The Challenge
- The role of negative emissions in mitigation pathways
- The Coal Question
- Moral Hazard, Hedging and CDR
- Policy Options

Emissions are rising.

Source: Peters et al. (2017)

NETs used to compensate for atmospheric overshoot and residual emissions

NETs comprise a wealth of different methods

Afforestation and reforestation

Additional trees are planted, capturing CO₂ from the atmosphere as they grow. The CO₂ is then stored in living biomass.

Bioenergy with carbon capture and sequestration (BECCS)

Plants turn CO₂ into biomass, which is then combusted in power plants, a process that is ideally CO₂ neutral. If CCS is applied in addition, CO₂ is removed from the atmosphere.

Biochar and soil carbon sequestration (SCS)

Biochar is created via the pyrolysis of biomass, making it resistant to decomposition; it is then added to soil to store the embedded CO₂. SCS enhances soil carbon by increasing inputs or reducing losses.

Enhanced weathering

Minerals that naturally absorb CO₂ are crushed and spread on fields or the ocean; this increases their surface area so that CO₂ is absorbed more rapidly.

Ocean fertilization

Iron or other nutrients are applied to the ocean, stimulating phytoplanton growth and increasing CO₂ absorbtion. When the plankton die, they sink to the deep ocean and permanently sequester carbon.

Direct air capture (DAC)

Chemicals are used to absorb CO₂ directly from the atmosphere, which is then stored in geological reservoirs.

NETs play a distinct role in 1.5°C scenarios: on geophysical requirements and economic attractiveness

Mercator Research Institute on Global Commons and Climate Change

Role of NETs varies in 2°C scenarios -

NETs can still be limited in many cases

Important distinctions for 2°C scenarios:

- Full tech, immediate action scenarios feature large-scale NETs deployment
- There are scenarios without or limited NETs deployment
- Low energy demand pathway provide additional flexibility for NETs deployment
- NDC trajectory poses similar challenges in 2030 like 1.5°C world today

Fuss et al. (under review)

How much NETs do we really need to meet the climate goals?

The 2°C budget does not leave any leeway.

Cheap and abundant coal is the driver of a "re-carbonisation" of the energy system in some parts of the world

A self-fulfilling prophecy? Introducing NETs in mitigation scenarios obstructs immediate emission reductions.

Minx et al. (under review)

Need for land...

- 5 billion hectares (approximately 40% of the land surface) is under agricultural use (potentially increasing in the future).
- Additional land-use pressure to be expected from land based CDR options.

There are different ways how NETs can be used, but not all are equally well understood

Late century NETs

No overshoot

Rapid decarbonization

Minimize NETs

Obersteiner et al. (2018)

Potential externalities of land-based CDR:

- Loss of natural land affecting e.g. biodiversity,
- greenhouse gas emissions from land use and agricultural production,
- nitrogen pollution,
- water withdrawals for irrigation affecting e.g. sweet water ecosystems,
- food security

Dedicated sustainability can overcompensate additional risks of 1.5°C scenarios

Closing the innovation gap

Closing the innovation gap (I)

- Results from integrated assessment models show that while NETs play a key role in the second half of the 21st century for 1.5°C and 2°C scenarios, the major period of new NETs deployment is between 2030 and 2050.
- Given that the broader innovation literature consistently finds long time periods involved in scaling up and deploying novel technologies, there is an urgency to develop NETs that is largely unappreciated.
- This challenge is exacerbated by the thousands to millions of actors that potentially need to adopt these technologies for them to achieve the planetary scale.

Closing the innovation gap (II)

- This urgency is neither reflected in the Paris Agreement NDCs nor in most of the literature we review here.
- If NETs are to be deployed at the levels required to meet 1.5°C and 2°C targets, then important post-R&D issues will need to be addressed in the literature, including incentives for early deployment, niche markets, scale-up, demand, and—particularly if deployment is to be hastened—public acceptance.

A pre-condition for short-term mitigation in order to limit NETs is carbon-pricing

Conclusion

- (t)CDR is an important part of the technology mix for 1.5°C, but not necessarily so for 2°C.
- (t)CDR is only a reasonable hedging strategy for committed policy makers.
- However, there is a risk of moral hazard.
- Short-term entry points and carbon pricing are essential to limit (t)CDR
- If NETs should be available at any larger scale, the innovation gap needs to be bridged.
- Other dedicated policies are needed for sustainable pathways.

