„The Energy Transition in Germany after Paris – International and European Perspectives“

Prof. Dr. Ottmar Edenhofer

Mercator Kolleg
Berlin
15 September 2017
available now:

www.mcc-berlin.net/klimabuch
Emissions are rising.
We are not on track.
Does climate policy already show effects?

Data: CDIAC/GCP

CHN 10.4 ▼0.7%
Gt CO₂ in 2015

USA 5.4 ▼2.8%

EU28 3.5 ▲1.4%

IND 2.3 ▲5.2%

Coal 15.0 ▼1.8%

Oil 12.2 ▲1.9%

Gas 6.8 ▲1.7%

Cement 2.0 ▼1.9%

Global Carbon Project

Technische Universität Berlin

MCC
Mercator Research Institute on Global Commons and Climate Change

PIK
Climate Projections and Associated Risks

Level of additional risk due to climate change

- Undetectable
- Moderate
- High
- Very high

Source: Slide by H. J. Schellnhuber
Global non-linear effect of temperature on economic production

Marshall Burke¹,², Solomon M. Hsiang³,⁴,⁵ & Edward Miguel⁴,⁵

Source: Nature, doi: 10.1038/nature15725
Risks from climate change depend on cumulative CO$_2$ emissions...

Based on SYR Figure SPM.10
The climate problem at a glance

Resources and reserves to remain underground until 2100 (median values compared to BAU, AR5 Database)

<table>
<thead>
<tr>
<th></th>
<th>Until 2100</th>
<th>With CCS [%]</th>
<th>No CCS [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td></td>
<td>70</td>
<td>89</td>
</tr>
<tr>
<td>Oil</td>
<td></td>
<td>35</td>
<td>63</td>
</tr>
<tr>
<td>Gas</td>
<td></td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>

Source: Bauer et al. (2014); Jakob, Hilaire (2015)
General structure of mitigation pathways

- **Peak in 2020**
- **Steep emissions reduction**
- **Carbon neutrality**
- **Net CO₂ removal**
- **Compensate residual emissions**
- **Compensate budget overshoot**

Re-directing investments
from fossils to low carbon and efficiency solutions

Carbon neutral economy
Electrification of end uses
Challenges:
- Freight transport, aviation, shipping
- Heavy industry
- Ag emissions (CH₄, N₂O)

LIMITS Study: Kriegler, Tavoni et al., 2013, Clim Change Econ
The global energy system

Baseline

Climate policy
2°C (50% probability)

Primary Energy

Electricity

E/yr

E/yr

Geothermal
Solar
Wind
Hydro
BECCS
Biomass
Nuclear
Gas w/ CCS
Gas w/o CCS
Oil w/o CCS
Coal w/ CCS
Coal w/o CCS
The 2°C budget does not leave any leeway

Cheap and abundant coal is the driver of a „re-carbonisation“ of the energy system in some parts of the world

All budgets are subject to considerable uncertainty, see Edenhofer et al. (2016)
840 GW of coal fired capacity is in the pipeline across the globe. >85% is covered by 12 countries.
Renaissance of Coal
Social Costs vs subsidies

“one ton of CO₂ receives, on average, more than 150 US$ in subsidies”

Source: Science, 18 September 2015, Vol 349, Issue 6254, 1286ff
About negative and positive CO$_2$-pricing

Carbon pricing (with taxes or emission trading systems) is essential because of the oversupply of fossil fuels.
Report of the High-Level Commission on Carbon Prices

Joseph Stiglitz and Nicholas Stern
Co-chairs of the Commission

May 29, Berlin, Germany
Results obtained by Stiglitz-Stern-Commission

• Based on the analysis of three approaches: technical roadmaps, national roadmaps, global models

• Necessary carbon price for implementing the Paris Agreement: 40-80 $/t CO₂ until 2020 and 50-100 $/t CO₂ until 2030

• This assumes that carbon pricing will be complemented by activities and policies such as efficiency standards, R&D, urban development, healthy climate for investments, etc.

• Stress on the relevance of the income side. Put to use in order to reduce other taxes, invest in clean infrastructure, etc.

Source: Stiglitz, Stern et al. CPLC (2017)
Carbon Pricing in G20 Countries

2005

Own presentation, based on Worldbank (2016)
ETS lacks dynamic cost efficiency

- Falling CO₂ price
- No increase expected before 2020
- Market Stability Reserve will be implemented, but effect might be limited

Source: ICE Futures Europe
Why emissions in Germany remain the same

Stromerzeugung und daraus resultierende CO₂-Emissionen in Deutschland

© 2017 MCC
ETS lacks dynamic cost efficiency

- The price expectations for 2020 can serve as a benchmark for the evaluation of the dynamical cost efficiency of the ETS
- There is a gap between expectations and models showing a cost-efficient price of more than 20 €/t CO₂ in 2020

Source: Knopf et al. (2013)
Reasons for concern

- Persistently low EUA price might lead to „hockey stick“ price curve
- Escalating price will induce future downward adjustment of the cap
- Concern over self-fulfilling prophecy

UK experience: Effects of Carbon Price Support Mechanism

Great Britain's annual electrical energy mix

http://tinyurl.com/2018-gb-elec-records

% of electrical energy by fuel source

- %NATURAL GAS
- %NUCLEAR
- %WIND
- %BIOMASS
- %COAL
- %SOLAR

Coal-to-Gas
Switch Range

Prevailing UK
Carbon Price

Prevailing EU
Carbon Price

Average Coal-to-
Gas Switch Price

IEA 2016
Price floor implementation options

Auction reserve price California

Emission Containment Reserve (RGGI)

allowances withheld

allowances withheld
Conclusions

• Unabated climate change will cause high economic costs; the cost of mitigating climate change will be substantially smaller.

• Ambitious climate protection is only possible if an effective carbon pricing is introduced (necessary condition). Transfer payments are a necessary condition for the participation of developed and developing countries in climate protection.

• The EU ETS needs a minimum price: a) to stabilize the expectations of the investors, b) to leave some leeway for EU member states to design their own climate policies.

• In Germany the energy transition can only be successful if the climate protection plan is implemented; an economy-wide policy instrument is needed