The real work is just beginning – the issues international climate policy is facing “post-Paris” to make the Paris Agreement a success

Prof. Dr. Ottmar Edenhofer

UQEI Energy Express Seminar
The University of Queensland
14 June 2016, Brisbane
GHG emissions growth between 2000 and 2010 has been larger than in the previous decades.

Based on Figure 1.3
A renaissance of coal drives the global carbonization.

Steckel, Edenhofer and Jakob, in press
Climate Projections and Associated Risks

![Diagram showing climate projections and associated risks]

- **Global mean temperature change**
 - 2100 °C
 - Temperature change from 1850–1900
 - Temperature change from 1986–2005

- **Levels of additional risk due to climate change**
 - Undetectable
 - Moderate
 - High
 - Very high

Slide by H. J. Schellnhuber
Growth vs. temperature

China

Brazil

Germany

LETTER

Global non-linear effect of temperature on economic production

Marshall Burke1,2, Solomon M. Hsiang3,4 & Edward Miguel4,5

Quelle: Nature, doi:10.1038/nature15725
Risks from climate change depend on cumulative CO$_2$ emissions...

Based on SYR Figure SPM.10
...which in turn depend on annual GHG emissions over the next decades.
The great transformation

CO₂ emissions from fossil fuels

Luderer et al. (2012)

Emissions w/o climate protection

mitigation contributions from different technologies

2°C-consistent emissions

Luderer et al. (2012)
Global energy system transformation pathways

Baseline

Climate Policy
2°C (50% likelihood)
All regions see radical transformation of their energy system
All regions see radical transformation of their power system

Baseline

Climate Policy

2°C (50% likelihood)

Electricity

EU

USA

China

- Geothermal
- PV
- CSP
- Wind
- Hydro
- BECCS
- Nuclear
- Oil w/o CCS
- Coal w/o CCS
- Gas w/o CCS
- Coal w/ CCS
- Gas w/ CCS
The climate problem at a glance

Resources and reserves to remain underground until 2100 (median values compared to BAU, AR5 Database)

<table>
<thead>
<tr>
<th></th>
<th>Until 2100</th>
<th>With CCS [%]</th>
<th>No CCS [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>70</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td>35</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>32</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>

Source: Bauer et al. (2014); Jakob, Hilaire (2015)
The Paris Agreement: INDCs

- Intended Nationally Determined Contributions are inconsistent with the temperature target.

Data sources: Le Quere et al. (2015), Rogelj et al. (2015), Luderer et al. (2015); Fig. adapted from Jan Minx 2016
The Paris Agreement: INDCs

- Intended Nationally Determined Contributions are inconsistent with the temperature target.

Data sources: Le Quere et al. (2015), Rogelj et al. (2015), Luderer et al. (2015); Fig. adapted from Jan Minx 2016
The INDCs are inconsistent

Countries with highest ongoing and planned coal investment

Power sector emissions and INDCs

- Existing Gas PP
- Existing Oil PP
- Existing Coal PP
- Under Construction Coal
- Planned Coal
- Remaining emissions
- 2012 emissions

Edenhofer et al. submitted (Science)
Minimum Carbon Price and Transfers

emission reduction
implying nationally implemented policy

recipient countries
minimum carbon price for a coalition
donor countries

transfer
Renaissance of Coal

Social Costs vs subsidies

“one ton of CO₂ receives, on average, more than 150 US$ in subsidies”

Source: Science, 18 September 2015, Vol 349, Issue 6254, 1286ff
Developing countries face fundamental infrastructure challenges

- Water
- Electricity
- Transportation
- Telecommunication
Reasonable policy and financing instruments are needed

- User charges
- Land rent taxation
- Private finance
- CO₂ prices
- Reduction of subsidies
- Public debt
Carbon pricing revenues with redistribution are sufficient to finance universal access to infrastructure...

Except for roads where Africa’s & Latin America’s cost still partially exceed revenues

![Maps showing carbon pricing revenues for different infrastructure sectors](image-url)
ETS lack dynamical cost efficiency

- Falling CO$_2$ price
- No increase expected before 2020
- Market Stability Reserve will be implemented, but effect might be limited
Empirical evidence: demand shock

- Consensus that carbon prices are driven to *certain extent* by demand-side fundamentals related to abatement cost (Hintermann 2010)
- But: EUA price dynamics cannot be solely explained by demand-side fundamentals (Koch et al. 2014)
EU ETS betting shop for political decisions

Koch et al. (2016)
ETS lack dynamical cost efficiency

- The price expectations for 2020 can serve as a benchmark for the evaluation of the dynamical cost efficiency of the ETS
- There is a gap between expectations and models showing a cost-efficient price of more than 20 €/t CO₂ in 2020

EUA Nearest Contract and Futures

Cost-efficient CO₂ price from models

Knopf et al. (2013)
Introduction of a price corridor

- Reliable environment for investment decisions
- Instrument: Introduction of an auction reserve price
Thank you for your attention!