The Paris Climate Aspirations and the Realities

Prof. Dr. Ottmar Edenhofer

Rio Tinto-UQ Energy Exchange Series Breakfast
The University of Queensland
14 June 2016, Brisbane
GHG emissions growth between 2000 and 2010 has been larger than in the previous decades.

Based on Figure 1.3
A renaissance of coal drives the global carbonization.

Steckel, Edenhofer and Jakob, in press
Climate Projections and Associated Risks

Level of additional risk due to climate change

- Undetectable
- Moderate
- High
- Very high
Global non-linear effect of temperature on economic production

Marshall Burke1,2, Solomon M. Hsiang3,4, & Edward Miguel4,5

Quelle: Nature, doi:10.1038/nature15725
Risks from climate change depend on cumulative CO$_2$ emissions...
...which in turn depend on annual GHG emissions over the next decades.
The great transformation

CO₂ emissions from fossil fuels

Emissions w/o climate protection

mitigation contributions from different technologies

Luderer et al. (2012)
Global energy system transformation pathways

Baseline

Climate Policy
2°C (50% likelihood)
The climate problem at a glance

Resources and reserves to remain underground until 2100 (median values compared to BAU, AR5 Database)

<table>
<thead>
<tr>
<th></th>
<th>Until 2100</th>
<th>With CCS [%]</th>
<th>No CCS [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td></td>
<td>70</td>
<td>89</td>
</tr>
<tr>
<td>Oil</td>
<td></td>
<td>35</td>
<td>63</td>
</tr>
<tr>
<td>Gas</td>
<td></td>
<td>32</td>
<td>64</td>
</tr>
</tbody>
</table>

Source: Bauer et al. (2014); Jakob, Hilaire (2015)
The Paris Agreement: INDCs

- Intended Nationally Determined Contributions are inconsistent with the temperature target.

Data sources: Le Quere et al. (2015), Rogelj et al. (2015), Luderer et al. (2015); Fig. adapted from Jan Minx 2016
The Paris Agreement: INDCs

- Intended Nationally Determined Contributions are inconsistent with the temperature target.

Data sources: Le Quere et al. (2015), Rogelj et al. (2015), Luderer et al. (2015); Fig. adapted from Jan Minx 2016
The INDCs are inconsistent

Countries with highest ongoing and planned coal investment
“one ton of CO₂ receives, on average, more than 150 US$ in subsidies”
Minimum Carbon Price and Transfers

- Emission reduction implying nationally implemented policy
- Recipient countries
- Minimum carbon price for a coalition
- Donor countries
- Transfer
Developing countries face fundamental infrastructure challenges

- Water
- Electricity
- Transportation
- Telecommunication
Carbon pricing revenues with redistribution are sufficient to finance universal access to infrastructure...

Except for roads where Africa’s & Latin America’s cost still partially exceed revenues
ETS lack dynamical cost efficiency

- Falling CO$_2$ price
- No increase expected before 2020
- Market Stability Reserve will be implemented, but effect might be limited
Empirical evidence: demand shock

- Consensus that carbon prices are driven to *certain extent* by demand-side fundamentals related to abatement cost (Hintermann 2010)
- But: EUA price dynamics cannot be solely explained by demand-side fundamentals (Koch et al. 2014)
ETS lack dynamical cost efficiency

- The price expectations for 2020 can serve as a benchmark for the evaluation of the dynamical cost efficiency of the ETS
- There is a gap between expectations and models showing a cost-efficient price of more than 20 €/t CO₂ in 2020

EUA Nearest Contract and Futures

Cost-efficient CO₂ price from models

Knopf et al. (2013)
Introduction of a price corridor

- Reliable environment for investment decisions
- Instrument: Introduction of an auction reserve price
Thank you for your attention!