CLIMATE CHANGE 2014

Mitigation of Climate Change

GHG emissions growth between 2000 and 2010 has been larger than in the previous three decades.

GHG emissions rise with growth in GDP and population.

The long-standing trend of decarbonization has reversed.

Regional patterns of GHG emissions are shifting along with changes in the world economy.

GHG Emissions by Country Group and Economic Sector

Regional patterns of GHG emissions are shifting along with changes in the world economy.

GHG Emissions by Country Group and Economic Sector

About half of the cumulative anthropogenic CO₂ emissions between 1750 and 2010 have occurred in the last 40 years.

Changes in climate have caused impacts on natural and human systems on all continents and across the oceans.

SYR Figure SPM.4

Without additional mitigation, global mean surface temperature is projected to increase by 3.7 to 4.8°C over the 21st century.

Based on WGII AR5 Figure 19.4

Substantial emissions reductions over the next few decades can reduce climate risks in the 21st century and beyond.

Based on WGII AR5 Figure 19.4

Working Group III contribution to the

IPCC Fifth Assessment Report

Risks from climate change depend on cumulative CO₂ emissions...

Based on SYR Figure SPM.10

...which in turn depend on annual GHG emissions over the next decades.

Mitigation involves some level of co-benefits and of risks due to adverse side-effects, but these risks do not involve the same possibility of severe, widespread and irreversible impacts as risks from climate change.

Baseline Range

Stabilization of atmospheric GHG concentrations requires moving away from business as usual.

Lower ambition mitigation goals require similar reductions of **GHG** emissions.

Many scenarios make it at least *about as likely as not* that warming will remain below 2°C relative to pre-industrial levels.

Before 2030

"Immediate Action"

Based on Figures 6.32 and 7.16

Still, between 2030 and 2050, emissions would have to be reduced at an unprecedented rate...

Before 2030 GHG Emissions Pathways [GtCO₂eq/yr] 60 55 50 45 40 35 30 **Annual GHG** Emissions in 2030 25 <50 GtCO,eq 20

Based on Figures 6.32 and 7.16

2005

2010

2015

Working Group III contribution to the

IPCC Fifth Assessment Report

2020

2025

2030

...implying a rapid scale-up of low-carbon energy.

Delaying emissions reductions increases the difficulty and narrows the options for mitigation.

Before 2030 GHG Emissions Pathways [GtCO₂eq/yr]

Working Group III contribution to the

IPCC Fifth Assessment Report

"Delayed Mitigation"

"Immediate Action"

Based on Figures 6.32 and 7.16

Delaying emissions reductions increases the difficulty and narrows the options for mitigation.

Before 2030 GHG Emissions Pathways [GtCO,eq/yr]

After 2030

Based on Figures 6.32 and 7.16

Delaying emissions reductions increases the difficulty and narrows the options for mitigation.

Decarbonization of energy supply is a key requirement for limiting warming to 2°C.

Contribution of Low Carbon Technologies to Energy Supply (430-530 ppm CO₂eq Scenarios)

Based on Figure 7.11

Energy demand reductions can provide flexibility, hedge against risks, avoid lock-in and provide co-benefits.

Contribution of Low Carbon Technologies to Energy Supply (430-530 ppm CO₂eq Scenarios)

Based on Figure 7.11

Baseline scenarios suggest rising GHG emissions in all sectors, except for CO₂ emissions from the land-use sector.

BASELINES

Based on Figure TS.15

Mitigation requires changes throughout the economy. Systemic approaches are expected to be most effective.

450 ppm CO₂eq with Carbon Dioxide Capture and Storage

Based on Figure TS.17

Mitigation efforts in one sector determine efforts in others.

450 ppm CO₂eq without Carbon Dioxide Capture and Storage

Based on Figure TS.17

Global costs rise with the ambition of the mitigation goal.

What are the consequences for international energy and climate policy?

The climate problem at a glance

Resources and reserves to remain underground:

- 80% Coal
- 40% Gas
- 40% Oil

Source: Bauer et al. (2014); Jakob, Hilaire (2015)

There is far more carbon in the ground than emitted in any baseline scenario.

Source: Edenhofer, Hilaire, Bauer

The scarcity rent of CO₂ emissions

- Fossil fuel rents decrease with the ambition of climate policy
- If the optimal CO₂ price is implemented globally, this loss is over-compensated by the carbon rent
- The revenues of the carbon tax or auctioning of emission permits can be used to finance tax reductions, infrastructure investments or debt reduction

Bauer et al. (2013)

The Globalization Paradox: a trilemma

Tax evasion limits national room for maneuver

CO₂-taxes free economic potential

Mobility of capital and trade of resources

A modelling study illustrates the economic potential of CO₂-taxes.

Franks et al. (2015)

Massive infrastructure investments are needed globally.

• Telecommunication

Access to electricity

Water availability

- Achieve universal energy access by 2030: US\$ 36-41 bln per year (Riahi et al. 2012)
- "Great convergence" of global health standards by 2035: about US\$ 40 bln per year
 (Jameson et al. 2013)

CO₂-tax and infrastructure

Quelle: Jakob et al., 2015

Taxing of resource rents and supplying infrastructure

Quelle: Jakob et al., 2015

Climate change mitigation can result in co-benefits for human health and other societal goals.

Based on Figures 6.33 and 12.23

Working Group III contribution to the

IPCC Fifth Assessment Report

Are emission trading schemes and their linkages a solution?

Based on Figure 13.4

The EU Emissions Trading Scheme: ex-post analysis

Fall in the CO₂ Price

Evaluation of effectiveness

There is a legally binding cap on GHG emissions. However, it remains ineffective as long as emissions do not reach this limit.

Grosjean et al. 2014

Empirical analysis of the drivers of the certificate price

- Only 10% of the monthly changes in price can be explained with the basic demand-side data (Renewables deployment, economic crisis, CDM...)
- If "political events" (e.g., backloading vote) are accounted for, this share increases from 10% to 44%

ETS lack dynamical cost efficiency.

- Falling CO₂ price
- No increase expected before 2020

ETS lack dynamical cost efficiency.

- The price expectations for 2020 can serve as a benchmark for the evaluation of the dynamical cost efficiency of the ETS
- There is a gap between expectations and models showing a cost-efficient price of more than 20 €/tCO₂ in 2020

EUA Nearest Contract and Futures

Cost-efficient CO₂ price from models

Knopf et al. (2013)

Introduction of a price corridor

- Reliable environment for investment decisions
- Instrument: Introduction of an auction reserve price

INTERGOVERNMENTAL PANEL ON Climate change

CLIMATE CHANGE 2014

Mitigation of Climate Change

