Tax Competition, Globalization, and the Green Paradox

or

Why finance ministers may favor a carbon tax even if they do not believe in climate change

Max Franks, Ottmar Edenhofer, Kai Lessmann

10.06.2014
Capital mobility leading to tax competition and tighter budgets

Figure 3.8 Public expenditure and receipts in the OECD countries.

Source: Benassy-Quere et. al. (2010)
Capital mobility leading to tax competition and tighter budgets

Figure 7.17 Taxing mobile and immobile tax bases in the EU.

Source: Benassy-Quere et. al. (2010)
Demand for public expenditures, e.g. infrastructure

Highways to hell

A harsh winter and tight budgets mean lots of potholes

ONLY the drunk, they say, drive in a straight line in Chicago. The sober

Deutschland kaputt
Motivation and research questions

- What is the role of a carbon tax under the assumption that no climate externality exists?
Motivation and research questions

- What is the role of a carbon tax under the assumption that no climate externality exists?
- What are the short term benefits of a carbon tax?
Motivation and research questions

• What is the role of a carbon tax under the assumption that no climate externality exists?
• What are the short term benefits of a carbon tax?
• Can carbon taxes finance infrastructure more efficiently than capital taxes?
Motivation and research questions

• What is the role of a carbon tax under the assumption that no climate externality exists?

• What are the short term benefits of a carbon tax?

• Can carbon taxes finance infrastructure more efficiently than capital taxes?

• Could the fiscal motive for carbon taxation facilitate negotiations within the UNFCCC?
Results

1. In Nash equilibrium, carbon tax more efficient than capital tax.
Results

1. In Nash equilibrium, carbon tax more efficient than capital tax.
 - Capital tax subject to race to the bottom.
Results

1. In Nash equilibrium, carbon tax more efficient than capital tax.
 - Capital tax subject to race to the bottom.
 - Carbon tax captures part of the Hotelling rent.
Results

1. In Nash equilibrium, carbon tax more efficient than capital tax.
 - Capital tax subject to race to the bottom.
 - Carbon tax captures part of the Hotelling rent.

2. More inelastic demand for infrastructure implies more pronounced advantage of the carbon tax.
Results

1. In Nash equilibrium, carbon tax more efficient than capital tax.
 - Capital tax subject to race to the bottom.
 - Carbon tax captures part of the Hotelling rent.

2. More inelastic demand for infrastructure implies more pronounced advantage of the carbon tax.

3. Whether a green paradox occurs depends on cooperation.
Results

1. In Nash equilibrium, carbon tax more efficient than capital tax.
 - Capital tax subject to race to the bottom.
 - Carbon tax captures part of the Hotelling rent.

2. More inelastic demand for infrastructure implies more pronounced advantage of the carbon tax.

3. Whether a green paradox occurs depends on cooperation.
 - Non-cooperation: green paradox is reversed, carbon tax a viable green policy
Results

1. In Nash equilibrium, carbon tax more efficient than capital tax.
 - Capital tax subject to race to the bottom.
 - Carbon tax captures part of the Hotelling rent.

2. More inelastic demand for infrastructure implies more pronounced advantage of the carbon tax.

3. Whether a green paradox occurs depends on cooperation.
 - Non-cooperation: green paradox is reversed, carbon tax a viable green policy
 - Cooperation: carbon taxes speed up extraction
Results

1. In Nash equilibrium, carbon tax more efficient than capital tax.
 - Capital tax subject to race to the bottom.
 - Carbon tax captures part of the Hotelling rent.

2. More inelastic demand for infrastructure implies more pronounced advantage of the carbon tax.

3. Whether a green paradox occurs depends on cooperation.
 - Non-cooperation: green paradox is reversed, carbon tax a viable green policy
 - Cooperation: carbon taxes speed up extraction

4. Only when importers cooperate, the entire rent is captured.
Some related research

- Tax competition with intertemporal dynamics:
 - Eichner and Runkel (2012): Decentralized policy making inefficient
 - Withagen and Halsema (2013): Race to the top in carbon taxes
Some related research

- Tax competition with intertemporal dynamics:
 - Eichner and Runkel (2012): Decentralized policy making inefficient
 - Withagen and Halsema (2013): Race to the top in carbon taxes

→ No stock dynamics of resource extraction, no resource trade
Some related research

• Tax competition with intertemporal dynamics:
 - Eichner and Runkel (2012): Decentralized policy making inefficient
 - Withagen and Halsema (2013): Race to the top in carbon taxes
 \[\Rightarrow\] No stock dynamics of resource extraction, no resource trade

• Resource economics:
 - Tahvonen (1995): Forming a buyers cartel allows rent capturing
 - Sinn (2008): Green paradox
Some related research

- **Tax competition with intertemporal dynamics:**
 - Eichner and Runkel (2012): Decentralized policy making inefficient
 - Withagen and Halsema (2013): Race to the top in carbon taxes

 → **No stock dynamics of resource extraction, no resource trade**

- **Resource economics:**
 - Tahvonen (1995): Forming a buyers cartel allows rent capturing
 - Sinn (2008): Green paradox

 → **Partial equilibrium, no capital, no infrastructure**
Some related research

• Tax competition with intertemporal dynamics:
 - Eichner and Runkel (2012): Decentralized policy making inefficient
 - Withagen and Halsema (2013): Race to the top in carbon taxes
 \[\rightarrow \text{No stock dynamics of resource extraction, no resource trade} \]

• Resource economics:
 - Tahvonen (1995): Forming a buyers cartel allows rent capturing
 - Sinn (2008): Green paradox
 \[\rightarrow \text{Partial equilibrium, no capital, no infrastructure} \]
 - van der Meijden et. al. (2014): Possible reversal of green paradox in general equilibrium
Some related research

- Tax competition with intertemporal dynamics:
 - Eichner and Runkel (2012): Decentralized policy making inefficient
 - Withagen and Halsema (2013): Race to the top in carbon taxes
 \[\rightarrow\text{ No stock dynamics of resource extraction, no resource trade}\]

- Resource economics:
 - Tahvonen (1995): Forming a buyers cartel allows rent capturing
 - Sinn (2008): Green paradox
 \[\rightarrow\text{ Partial equilibrium, no capital, no infrastructure}\]
 - van der Meijden et. al. (2014): Possible reversal of green paradox in general equilibrium
 \[\rightarrow\text{ No endogenous policy instruments, no infrastructure}\]
Our contribution

First model to combine:

• decentralized market solution, general equilibrium
Our contribution

First model to combine:

- decentralized market solution, general equilibrium
- strategic interaction, endogenous optimal policy instruments
Our contribution

First model to combine:

• decentralized market solution, general equilibrium
• strategic interaction, endogenous optimal policy instruments
• international capital and resource markets
Our contribution

First model to combine:

- decentralized market solution, general equilibrium
- strategic interaction, endogenous optimal policy instruments
- international capital and resource markets
- intertemporal capital accumulation and resource extraction
Our contribution

First model to combine:

- decentralized market solution, general equilibrium
- strategic interaction, endogenous optimal policy instruments
- international capital and resource markets
- intertemporal capital accumulation and resource extraction
- productivity enhancing infrastructure
MODEL SETUP
return on investment -> capital
Household:

\[
\max_{C_t} W = \sum_{t=0}^{T} \frac{U(C_t)}{(1 + \rho)^t},
\]

\[
C_t = r_t K_t - I_t + \Pi_t^F + \text{Tax}_t^{\text{transfer}} \text{ (lump-sum)}
\]
Firm:

$$\max_{K_t, R_t} \Pi^F_t = F(K_t, G_t, R_t) - r_t(1 + \tau_{K,t})K_t - (p_t + \tau_{R,t})R_t$$

Household:

$$\max_{C_t} W = \sum_{t=0}^{T} \frac{U(C_t)}{(1 + \rho)^t},$$

$$C_t = r_t K_t - I_t + \Pi^F_t + Tax_t$$

(lump-sum)
Firm:

\[
\max_{K_t, R_t} \Pi_t^F = F(K_t, G_t, R_t) - r_t(1 + \tau_{K,t})K_t - (p_t + \tau_{R,t})R_t
\]

\[\implies F_{K,t} = r_t(1 + \tau_{K,t})\]

\[F_{R,t} = p_t + \tau_{R,t}\]

Household:

\[
\max_{C_t} W = \sum_{t=0}^{T} \frac{U(C_t)}{(1 + \rho)^t},
\]

\[C_t = r_t K_t - I_t + \Pi_t^F + Tax_t^{\text{transfer}} \text{ (lump-sum)}\]
Government:

\[
\max_{\tau_{K,t}, \tau_{R,t}} W = \sum_{t=0}^{T} \frac{U(C_t)}{(1 + \rho)^t}
\]

\[
l_t^G + Tax_t^{\text{transfer (lump-sum)}} = r_t \tau_{K,t} K_t + \tau_{R,t} R_t
\]

Firm:

\[
\max_{K_t, R_t} \Pi_t^F = F(K_t, G_t, R_t) - r_t (1 + \tau_{K,t}) K_t - (p_t + \tau_{R,t}) R_t
\]

\[
\Rightarrow F_{K,t} = r_t (1 + \tau_{K,t})
\]

\[
F_{R,t} = p_t + \tau_{R,t}
\]

Household:

\[
\max C_t W = \sum_{t=0}^{T} \frac{U(C_t)}{(1 + \rho)^t},
\]

\[
C_t = r_t K_t - I_t + \Pi_t^F + Tax_t^{\text{transfer (lump-sum)}}
\]
Resource exporter:

\[
\max_{R_t} \sum_{t=0}^{T} \frac{p_t R_t}{\prod_{s=0}^{t} (1 + r_s)}
\]

Resource market:

\[
\begin{align*}
R^{\text{supply}} &= \sum_j R_j^{\text{demand}} \\
p &= p_j \quad \forall j
\end{align*}
\]
Resource exporter:
\[
\max_{R_t} \sum_{t=0}^{T} \frac{p_t R_t}{\prod_{s=0}^{t} (1 + r_s)}
\]

Resource market:
\[
R_{\text{supply}} = \sum_j R_{j, \text{demand}}
\]
\[
p = p_j \ \forall j
\]

Capital market:
\[
\sum_j K_{j, \text{supply}} = \sum_j K_{j, \text{demand}}
\]
\[
r = r_j \ \forall j
\]
Nash equilibrium, two sub-games,
Nash equilibrium, two sub-games,
Nash equilibrium, two sub-games,
Nash equilibrium, two sub-games,
Nash equilibrium, two sub-games, solved for non-cooperative behavior or

\[
\max W_i, \text{ given } \tau^j_K, \tau^j_R, \ i \neq j
\]
Nash equilibrium, two sub-games, solved for

non-cooperative behavior or cooperative behavior of governments

\[
\begin{align*}
\max_{\tau^K_i, \tau^R_i} W_i, \text{ given } \tau^K_i, \tau^R_i, \quad i \neq j \\
\max_{\{\tau^K_i, \tau^R_i\}_{i=1,2}} W_1 + W_2
\end{align*}
\]
Numerical Model: Details

CES production function

\[F(K, G, R) = (\alpha_1 R^{s_1} + (1 - \alpha_1) Z^{s_1})^{\frac{1}{s_1}} \]

\[Z(K, G) = (\alpha_2 K^{s_2} + (1 - \alpha_2) G^{s_2})^{\frac{1}{s_2}} \]
Numerical Model: Details

CES production function

\[F(K, G, R) = (\alpha_1 R^{s_1} + (1 - \alpha_1) Z^{s_1})^{\frac{1}{s_1}} \]

\[Z(K, G) = (\alpha_2 K^{s_2} + (1 - \alpha_2) G^{s_2})^{\frac{1}{s_2}} \]

CiES social welfare function

\[W = \sum_t \frac{C_t^{1-\eta}}{1-\eta} \frac{1}{(1+\rho)^t} \]
Numerical Model: Details

CES production function

\[F(K, G, R) = \left(\alpha_1 R^{s_1} + (1 - \alpha_1) Z^{s_1} \right)^{1/s_1} \]

\[Z(K, G) = \left(\alpha_2 K^{s_2} + (1 - \alpha_2) G^{s_2} \right)^{1/s_2} \]

CiES social welfare function

\[W = \sum_t C_t^{1-\eta} \frac{1}{1-\eta} \frac{1}{(1+\rho)^t} \]

Parameter values

<table>
<thead>
<tr>
<th>(\sigma_1)</th>
<th>(\alpha_1)</th>
<th>(\sigma_2)</th>
<th>(\alpha_2)</th>
<th>(\eta)</th>
<th>(\rho)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.1</td>
<td>1.1</td>
<td>0.7</td>
<td>1.1</td>
<td>0.03</td>
</tr>
</tbody>
</table>

, where \(s_i = \frac{\sigma_i - 1}{\sigma_i} \)

Source: Empirical literature, details in appendix
Intertemporal optimization: Household

$$\max_{C_t} \mathcal{W} = \sum_{t=0}^{T} \frac{U(C_t)}{(1 + \rho)^t},$$

subject to

$$C_t + I_t = r_t K^s_t + \Pi^F_t + Tax_t^{\text{transfer}}$$

$$I_t = K^s_{t+1} - (1 - \delta)K^s_t$$

taking Π^F_t and Tax_t^{transfer} as given.

Lagrangian:

$$\mathcal{L}^{HH}_t = \sum_{t=0}^{T} \left[\frac{U(C_t)}{(1 + \rho)^t} + \lambda_t \left(K^s_{t+1} - K_t - (I_t - \delta K_t) \right) \right]$$

FOCs and TC:

$$U'(C_t) = \frac{1}{C_t^{\eta'}} = \lambda_t,$$

$$\lambda_{t-1}(1 + \rho) = \lambda_t (1 + r_t - \delta),$$

$$(I_T - \delta K^s_T)\lambda_T = 0.$$
Intertemporal optimization: Resource exporter

\[\begin{align*}
\max_{R_t} & \sum_{t=0}^{T} \frac{p_t R_t}{\prod_{s=0}^{t} (1 + r_s)} \\
\text{subject to} & \sum_{t} R_t \leq S_0 \\
\text{where} R_t &= S_t - S_{t+1}, \text{and} S_0 \text{is given.}
\end{align*}\]

Lagrangian:

\[\mathcal{L}_{t}^{RO} = \sum_{t=0}^{T} \left[\frac{p_t R_t}{\prod_{s=0}^{t} (1 + r_s)} + \lambda_t^R (-S_{t+1} + S_t - R_t) \right]\]

FOCs and TC:

\[\lambda_t^R = p_t,\]
\[\lambda_t^R = \lambda_{t-1}^R (1 + r_t - \delta),\]
\[\lambda_{T-1}^R S_T = 0.\]
Intertemporal optimization: Government

\[
\max_{\tau R, t, \tau K, t} W = \sum_{t=0}^{T} \frac{U(C_t)}{(1 + \rho)^t}
\]

subject to

\[
I_t^G + Tax_t^{\text{transfer}} = r_t \tau K, t K_t^d + \tau R, t R_t^d,
\]

\[
G_{t+1} = G_t + I_t^G - \delta G_t
\]

and

- the international market clearing conditions,
- the maximization problems of households, firms, and the resource exporter,
- their respective FOCs and TCs
RESULTS
Macroeconomic data – non-cooperation

National savings, $Y = C + I + I^G + pR$

![Bar chart showing national savings components](chart.png)

- **Consumption**: Government uses only τ_K.
- **Private investment**: Government uses only τ_R.
- **Infrastructure investment**: Low value.
- **Resources**: High value for government using both τ_K and τ_R. Other components have lower values.

Net present value [tril. US$]

- Consumption: 1200 tril. US$.
- Infrastructure investment: 100 tril. US$.
- Resources: 1300 tril. US$.
Mixed portfolio of τ_K and τ_R – non-cooperation
Elasticity of substitution – non-cooperation

![Graph showing the NPV of consumption in tril. US$ vs. elasticity of substitution between capital and infrastructure. The graph compares scenarios where governments use only τ_K or only τ_R.](image)
Without cooperation:
No green paradox, but viable green policy
Without cooperation:
No green paradox, but viable green policy
Without cooperation:
No green paradox, but viable green policy

Carbon tax postpones extraction, because

\[r_t > \frac{\tau_{R,t}}{\tau_{R,t}} \quad \forall t \]

See also Edenhofer and Kalkuhl (2011)
With cooperation:
Carbon tax speeds up extraction

![Graph showing resource extraction over time with and without cooperation](image)
With cooperation:
Carbon tax speeds up extraction

![Graph showing resource extraction over time with and without cooperation]

Only τ_R used, non-cooperation

Cooperation
With cooperation:
Carbon tax speeds up extraction

Non-cooperation: carbon tax postpones extraction, because
\[r_t > \frac{\dot{\tau}_{R,t}}{\tau_{R,t}} \quad \forall t \]

Cooperation: carbon tax speeds up extraction, because
\[r_t < \frac{\dot{\tau}_{R,t}}{\tau_{R,t}} \quad \forall t < 10 \]

See also Edenhofer and Kalkuhl (2011)
Rent capturing, with and without cooperation

![Graph showing resource exporters' profits with and without cooperation over time.](image)
Rent capturing, with and without cooperation

![Graph showing resource exporters' profits over time with and without cooperation.](image)
Rent capturing, with and without cooperation

![Graph showing resource exporters' profits over time with and without cooperation]
Rent capturing, with and without cooperation

![Graph showing the comparison of resource exporters' profits with and without cooperation over time. The graph plots the profits against time, with two curves representing cooperation and non-cooperation scenarios, labeled τ_K and τ_R respectively. The graph illustrates the impact of cooperation on profit over time.](image-url)
Trade-off between fiscal and environmental benefits

Non-cooperation
- Carbon tax delays extraction
- Resource rent partially captured
- Infrastructure only 2nd best

Cooperation
- Carbon tax speeds up extraction, relative to non-cooperation
- Entire rent is captured
- Infrastructure at 1st best level
Trade-off between fiscal and environmental benefits

Non-cooperation
Carbon tax delays extraction
Resource rent partially captured
Infrastructure only 2nd best

Cooperation
Carbon tax speeds up extraction, relative to non-cooperation
Entire rent is captured
Infrastructure at 1st best level

The finance ministers’ blessing is the environmental ministers’ curse!
Summary of results

1. Carbon tax more efficient than capital tax.
Summary of results

1. Carbon tax more efficient than capital tax.
 - asymmetry between capital and carbon as tax base,
Summary of results

1. Carbon tax more efficient than capital tax.
 - asymmetry between capital and carbon as tax base,
 - only the resource stock gives rise to rent.
Summary of results

1. Carbon tax more efficient than capital tax.
 - asymmetry between capital and carbon as tax base,
 - only the resource stock gives rise to rent.

2. More inelastic demand for infrastructure implies more pronounced advantage of the carbon tax.
Summary of results

1. Carbon tax more efficient than capital tax.
 - asymmetry between capital and carbon as tax base,
 - only the resource stock gives rise to rent.

2. More inelastic demand for infrastructure implies more pronounced advantage of the carbon tax.

3. Whether a green paradox occurs depends on cooperation.
Summary of results

1. Carbon tax more efficient than capital tax.
 - asymmetry between capital and carbon as tax base,
 - only the resource stock gives rise to rent.

2. More inelastic demand for infrastructure implies more pronounced advantage of the carbon tax.

3. Whether a green paradox occurs depends on cooperation.
 - Non-cooperation: Reversal of the green paradox
Summary of results

1. Carbon tax more efficient than capital tax.
 - asymmetry between capital and carbon as tax base,
 - only the resource stock gives rise to rent.

2. More inelastic demand for infrastructure implies more pronounced advantage of the carbon tax.

3. Whether a green paradox occurs depends on cooperation.
 - Non-cooperation: Reversal of the green paradox
 - With cooperation: Carbon tax speeds up extraction
Summary of results

1. Carbon tax more efficient than capital tax.
 - asymmetry between capital and carbon as tax base,
 - only the resource stock gives rise to rent.

2. More inelastic demand for infrastructure implies more pronounced advantage of the carbon tax.

3. Whether a green paradox occurs depends on cooperation.
 - Non-cooperation: Reversal of the green paradox
 - With cooperation: Carbon tax speeds up extraction

4. Only when importers cooperate, the entire rent is captured.
Discussion: impact of extraction costs / climate externality

Extraction costs imply additional volume effects of carbon taxes.
Discussion:
impact of extraction costs / climate externality

Extraction costs imply additional volume effects of carbon taxes.

Climate externality
 • Then, two motives for taxation
 1. fiscal (infrastructure)
Discussion: impact of extraction costs / climate externality

Extraction costs imply additional volume effects of carbon taxes.

Climate externality

• Then, two motives for taxation
 1. *fiscal* (infrastructure)
 2. *pigouvian* (abatement)
Discussion:
impact of extraction costs / climate externality

Extraction costs imply additional volume effects of carbon taxes.

Climate externality

• Then, two motives for taxation
 1. fiscal (infrastructure)
 2. pigouvian (abatement)

• Optimal carbon tax rate not additive in two motives.
Discussion: impact of extraction costs / climate externality

Extraction costs imply additional volume effects of carbon taxes.

Climate externality

- Then, two motives for taxation
 1. *fiscal* (infrastructure)
 2. *pigouvian* (abatement)

- Optimal carbon tax rate not additive in two motives.
- Timing of motives is decisive. One plausible outcome:
Discussion: impact of extraction costs / climate externality

Extraction costs imply additional volume effects of carbon taxes.

Climate externality

- Then, two motives for taxation
 1. *fiscal* (infrastructure)
 2. *pigouvian* (abatement)

- Optimal carbon tax rate not additive in two motives.

- Timing of motives is decisive. One plausible outcome:
 - in the short run: fiscal motive
Discussion: impact of extraction costs / climate externality

Extraction costs imply additional volume effects of carbon taxes.

Climate externality

• Then, two motives for taxation
 1. *fiscal* (infrastructure)
 2. *pigouvian* (abatement)

• Optimal carbon tax rate not additive in two motives.

• Timing of motives is decisive. One plausible outcome:
 • in the short run: fiscal motive
 • in the long run: environmental motive
Conclusion

1. For infrastructure investments in the presence of capital mobility, the carbon tax is superior to capital taxes.
Conclusion

1. For infrastructure investments in the presence of capital mobility, the carbon tax is superior to capital taxes.

2. The carbon tax can capture resource rents and yields short-term fiscal benefits.
Conclusion

1. For infrastructure investments in the presence of capital mobility, the carbon tax is superior to capital taxes.

2. The carbon tax can capture resource rents and yields short-term fiscal benefits.

3. Fiscal motive to introduce the carbon tax
Conclusion

1. For infrastructure investments in the presence of capital mobility, the carbon tax is superior to capital taxes.

2. The carbon tax can capture resource rents and yields short-term fiscal benefits.

3. Fiscal motive to introduce the carbon tax
 - may in the long run facilitate environmental policy based on pigouvian motive,
Conclusion

1. For infrastructure investments in the presence of capital mobility, the carbon tax is superior to capital taxes.

2. The carbon tax can capture resource rents and yields short-term fiscal benefits.

3. Fiscal motive to introduce the carbon tax
 - may in the long run facilitate environmental policy based on pigouvian motive,
 - could be a game changer and facilitate global agreement on climate policy.
Appendix
Future research

- Endogenous carbon budget as policy instrument (rent creation via artificial scarcity)
- Dynamics of fiscal and environmental taxation motive (include damage function)
- Intertemporal borrowing and lending
Model setup - solution algorithm

- Households, firms and the resource owner are Stackelberg followers of governments.
Model setup - solution algorithm

- Households, firms and the resource owner are Stackelberg followers of governments.
- Governments engage in Nash game using policy instruments:
Model setup - solution algorithm

- Households, firms and the resource owner are Stackelberg followers of governments.
- Governments engage in Nash game using policy instruments:
 - Repeat...
 - for each player j
Model setup - solution algorithm

- Households, firms and the resource owner are Stackelberg followers of governments.
- Governments engage in Nash game using policy instruments:
 - Repeat...
 - for each player j
 - unfix available policy instrument for j
Model setup - solution algorithm

- Households, firms and the resource owner are Stackelberg followers of governments.
- Governments engage in Nash game using policy instruments:
 - Repeat...
 - for each player j
 - unfix available policy instrument for j
 - maximize objective for j
Model setup - solution algorithm

- Households, firms and the resource owner are Stackelberg followers of governments.
- Governments engage in Nash game using policy instruments:
 - Repeat...
 - for each player j
 - unfix available policy instrument for j
 - maximize objective for j
 - fix newly found policies
Model setup - solution algorithm

- Households, firms and the resource owner are Stackelberg followers of governments.
- Governments engage in Nash game using policy instruments:
 - Repeat...
 - for each player j
 - unfix available policy instrument for j
 - maximize objective for j
 - fix newly found policies
- ...until policy instruments converge.
Parameter values

<table>
<thead>
<tr>
<th>Description</th>
<th>symbol</th>
<th>value</th>
<th>range</th>
<th>sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intertemporal elasticity of substitution</td>
<td>η</td>
<td>1.1</td>
<td></td>
<td>Edenhofer et. al. (2005)</td>
</tr>
<tr>
<td>Pure rate of time preference</td>
<td>ρ</td>
<td>0.03</td>
<td></td>
<td>Hogan and Manne (1979)</td>
</tr>
<tr>
<td>Annual depreciation rate of capital</td>
<td>δ</td>
<td>0.03</td>
<td></td>
<td>Kemfert and Welsch (2000)</td>
</tr>
<tr>
<td>Share parameter of fossil resource</td>
<td>α_1</td>
<td>0.11</td>
<td>0.25 – 0.92</td>
<td>Burniaux et. al. (1992)</td>
</tr>
<tr>
<td>Elasticity of substitution btw. Z and R</td>
<td>σ_1</td>
<td>0.5</td>
<td>0.25 – 0.92</td>
<td>Markandya et. al. (2007)</td>
</tr>
<tr>
<td>Share parameter of private capital</td>
<td>α_2</td>
<td>0.7</td>
<td></td>
<td>Baier and Glomm (2001)</td>
</tr>
<tr>
<td>Elasticity of substitution btw. K and G</td>
<td>σ_2</td>
<td>1.1</td>
<td>0.5 – 4</td>
<td>Coenen et. al. (2012)</td>
</tr>
<tr>
<td>Total factor productivity</td>
<td>A</td>
<td>0.8</td>
<td></td>
<td>Otto and Voss (1998)</td>
</tr>
<tr>
<td>Initial world capital [tril. US$]</td>
<td>K_0</td>
<td>165</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial world infrastructure [tril. US$]</td>
<td>G_0</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial world resource stock [GtC]</td>
<td>S_0</td>
<td>4000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time horizon [years]</td>
<td>T</td>
<td>75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References (general)

van der Meijden, Gerard et. al., *International Capital markets, Oil Producers and the Green Paradox*, 2014, OxCarre Research Paper 130

Withagen, Cees and Halsema, Alex, *Tax competition leading to strict environmental policy*, 2013, International Tax and Public Finance
References (parameters)

Coenen, Gunter et. al. *Fiscal policy and the great recession in the euro area*, 2012, American Economic Review

