The Atmosphere as a Global Common: From a Tragedy to a Drama

Max-Planck Institute of Economics

Jena, 11 January 2012

Prof. Dr. Ottmar Edenhofer

Economic Growth in Perspective

Growth and Poverty Reduction

- People living in absolute poverty: >1 Billion
- Low economic growth could drastically reduce development in many countries
- Zero growth is not sufficient to reach environmental targets
- ⇒ Banning growth does not seem to be a feasible solution to protect the environment

World Map of Wealth

World Map of Carbon Debt

Carbon Debt and Wealth

The impact of economic growth on the environment

Climate Change: Tipping Points in the Earth System

"Tipping processes of the climate system" show a strong reaction already to small climate changes

Cost-benefit Analysis or Risk Management?

- Weitzmann 2009, 2010: The Dismal Theorem
 - Due to "fat-tailed" climate sensitivity and uncertain tipping points there is a non-trivial probability of catastrophic damages

For CRRA utility functions the expected utility converges to minus

infinity

$$U(C) = \frac{C^{1-\phi}}{1-\phi} \text{ for } \phi \neq 1 \ (\phi > 0)$$
$$= \ln C \text{ for } \phi = 1$$

If
$$p(C)$$
 is a fat – tailed distribution:

$$\int_{-\infty}^{\infty} U(C) p(C) dC \to -\infty$$

Burning Embers Diagram

Climate Change Mitigation as Insurance

- In this case the cost-benefit calculus breaks down. With risk aversion, basically the entire income is used to avoid the possibility of catastrophic damages.
- Climate policy as insurance against catastrophic climate change!

TABLE 1—LIKELIHOOD (IN PERCENTAGE) OF EXCEEDING A TEMPERATURE INCREASE AT EQUILIBRIUM

Stabilization level (in ppm CO ₂ e)	2°C	3°C	4°C	5°C	6°C	7°C
450	78	18	3	1	0	0
500	96	44	11	3	1	0
550	99	69	24	7	2	1
650	100	94	58	24	9	4
750	100	99	82	47	22	9

Climate Policy as a Hotelling Problem

Unlimited Resources – Limited Disposal Space

Stabilisation of Atmospheric CO₂-Concentration

3 stabilisation goals with different probabilities of attaining the 2° goal: 550ppm-eq, 450ppm-eq, 400ppm-eq

Transformation of the Energy System

... and What About Energy Efficiency?

The Atmosphere as a Global Common

Atmosphere: Limited Sink ~ 230 GtC **Resource Extraction** > 12.000 GtC

Managing the Atmosphere with a Sky Trust

- 1) Determine Magnitude of Atmospheric Disposal Space
 - → Balance Costs & Risks of Climate Change with Mitigation

- 2) Adopt efficient Policy Instruments: Carbon Tax or ETS
- 3) Distribute the Climate Rent

From Tragedy to Drama: Strategic Options

Country Calculus for Mitigation Program

Living in a Second-Best World: Technology Policies

- Supporting Renewables: Fatal Aberration?
- Subsidizing CCS: Almost First Best?
- Combine both Options: A Bridge towards an International Agreement?

The current Global Energy System is Dominated by Fossil Fuels

Shares of energy sources in total global primary energy supply in 2008

The Technical Potential of Renewable Energy

The Costs of Renewables are Often Still Higher Than Those of Non-Renewables. But...

...Some RE Technologies Are Already Competitive

Renewable Energies have a Potential to Lower Costs

Case 1: Carbon Pricing is Necessary and Sufficient

Case 2: Additional Promotion of Renewables is not Reasonable

- ► Several stable equilibrium points (PE3 and PE1) are possible if the supply curves show a non-convex behavior (PE₂ is not stable).
- ►Without additional policy support, the system will steer towards the neighboring equilibrium point PE₃.
- ►PE₃ > PE₁: the system is efficient.

Case 3: Additional Promotion of renewables is Reasonable

- ►The internalization of the social costs of energy supply (e.g. via a cap and trade system) improves the competitiveness of renewable energies
- ►As long as the cross-over point PE₃ does not vanish, this, however, still results in an inefficient state.

Robustness of Policy Instruments

Consumption Losses compared to 1st-Best (in %) 17% Learning Rate

Consumption Losses compared to 1st-Best (in %) 25% Learning Rate

Consumption losses relative to the 1st-best optimum of optimal and "close-to-be-optimal" instruments that deviate by +1% and -1% from the optimal value.

2nd Best-Technology Policy

Carbon Capture and ...

...Storage (CCS)

Not fully sustainable

The peculiar role of CCS

- Subsidies for CCS create a scarcity rent and an implicit carbon price.
- No leakage and sufficient storage capacities might enable the policy maker to achieve a first-best solution.
- However, these assumptions are highly unrealistic.

Renaissance of Coal?

Renaissance of Coal?

Combining CCS and Renewables Policy

Welfare losses (in balanced-growth equivalents) of optimal second-best policies compared to the social optimum (ϑ = 100%) under a carbon budget. The negative welfare losses of the laissez-faire (business-as-usual) economy indicate the mitigation costs due to the carbon budget constraint.

Rent Distribution

Discounted Fossil Resource Rents [1 = Optimal Policy]

Carbon Capture and ...

...Use (CCU)

Carbon Capture and ...

...Cycling(CCC)

Linking Climate Cooperation with Technology Policies

- Combine agreement on emission reductions with agreement on research on
 - mitigation technology
 - general (labor) productivity
- Full cooperation can be reached

Justification for Trade Sanctions?

CO₂-trade balances for different world regions 1990-2008

Blue: CO₂-Importing

Red: CO₂-Exporting

Trade Sanctions Against Climate Non-Cooperators

- Moderate tariffs deter free-riding, enable global cooperation and increase global welfare
- Credible, because climate coalition would gain from it
- Become obsolete once global cooperation is established
- Legitimacy essential: misusage, retaliation, WTO

Creation and ,Linking' of Emissons Trading Systems

- ⇒ Reduction of mitigation costs by establishing access to low-cost abatement options
- ⇒ Potential for strategic incentives

Side Payments: Green Climate Fund

No Regret: Reducing Inefficient Fossil Energy Subsidies

World subsidies to fossil-fuel consumption

Fossil fuel subsidies have been driven higher by the rebound in international energy prices they totalled \$409 billion in 2010 – about \$110 billion up on 2009

Better REDD than dead?

Conclusions

- Climate Change is a Global Commons Problem: The atmospheric sink is being overused
- Key Question: Is it possible to transform the "Tragedy of the Commons" into a "Drama of the Commons"?
- Appears difficult, but there are some promising technological and institutional options
- A world government will not be forthcoming in the next decades: Need to explore options for polycentric governance

Recommended Reading

http://srren.ipcc-wg3.de/report

http://www.klima-und-gerechtigkeit.de/