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Projections of Global Mean Temperature
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Different Scenarios




Tipping Points in the Earth System ==
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Burning Embers

Global warming above present temperature (°C)
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Potential policy-relevant tipping elements that could be triggered by global warming this century, with shading
indicating their uncertain thresholds. For each threshold, the transition from white to yellow indicates a lower
bound on its proximity, and the transition from yellow to red, an upper bound. The degree of uncertainty is
represented by the spread of the colour transition.

T. M. Lenton & H. J. Schellnhuber (Nature Reports Climate Change, 2007)
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World Map of Wealth
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World Map of Carbon Debt
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P: Fossil CO2 emissions (kg C per person and year)
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What is the Optimal Level of Mitigation?

Economist’s perspective:

mitigation

damages

costs [$]

AT [°C]



Different Perspectives
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Driving Forces
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Assessing the Solution Space

Life-Style Change Non-Fossil CO, Capture
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Assessing the Solution Space
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The Economics of Atmospheric Stabilisation
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3 stabilisation targets with different probabilities to reach the 2° target:
550ppm-eq, 400ppm-eq

Energy-related CO, emissions
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The Great Transformation
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Primary Energy Consumption [EJ]
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Primary Energy Consumption [EJ]

Discounting and Technological Change
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There is more than one path towards a carbon-free economy

MERGE TIMER POLES REMIND E3MG
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There is more than one path towards a carbon-free economy

MERGE TIMER POLES REMIND E3MG
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Global Fossll Fuel Prices 19981 - 2008
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A CO, per year [%]

Renaissance of Coal
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Carbonization Pathways
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Mitigation Costs: Technology Options, 550ppm
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= Renewables and CCS are the most important options
=>» Ranking of options: Robust picture throughout all models
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Technology Options for Low Stabilisation ==
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Technology Options for Low Stabilisation ==
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=>» 400 ppm neither achievable without CCS nor without an extension of

renewables

=» Biomass potential dominates the mitigation costs of low stabilisation

=>» Nuclear is not important beyond its (high) use in the baseline
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“Policy
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Goal-setting by
politics
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International Environmental Agreements EEE o

In many cases global climate policy implicitly assumes full
International cooperation

In reality: lack of a global authority
Instead: international environmental agreements (IEA)

Participation is low whenever IEA (Barrett 1994) actually

achieve something
Bali 2007




Public Good Provision as a Prisoners’ Dilemma =

Provision of a global Public Good: Player 2
» (Same) benefits for everyone, Abate Pollute

say e.g. 5 (per contributing party!)

» (Same) costs to contribute,
say e.g. 7

Abate

Player 1

e Game Structure of the
Prisoners’ Dilemma:

* Individual rationality for players to
act selfishly

Pollute

- Incentive to free-ride
- Suboptimal outcome

| If abating global warming resembles a Public
Good, then climate negotiations will face a

Prisoners’ Dilemma




Co-Benefits —
Player 2
Abate Pollute
o ? 8
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An Assurance Game?

. Attempt to create focal point on
Social Optimum:

. ‘Co-Benefits of mitigation so
high that unilateral abatement
pays, irrespective of others’
decision’

- A mere issue of proper
perception

> Co-Benefits matter, but really
large enough to resolve PD
automatically?

> The Hartwell-Paper argues that
climate policy should be an
Indirect outcome of achieving Co-
Benefits
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Public Good Provision as a Prisoners’ Dilemmma
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The Challenge

e Can a clever design of environmental agreements achieve
higher participation?

* Possibllities:
— Promoting growth policy and new technologies

— Trade restrictions

— Permit trade with non-
members of the agreement
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Reward: Technology Cooperation and
Punishment: Import Tariffs

_ _ _ _ coalition
e Tuning incentives by treaty design:

e : . spill
— Positive incentive: Research Cooperation ver
* R&D spill-over within coalition @
 Participation rises with spill-over intensity

* Improving productivity by R&D shown to be @ @
a stronger incentive than improving abatement
free-riders

— Negative incentive: Import Tariffs
» Coalition levies tariffs on imports from free-riders
 Tariffs induce up to full cooperation
« Tariffs are individually + socially rational 0

coalition
(2)
« Examples, where IEA design changed the ‘g» i
game from a dilemma to an assurance 0 6)

game (5)

e For details see free-riders

— Lessmann et al. (2009), Economic Modelling
— Lessmann and Edenhofer (2010), Resource and Energy Economics



Global Deal

Equity

— Efficiency -

Effectiveness

Aa1104 1uswdolanaq

uoneldepy

uol1e1Sai0ja PapIoAY

salbojouyosa |
Alpusiij-arewl|o

31



1]
| 1 I

Equity

— Efficiency -

Global Deal

Effectiveness

A21j04 1uawdojanag

uoneldepy

uol1e1Sa10Ja PapIoAY

salbojouyosa |
Alpusiij-ayewl|o

32



Carbon stocks (GtC)

atmosphere

In the

In the ground

The Supply-side of Global Warming

Gas Oil Coal Biomass + CCS
2000 +
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56 —210
16 s 154
——107 —111 ——154
O T
106 F”I’I’I’J\lsz /
~—139 —_— - 7~
77 553 230
258
—1581
11372
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m Conventional reserves

Coal+CCS (400ppm)

Unconventional resources

& Unconventional reserves
B Cumulative historic use
% Biomass+CCS (400ppm)

Conventional resources
Projected use (400ppm)

B Additional projected use (BAU)

Cumulative historic carbon consumption (1750-2004), estimated carbon stocks in the ground, and estimated future
consumption (2005-2100) for business-as-usual (BAU) and ambitious 400-ppm-CO,-eq. scenario

Source: Kalkuhl, Edenhofer and Lessmann, 2009
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The Supply-side of Global Warming

 Atmosphere is a scarce resource — fossil carbon is not
Economic approach to deal with scarcity in an efficient way:

— Establish prices on scarcities

 Who should determine scarcity prices?
— Regulator (establish prices on the use of scarce resources — carbon tax)

— Market (assigning property rights according to the scarcity of the

atmosphere — ETS)
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CO, Tax: Regulator Determines Scarcity Prices

Optimal tax requires for the regulator to know:

* Environmental scarcity (damage function or carbon budget)

Economic development for the entire time horizon ex ante
» Extraction costs

e Economic growth, carbon demand, technological progress, development and
costs of backstop technologies

d(S) damages (of stock S)

Optimal tax path (cost-benefit framework):
T
o(t) = ﬂ(.&:‘“(!‘))e—*‘(’f—ﬂ—/ dge" =% de

ot

ds* marginal damages along socially
optimal resource stock path

r discount rate

F<(S*(T)) marginal scrap value of socially

» Optimal tax path (carbon budget framework): optimal resource stock at T
B socially optimal resource
Q(T} — M_%:’BE— riT—t) shadow price at T
“ . ” . i ~i - ({b" ( n xSY?)
* “Progressive” (stock-dependent) carbon tax rule: 7'(S") =
(individual tax for each resource owner) r
o 1 (d(nSYT »
Final-period payment rule (optimal transversality condition): J(SYT)) = — (M — F('HSE'(T)))
n ,
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Lessons from the “Green Paradox”
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Resource taxes change time path of net resource price

— time-path of extraction is changed

— fast increasing taxes can provoke an accelerated resource extraction

\ Resource price

Increasing tax
(Green Paradox)

Optimal

R

\ Resource extraction

Increasing tax
(Green Paradox)

Optimal

\ J
Y

Accelerated >
extraction !
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Lessons from the “Green Paradox”
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Effect of an exponentially increasing resource tax 7 =7, eer
Slowly increasing tax Tax increases at discount rate Fast increasing tax
d<r d=r d=>r
ry small rp large rp small Ty large rp Small Ty large
0<To > To w<To 0> To w<ta > To
Timing effect postpone postpone none none accelerate accelerate
extraction extraction extraction extraction
Volume effect none conservative none conservative none conservative
Green paradox none none none none yes ambiguous
[mpact on - -- none - - -+
damages timing effect timing and volume effect timing effect timing vs.
compared to volume effect volume effect
Zero-tax case

*

Critical initial tax level TO

oo

J‘q(roﬁge(’—” +c)dt=S,

0

Source: Edenhofer and Kalkuhl (2010)
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Emissions Trading Scheme (ETS):
Market Determines Environmental Scarcity Prices

Cost-benefit framework: Regulator issues permits

* For intertemporal efficiency, same informational requirements as in the
carbon tax case

« Market determines scarcity prices — but regulator has to know them ex
ante to calculate optimal permit path

Carbon-budget framework: Regulator issues permits and
allows for free banking and borrowing

Market determines scarcity prices

Regulator needs no information about future economic development

Assigning property rights according to environmental scarcity

Scarcity rent can be distributed without efficiency losses (auctioning,
grandfathering)
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Cost-Benefit VS. Carbon Budget

Intertemporal rent dynamics
T ) ) 1
B(t) = Fs(S*(1)e™" "=~ / dgem(=4) de 0(t) = psBe T 1)
J

Can regulator use markets to find intertemporally optimal pathways?

“progressive” ETS with free
(stock-dependent) tax banking & borrowing
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Cost-Benefit

Carbon-Budget

Ownership and Management of the Climate Rent

Management

Ownership

Regulator

Resource Owner

Regulator

e Resource tax

« ETS with auctioning; with
and w/o banking

» “Progressive” (stock-
dependent) tax

Resource Owner

« ETS with grandfathering;
with and w/o banking

Management

Ownership

Regulator

Resource Owner

Regulator

e Resource tax

« ETS w/o banking and
with auctioning

e ETS with banking and
with auctioning

Resource Owner

« ETS w/o banking and
with grandfathering

 ETS with banking and
with grandfathering




Carbon Budget Approach and ETS

« Carbon budget approach with intertemporal ETS allows for shifting
daunting intertemporal management to the market or to independent
Institutions (carbon trust, carbon bank)

— What-flexibility: Coal, oil, gas, conventional/unconventional
— When-flexibility: Banking and borrowing of permits
— Respective market structures are required (futures markets)

« A green paradox cannot occur

« But: intertemporal efficient allocation of climate damages cannot be
achieved
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Regional Mitigation Costs: Winners and Losers —==§E§”—

O C&C ]
B per GDP

M per capita

Consumption losses [%]

REMIND-R, Version 11/09, 2K, Brigitte Knopf

Edenhofer et al., 2009
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Domestic Cap and Trade: Linking Emerging CO,-Markets

Canada ETS
US ETS
Max 7.000Mt COeqd  wrnct! sotmp 20
Start: ? S d— "

- . S == 5 e
 ? 7';"'- ~

2 3Mt C | ~Max.1.400Mt CO,eq

7 =
| ¢
A5

e

RGGIETS |
“ 170 Mt CO
" “Started: 2009

!ﬂ‘tﬁ

ax 640 Mt €@,

eq
Start: 20127 ‘
N

_ e -. 98 Mt CO.eq
- Start: ?

“The European Commission is preparing to call on the United States to
create a trans-Atlantic system of carbon trading”
Source: Flachsland (2009)
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The Value of Early Action (REMIND) ==
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Delay of mitigation action until 2020 will increase global
costs by 70%

Stabilisation at 450 ppm CO, is not feasible when delaying
action until 2030 DELAY 2020

EU 2010, OTHERS 2020
ANNEX 12010, OTHERS 2020

1.4, ANNEX I, CHN, IND 2010
M 450ppm C&C

©c o 0O =
N O 0 =~ N

Consumption Losses [%]

O
N

o

WORLD

Source: RECIPE 2009
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Global Deal
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Avoided Deforestation

Equity

Adaptation

Development Policy
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Climate-friendly

Development Policy

47




Market Prices for staple foods and crude oll
monthly averages 1991 - 2008

900 - T 140
annual price increase: 13.4% + 120
- 100

US $banmel

60
- 40

1001 1903 1005 1987 19000 2001 2003 2005 2007 2000

—Wheat —RiceB Maize — crude oil

Source: IMF; FAO International Commodity Prices
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Annual World Blofuel Production 1991 = 2008

—¢—Bioethanol (BE) —¢— forecast —»—Biodiesel (BD)

average growth rate 7%

5 " 310}0

ﬂ WW T : T = T - T T T T T T T T 1
1001 1083 1005 1087 1000 2001 2003 2005 2007 2000

Source: BP Statistical Energy Review; WRI



Reducing Deforestation: Fossil vs. LUCF CO, Emissions

CO, emissions per person and year, 1950 - 2003

S

CO, emissions from fossil fuel combustion and cement production,
and including land use change (kg C per person and year from 1950 - 2003)

[ ] -1000-0 [ 1000 - 2000 Emissions per year from fossil fuel combustion and cement production
[ 1 0-100 B 2000 - 5000 Ratio
[ ] 100-1000 [ 5000 - 15000 Emissions per year from land use change
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Mitigation and Adaptation

.- L ._'\i ) - e - 3
some cereals AN cereals decrease
Increases for Decreases in some regions

of coastal wetlands 11

2 to 15 million ¢

4
Global mean annual temperature change relative to 1850-1899 (°C)
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Change in Agricultural Production

Climate-induced changes in agricultural production

between 1990 and 2050

Fissel et al., 2010
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Flood Risk by Sea Level Rise

<01% 0.1-0.2% 0.2-0.5% 0.5-2.0% >2.0%

Fiissel et al., 2010

Increase of population share threatend by sea level rise on an annual basis
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