Integrated Policy Assessment in the Context of Global Warming

Ottmar Edenhofer and Matthias Kalkuhl
Kai Lessmann

Potsdam Institute for Climate Impact Research.
Potsdam, Germany.

May 25, 2010
Current Policy Debates

The role of renewable energy subsidies in the context of carbon pricing

- Should renewable energy be subsidized?
 - No – *price only crowd* (Sinn, Nordhaus)
 - Yes – *hybrid crowd* (Acemoglu)

- Can renewable subsidies replace a carbon price?
- Can renewable subsidies improve a delayed carbon pricing policy?
- Can resource taxes and renewable energy subsidies provoke a green paradox?

Integrated policy assessment model (IPAM) to answer these questions
The role of renewable energy subsidies in the context of carbon pricing

- Should renewable energy be subsidized?
 - No – *price only crowd* (Sinn, Nordhaus)
 - Yes – *hybrid crowd* (Acemoglu)

- Can renewable subsidies replace a carbon price?
- Can renewable subsidies improve a delayed carbon pricing policy?
- Can resource taxes and renewable energy subsidies provoke a green paradox?

Integrated policy assessment model (IPAM) to answer these questions
Outline

Introduction

The Model
 Model Framework
 Decentralized Equilibrium
 Calibration and Implementation

Results
 Carbon Pricing
 Renewable Energy Market Failures
 Imperfect Carbon Pricing
 Isolated vs. Multiple Imperfections

Conclusion
Carbon Budget Approach (Meinshausen et al. 2009)

- Probability of limiting global warming to 2K depends on cumulative 2000 – 2050 emissions
- \(p > 50\% \): cumulative emissions \(\leq 390\,\text{GtC} \)
- \(p > 75\% \): cumulative emissions \(\leq 270\,\text{GtC} \)
Model Design

Two exhaustible stocks (fossil resources, carbon budget)

- Distribution of rents
- Transition pathways beyond steady state (numerical model)

Consider intertemporal incentive structure

- Dynamic Stackelberg game: Government as Stackelberg Leader
- Irreversible investments

Multiple and 2nd-best policy instruments

- Decentralized general equilibrium model

Induced technological change

- Endogenous growth model (learning curves)
Model Design

Two exhaustible stocks (fossil resources, carbon budget)
- Distribution of rents
- Transition pathways beyond steady state (numerical model)

Consider intertemporal incentive structure
- Dynamic Stackelberg game: Government as Stackelberg Leader
- Irreversible investments

Multiple and 2nd-best policy instruments
- Decentralized general equilibrium model

Induced technological change
- Endogenous growth model (learning curves)
Model Design

Two exhaustible stocks (fossil resources, carbon budget)
- Distribution of rents
- Transition pathways beyond steady state (numerical model)

Consider intertemporal incentive structure
- Dynamic Stackelberg game: Government as Stackelberg Leader
- Irreversible investments

Multiple and 2nd-best policy instruments
- Decentralized general equilibrium model

Induced technological change
- Endogenous growth model (learning curves)
Model Design

Two exhaustible stocks (fossil resources, carbon budget)
- Distribution of rents
- Transition pathways beyond steady state (numerical model)

Consider intertemporal incentive structure
- Dynamic Stackelberg game: Government as Stackelberg Leader
- Irreversible investments

Multiple and 2nd-best policy instruments
- Decentralized general equilibrium model

Induced technological change
- Endogenous growth model (learning curves)
Game-theoretic Structure

Government (Stackelberg Leader):

\[\max \int L_u(C/L) e^{-\rho t} \, dt \]

Controls:
- Taxes, subsidies
- Permits (quantity regulation)

Households

\[\max \int L_u(C/L) e^{-\rho t} \, dt \]

Consumption \(C(t) \)

Production Firms

\[\max \pi_y \]

Labor \(L(t) \)

Capital \(K(t) \)

Energy \(E(t) \)

Resource Owners

\[\max \int \pi_R e^{-\gamma t} \, dt \]

Extraction \(R(t) \)

Renewable Energy Firms

\[\max \pi_B \]

Capital \(K(t) \)

Land \(N(t) \)

Fossil Energy Firms

\[\max \int \pi_F e^{-\gamma t} \, dt \]

Capital \(K(t) \)

Resources \(R(t) \)
Government’s Optimization Problem (Stackelberg leader)

Objective:

\[
\max_{\{\tau_i, P\}} \int_0^T L u(C/L) e^{-\rho t} dt
\]

(1)

Constraints:

- *Political*: mitigation target
- *Technological*: production technologies
- *Strategic*: reaction functions of followers: analytic first-order conditions from intertemporal optimization

Control variables / policy instruments:

- Price instruments: taxes and subsidies \(\{\tau_i\}\) on factor prices
- Quantity instruments: permits \(P\)
Policy Instruments

Price instruments

- Ad-valorem and unit taxes on factor prices for capital, labor, energy and resources
- E.g. net resource price for resource owners and net price for renewable energy read:

\[
\bar{p}_R = p_R - \tau_R \tag{2}
\]
\[
\bar{p}_B = p_B(1 - \tau_B) \tag{3}
\]

Quantity instrument / carbon bank

- Restrict emissions for economy through permits \(P \)
- Allow for intertemporal trading of permits

Government runs clear budget: tax incomes and subsidy expenditures are compensated by lump-sum transfers
Production Technologies

\[Y = \text{CES}(Z, E) \]

\[Z = \text{CES}(A, L, K) \]

\[E = \text{CES}(E_F, E_B) \]

\[E_F = \text{CES}(R, K_F) \]

\[E_B = \text{CES}(A_B, K_B, N) \]

\[R = \kappa(S) K_R \]

- Population \(L \)
- Capital \(K \)
- Resource Stock \(S \)
- Land \(N \)

GDP

Composites

Energy

Resources

Basic Factors
Technological Change

Endogenous Learning-by-Doing (Romer 1986):
- Investments into firm’s capital stock K^i increase sector-wide factor productivity $A = A \left(\sum K^i \right)$
- Individual firms do not anticipate this effect, i.e. $\frac{\partial A}{\partial K^i} = 0$ (underinvestment)

Learning curve in renewable energy sector (leans on Kverndokk & Rosendahl 2007):

$$A_B = \frac{A_{max}}{1 + \left(\frac{\Omega}{K_B} \right)^\gamma} \quad (4)$$

Labor productivity: declining growth rate (exogenously)

$$\hat{A}_L = \frac{g}{e^{\zeta t} - g} \quad (5)$$
Households (1)

Objective:

\[
\max_{\{C\}} \int_0^T L \, u(C/L) \, e^{-\rho t} \, dt
\]

Constraints:

\[
u = \frac{(C/L)^{1-\eta}}{1-\eta}
\]

\[
C = wL + rK - I + \Pi + \Gamma
\]

\[
K = \sum_j K_j \quad I = \sum_j I_j \quad \Pi = \sum_j \Pi_j
\]

\[
\dot{K} = I - \delta K
\]

\[
K(0) = K_0
\]

\[
\Gamma = \text{lump-sum tax}; \quad \Pi_j = \text{sectoral profits}
\]
Households (1)

Objective:

\[
\max_{\{C\}} \int_0^T L u(C/L) e^{-\rho t} dt
\] \hspace{1cm} (6)

Constraints:

\[
u = \frac{(C/L)^{1-\eta}}{1-\eta}
\] \hspace{1cm} (7)

\[C = wL + rK - I + \Pi + \Gamma \] \hspace{1cm} (8)

\[K = \sum_j K_j \quad I = \sum_j I_j \quad \Pi = \sum_j \Pi_j \] \hspace{1cm} (9)

\[\dot{K} = I - \delta K \] \hspace{1cm} (10)

\[K(0) = K_0 \] \hspace{1cm} (11)

\(\Gamma =\) lump-sum tax; \(\Pi_j =\) sectoral profits
Households (2)

Hamiltonian:

\[H = L \ u(\frac{C}{L}) + \lambda_H (wL + rK - C + \Pi + \Gamma - \delta K) \]

(12)

First-order and transversality conditions:

\[\frac{\partial u}{\partial C} = \lambda_H \]

(13)

\[\dot{\lambda}_H = \lambda_H (\rho + \delta - r) \]

(14)

\[0 = \lambda_H (T) K(T) \]

(15)

Ramsey-rule:

\[r - \delta = \rho + \eta \hat{C} \]

(16)
Households (2)

Hamiltonian:

\[H = L \cdot u \left(\frac{C}{L} \right) + \lambda_H \left(wL + rK - C + \Pi + \Gamma - \delta K \right) \]

(12)

First-order and transversality conditions:

\[\frac{\partial u}{\partial C} = \lambda_H \]

(13)

\[\dot{\lambda}_H = \lambda_H (\rho + \delta - r) \]

(14)

\[0 = \lambda_H (T) K(T) \]

(15)

Ramsey-rule:

\[r - \delta = \rho + \eta \hat{C} \]

(16)
Resource Sector (1)

Objective:

\[
\max \left\{ K_R \right\} \int_0^\infty \Pi_R e^{-\int_0^t (r-\delta) \, ds} \, dt
\] \hspace{1cm} (17)

Constraints:

\[
\Pi_R = (p_R - \tau_R)R(S, K_R) - rK_R
\] \hspace{1cm} (18)

\[
R = \kappa(S) K_R
\] \hspace{1cm} (19)

\[
\kappa(S) = \frac{\chi_1}{\chi_1 + \chi_2 \left(\frac{S_0-S}{\chi_3} \right)^{\chi_4}}
\] \hspace{1cm} (20)

\[
\dot{S} = -R
\] \hspace{1cm} (21)

\[
S(0) = S_0
\] \hspace{1cm} (22)
Rogner Curve

Productivity of capital κ decreases with cumulative extraction $S_0 - S$:

$$\kappa(S) = \frac{\chi_1}{\chi_1 + \chi_2 \left(\frac{S_0 - S}{\chi_3} \right)^{\chi_4}}$$

$$\frac{\partial \kappa(S)}{\partial S} > 0 \quad (23)$$
Resource Sector (2)

Hamiltonian:

\[H_R = (p_R - \tau_R)\kappa K_R - rK_R - \lambda_R\kappa K_R \quad (24) \]

First-order and transversality conditions:

\[\lambda_S = p_R - \tau_R - r/\kappa \quad (25) \]
\[\dot{\lambda}_S = (r - \delta)\lambda_S - (p_R - \tau_R - \lambda_S)K_R \frac{\partial K}{\partial S} \quad (26) \]
\[0 = \lambda_S(T)S(T) \quad (27) \]
Production Sector

Objective and constraints:

$$\Pi_Y = Y(K_Y, L, E_F, E_B) - rK_Y - wL - p_F E_F - p_B E_B$$ \hfill (28)

$$Y = \left(a_1 Z^{\frac{\sigma_1-1}{\sigma_1}} + b_1 E^{\frac{\sigma_1-1}{\sigma_1}} \right)^{\frac{\sigma_1}{\sigma_1-1}}$$ \hfill (29)

$$Z = \left(a_2 K_Y^{\frac{\sigma_2-1}{\sigma_2}} + b_2 (A_L L)^{\frac{\sigma_2-1}{\sigma_2}} \right)^{\frac{\sigma_2}{\sigma_2-1}}$$ \hfill (30)

$$E = \left(a_3 E_F^{\frac{\sigma_3-1}{\sigma_3}} + b_3 E_B^{\frac{\sigma_3-1}{\sigma_3}} \right)^{\frac{\sigma_3}{\sigma_3-1}}$$ \hfill (31)

First-order conditions:

$$r = \frac{\partial Y}{\partial K_Y}, \quad w = \frac{\partial Y}{\partial L}, \quad p_F = \frac{\partial Y}{\partial E_F}, \quad p_B = \frac{\partial Y}{\partial E_B}$$ \hfill (32)
Fossil Energy Sector (1)

Objective:

\[
\max_{\{I_F, R\}} \int_0^\infty \Pi_F \ e^{-\int_0^t (r-\delta) \ ds} \ dt
\]
(33)

Constraints:

\[
\Pi_F = p_F E_F(K_F, R) - rK_F - p_R R
\]
(34)

\[
E_F = \left(a K_F^{\sigma - 1} + (1 - a) R^{\sigma - 1} \right)^{\frac{\sigma}{\sigma - 1}}
\]
(35)

Two model variants:

- Reversible investments possible: \(I_F \in \mathbb{R} \) (reference model)
- Irreversible investment dynamics: \(I_F \geq 0 \)
Fossil Energy Sector (1)

Objective:

\[
\max_{\{I_F, R\}} \int_0^\infty \Pi_F \ e^{-\int_0^t (r-\delta) \ ds} \ dt \tag{33}
\]

Constraints:

\[
\Pi_F = p_F E_F(K_F, R) - rK_F - p_R R \tag{34}
\]

\[
E_F = \left(a K_F^{\frac{\sigma-1}{\sigma}} + (1-a) R^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} \tag{35}
\]

Two model variants:

- Reversible investments possible: \(I_F \in \mathbb{R}\) (reference model)
- Irreversible investment dynamics: \(I_F \geq 0\)
Fossil Energy Sector (2)

First-order and transversality conditions:

\[p_R = p_F \frac{\partial E_F}{\partial R} \]
\[\dot{\lambda}_F = (r - \delta)\lambda_F - \left[p_F \frac{\partial E_F}{\partial K_F} - r \right] \]
\[I_F \lambda_F = 0 \]
\[K_F(T)\lambda_F(T) = 0 \]

In the case of reversible investments, \(\lambda_F \equiv 0 \) and, thus:

\[p_R = p_F \frac{\partial E_F}{\partial R} \]
\[r = p_F \frac{\partial E_F}{\partial K_F} \]
Renewable Energy Sector

Objective and first-order conditions:

\[
\Pi_B = p_B (1 - \tau_B) E_B - (r + \nu) K_B \tag{42}
\]
\[
E_B = A_B K_B^\nu N^{\nu - 1} \tag{43}
\]
\[
r = p_B \frac{\partial E_B}{\partial K_B} \tag{44}
\]

where \(\frac{\partial A_B}{\partial K_B} = 0 \) from the single firm’s point of view (learning-by-doing spillover)

From the economy-wide perspective, however, \(A_B \) increases with cumulative investment (capital stock \(K_B \)):

\[
A_B = \frac{A_{max}}{1 + \left(\frac{\Omega}{K_B} \right)^\gamma} \tag{45}
\]
Renewable Energy Learning Curve

\[A_B = \frac{A_{\text{max}}}{1 + \left(\frac{\Omega}{K_B} \right)^\gamma} \]

Productivity of capital \(A_B \) increases with cumulative investment (capital stock \(K_B \))
Calibration and Implementation

Calibration:

- Model results grossly harmonized with ReMIND results and parameters from literature (e.g. elasticities of substitution)
- Carbon budget: 450 GtC for fossil resources
- Time horizon: 2005-2150 for optimization; 2005-2100 for evaluation
- Population: increase up to 9.5 billion
- Mitigation costs: 1.9 % GDP losses; 2.9 % consumption losses

<table>
<thead>
<tr>
<th>Elasticities of substitution</th>
<th>Utility function</th>
<th>Initial values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital-Labor</td>
<td>STPR ρ</td>
<td>K_0 (trill USD)</td>
</tr>
<tr>
<td>Composite-Energy</td>
<td>EIS η</td>
<td>S_0 (GtC)</td>
</tr>
<tr>
<td>Fossil-Renewable</td>
<td></td>
<td>98.69</td>
</tr>
<tr>
<td>Capital-Resources</td>
<td></td>
<td>4,000</td>
</tr>
<tr>
<td>Capital-Land</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>Depreciation δ</td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>0.70</td>
<td>0.50</td>
<td>0.15</td>
</tr>
<tr>
<td>0.50</td>
<td>3.00</td>
<td>0.15</td>
</tr>
<tr>
<td>0.15</td>
<td>1.00</td>
<td>0.03</td>
</tr>
<tr>
<td>0.03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Business-as-usual Scenario

- Production and consumption (trill US$)
- Resource extraction (Gt C)
- Energy production (EJ)
- Energy prices (US ct./kWh)
Carbon Pricing within the Carbon-Budget Approach

Why do we observe a Hotelling carbon price?

- Optimal carbon price within cost-benefit analysis (Hoel and Kverndokk 1996):
 \[\tau_R = \int_t^\infty -dS(S(\xi))e^{r(t-\xi)} \, d\xi \]

- Carbon budget is a politically created exhaustible resource
- Optimal carbon tax is a Hotelling scarcity price (Kalkuhl and Edenhofer 2010):
 \[\tau_R = \tau_0 e^{rt} \]

- Free permit trading also leads to Hotelling price (Kling and Rubin 1996)
- Carbon-Budget Approach does not achieve an intertemporally efficient allocation of climate damages
Is a Carbon Tax a Robust Policy Instrument?

- Regulator imposes exponentially increasing ad-hoc carbon tax: $\tau = \tau_0 e^{\theta t}$
- Fast increasing tax ($\tau_0 = 10, \theta = 0.08$): Accelerated extraction
- Slow increasing tax ($\tau_0 = 700, \theta = 0.01$): Postponed extraction
- Acceleration possible for fast increasing tax (Sinn 2010, Edenhofer & Kalkuhl 2010)
Is a Carbon Tax a Robust Policy Instrument?

- Regulator imposes exponentially increasing ad-hoc carbon tax: $\tau = \tau_0 e^{\theta t}$
- Fast increasing tax ($\tau_0 = 10, \theta = 0.08$): Accelerated extraction
- Slow increasing tax ($\tau_0 = 700, \theta = 0.01$): Postponed extraction
- Acceleration possible for fast increasing tax (Sinn 2010, Edenhofer & Kalkuhl 2010)
Is a Carbon Tax a Robust Policy Instrument?

- Sinn (2008): increasing ad-valorem taxes lead to accelerated resource extraction
- Edenhofer & Kalkuhl (2010): increasing unit tax $\tau = \tau_0 e^{\theta t}$ on carbon
- Green paradox does only occur for critical (τ_0, θ) in Hotelling model with constant extraction costs:

<table>
<thead>
<tr>
<th></th>
<th>Slowly increasing tax $\theta < r$</th>
<th>Tax increases at discount rate $\theta = r$</th>
<th>Fast increasing tax $\theta > r$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timing effect</td>
<td>τ_0 small, $\tau_0 \leq \tau_0^*$</td>
<td>τ_0 large, $\tau_0 > \tau_0^*$</td>
<td>τ_0 small, $\tau_0 \leq \tau_0^*$</td>
</tr>
<tr>
<td>Volume effect</td>
<td>postpone extraction</td>
<td>postpone extraction</td>
<td>None</td>
</tr>
<tr>
<td>Green paradox</td>
<td>none</td>
<td>conservative</td>
<td>none</td>
</tr>
<tr>
<td>Impact on damages</td>
<td>- timing effect</td>
<td>- timing and volume effect</td>
<td>- volume effect</td>
</tr>
<tr>
<td>compared to</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zero-tax case</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Critical initial tax level τ_0^* such that $S_0 = \int_0^\infty D \left(\tau_0^* e^{\theta t} + c \right) dt.$
Mitigation Changes Rents

Mitigation changes scarcity rents:

1. Fossil resource rent is reduced
2. Renewable (land) rent increases
3. Permit (carbon budget) rent increases
Renewable Energy Market Failures

1. **Learning curves suffer from spillovers of experience between firms**
 - Not all innovations can be protected by patents
 - Patent runtime may be suboptimal
 - Network externalities imply economy of scale

Pigovian spillover subsidy (for 100 % spillover rate of learning curve)

\[
\tau_B = - \frac{\gamma}{\nu + \nu \left(\frac{K_B(t)}{\Omega} \right)^\gamma}
\]

For increasing capacity, subsidy decreases in the long run:

\[
\lim_{K_B \to \infty} \tau_B = 0
\]
Renewable Energy Market Failures

1. **Learning curves suffer from spillovers of experience between firms**
 - Not all innovations can be protected by patents
 - Patent runtime may be suboptimal
 - Network externalities imply economy of scale

Pigovian spillover subsidy (for 100 % spillover rate of learning curve)

\[\tau_B = \frac{-\gamma}{\nu + \nu \left(\frac{K_B(t)}{\Omega} \right)^\gamma} \]

(46)

For increasing capacity, subsidy decreases in the long run:

\[\lim_{K_B \rightarrow \infty} \tau_B = 0 \]
Renewable Energy Market Failures

1. Learning curves suffer from spillovers of experience between firms
 - Not all innovations can be protected by patents
 - Patent runtime may be suboptimal
 - Network externalities imply economy of scale

Pigovian spillover subsidy (for 100 % spillover rate of learning curve)

\[\tau_B = -\frac{\gamma}{\nu + \nu \left(\frac{K_B(t)}{\Omega} \right)^\gamma} \] (46)

For increasing capacity, subsidy decreases in the long run:

\[\lim_{K_B \to \infty} \tau_B = 0 \]
Renewable Energy Market Failures

2. **Renewable energy sector pays risk premium ν at the capital market**
 - Small and medium-size firms suffer from liquidity constraints and capital market imperfections (e.g. Hubbard 1998)
 - Investors have lower confidence in newcomer firms
 - Competitiveness of renewable energy depends on political regulation – regulatory uncertainty requires higher risk premium

Few systematic data available for energy sector (which is already highly distorted by regulation), but some illustrative numbers:
- RWE’s cost of debt (2008): 5.25 %
- DESERTEC’s cost of debt: 8 %

Ad-hoc assumption for risk premium: $\nu = 5\%$ in year 2005 and decrease by 1 percentage point per decade.

Pigovian subsidy for suboptimal risk premium: $\tau_B = -\frac{\nu}{r}$
Considerable subsidy rates may be necessary: if $\nu \approx r$, $\tau_B \approx -1$.
Renewable Energy Market Failures

2. Renewable energy sector pays risk premium ν at the capital market

- Small and medium-size firms suffer from liquidity constraints and capital market imperfections (e.g. Hubbard 1998)
- Investors have lower confidence in newcomer firms
- Competitiveness of renewable energy depends on political regulation – regulatory uncertainty requires higher risk premium

Few systematic data available for energy sector (which is already highly distorted by regulation), but some illustrative numbers:

- RWE’s cost of debt (2008): 5.25 %
- DESERTEC’s cost of debt: 8 %

Ad-hoc assumption for risk premium: $\nu = 5\%$ in year 2005 and decrease by 1 percentage point per decade.

Pigovian subsidy for suboptimal risk premium: $\tau_B = -\frac{\nu}{r}$

Considerable subsidy rates may be necessary: if $\nu \approx r$, $\tau_B \approx -1$.
2. **Renewable energy sector pays risk premium \(v \) at the capital market**

- Small and medium-size firms suffer from liquidity constraints and capital market imperfections (e.g. Hubbard 1998)
- Investors have lower confidence in newcomer firms
- Competitiveness of renewable energy depends on political regulation – regulatory uncertainty requires higher risk premium

Few systematic data available for energy sector (which is already highly distorted by regulation), but some illustrative numbers:

- RWE’s cost of debt (2008): 5.25%
- DESERTEC’s cost of debt: 8%

Ad-hoc assumption for risk premium: \(v = 5\% \) in year 2005 and decrease by 1 percentage point per decade.

Pigovian subsidy for suboptimal risk premium: \(\tau_B = -\frac{v}{r} \)

Considerable subsidy rates may be necessary: if \(v \approx r \), \(\tau_B \approx -1 \).
Renewable energy production for several market imperfections:

- Only small deviations from 1st-best
- Renewable energy is most important mitigation option

Optimal renewable energy subsidies:

- BAU requires higher spillover subsidy
- Significant subsidies necessary
Renewable Energy Market Failures

Renewable energy production for several market imperfections:

- Only small deviations from 1st-best
- Renewable energy is most important mitigation option

Optimal renewable energy subsidies:

- BAU requires higher spillover subsidy
- Significant subsidies necessary
Renewable Energy Market Failures

Figure: GDP and consumption losses of mitigation if renewable energy sector suffers from uncorrected learning spillovers and capital risk premiums.
Extension: Learning and Non-learning Technologies

Introduce non-learning backstop energy (i.e. nuclear): \(E_N = A_N K_N \)

1st-best energy mix:
- In the short term: high-cost backstop is cheaper than learning backstop
- In the long term: learning backstop dominates

No renewable energy subsidies:
- Nuclear energy dominates
- No complete crowding out due to limited substitutability
Extension: Learning and Non-learning Technologies

Introduce non-learning backstop energy (i.e. nuclear): \(E_N = A_N K_N \)

1st-best energy mix:
- In the short term: high-cost backstop is cheaper than learning backstop
- In the long term: learning backstop dominates

No renewable energy subsidies:
- Nuclear energy dominates
- No complete crowding out due to limited substitutability
Preliminary Results: Lock-in Effects

Critical parameter: Elasticity of substitution between learning and non-learning technology

- Higher elasticities lead to lock-in: No renewable energy production
- Lock-in causes high consumption losses
Preliminary Results: Lock-in Effects

Critical parameter: Elasticity of substitution between learning and non-learning technology

- Higher elasticities lead to lock-in: No renewable energy production
- Lock-in causes high consumption losses
Imperfect Carbon Pricing

What is the role of renewable subsidies under imperfect carbon pricing?

1. Delayed carbon price: Global carbon price established from 2035 on
2. No carbon price feasible at all

Consider the following policy options for renewable energy sector:

- No additional subsidy
- Optimal 2nd-best subsidy

Modification in model structure

- Reversible ($I_E \in \mathbb{R}$) and irreversible ($I_E \geq 0$) investments in fossil energy sector
- Suppress other externalities (no learning spillovers; no investment risk premium)
Imperfect Carbon Pricing

What is the role of renewable subsidies under imperfect carbon pricing?

1. Delayed carbon price: Global carbon price established from 2035 on
2. No carbon price feasible at all

Consider the following policy options for renewable energy sector:

- No additional subsidy
- Optimal 2nd-best subsidy

Modification in model structure

- Reversible ($I_E \in \mathbb{R}$) and irreversible ($I_E \geq 0$) investments in fossil energy sector
- Suppress other externalities (no learning spillovers; no investment risk premium)
Imperfect Carbon Pricing

What is the role of renewable subsidies under imperfect carbon pricing?

1. Delayed carbon price: Global carbon price established from 2035 on
2. No carbon price feasible at all

Consider the following policy options for renewable energy sector:

- No additional subsidy
- Optimal 2nd-best subsidy

Modification in model structure

- Reversible \(I_E \in \mathbb{R} \) and irreversible \(I_E \geq 0 \) investments in fossil energy sector
- Suppress other externalities (no learning spillovers; no investment risk premium)
Imperfect Carbon Pricing: Supply-side Dynamics

Investments are reversible:

Accelerated extraction (green paradox) when delayed carbon price is anticipated

Investments are irreversible:

Early extraction reduction (from 2020 on) when investments are irreversible and future carbon price is anticipated
Imperfect Carbon Pricing: Supply-side Dynamics

Investments are reversible:

Accelerated extraction (green paradox) when delayed carbon price is anticipated

Investments are irreversible:

Early extraction reduction (from 2020 on) when investments are irreversible and future carbon price is anticipated
Imperfect Carbon Pricing: Consumption Losses

Investments are reversible:

Investments are irreversible:

Investment inertia lowers mitigation costs:
- Delayed carbon price (without subsidy): From 3.4% to 3.2%
- Delayed carbon price (2nd-best subsidy): From 3.1% to 3.0%
- No carbon price: From 10.3% to 4.1%
Imperfect Carbon Pricing: The Rebound Effect

- Renewable subsidies imply higher energy demand
- Green growth due to cheap (subsidized) renewable energy: +5.4%
- High consumption losses (GDP used for renewable energy production): −10.3%
Imperfect Carbon Pricing: The Rebound Effect

- Renewable subsidies imply higher energy demand
- Green growth due to cheap (subsidized) renewable energy: +5.4%
- High consumption losses (GDP used for renewable energy production): \(-10.3\%\)
Imperfect Carbon Pricing: The Rebound Effect

- Renewable subsidies imply higher energy demand
- Green growth due to cheap (subsidized) renewable energy
Isolated vs. Multiple Imperfections

Multiple-market-failure subsidy is lower than the sum of isolated-market-failure subsidy.
Isolated vs. Multiple Imperfections

Figure: Consumption losses for isolated and combined imperfections
Summary

Optimal policy instruments

- Carbon price (tax or permit) – increasing with interest rate
- Learning-curve spillover subsidies – declining with capacity building
- Investment risk subsidy – diminishing with time

The role of renewable energy subsidies

- Lowering mitigation costs (achieve 1st-best solution)
- Preventing possible lock-in into high-cost backstop technology
- Substituting delayed carbon price
- “Subsidy only” policy (without carbon price) feasible but high consumption losses

Investment dynamics: The more irreversible the economic system is...

- the more important is the management of expectations
- the weaker is the Green Paradox under a delayed carbon pricing policy
- the less important are renewable subsidies
Summary

Optimal policy instruments

- Carbon price (tax or permit) – increasing with interest rate
- Learning-curve spillover subsidies – declining with capacity building
- Investment risk subsidy – diminishing with time

The role of renewable energy subsidies

- Lowering mitigation costs (achieve 1st-best solution)
- Preventing possible lock-in into high-cost backstop technology
- Substituting delayed carbon price
- “Subsidy only” policy (without carbon price) feasible but high consumption losses

Investment dynamics: The more irreversible the economic system is...

- the more important is the management of expectations
- the weaker is the Green Paradox under a delayed carbon pricing policy
- the less important are renewable subsidies
Summary

Optimal policy instruments
- Carbon price (tax or permit) – increasing with interest rate
- Learning-curve spillover subsidies – declining with capacity building
- Investment risk subsidy – diminishing with time

The role of renewable energy subsidies
- Lowering mitigation costs (achieve 1st-best solution)
- Preventing possible lock-in into high-cost backstop technology
- Substituting delayed carbon price
- “Subsidy only” policy (without carbon price) feasible but high consumption losses

Investment dynamics: The more irreversible the economic system is...
- the more important is the management of expectations
- the weaker is the Green Paradox under a delayed carbon pricing policy
- the less important are renewable subsidies
Outlook

Next steps – to be published:

- Learning technologies and market failures in the energy system
 - Explore lock-in possibilities (parameter studies)
- Inertia and the role of expectations
 - Irreversible investments / costly deinvestment
 - When is a green paradox realistic?

Future work:

- Government finance issues
 - Exclude lump-sum transfers
 - Introduce government consumption (double dividend)
 - Introduce rent seeking activities (non-benevolent government)
 - Discuss distributional issues (heterogeneous households)
- Uncertainties and policy instruments: what can go wrong?
 - Damage function / cost-benefit framework
 - Weitzman meets Stackelberg
Outlook

Next steps – to be published:

- Learning technologies and market failures in the energy system
 - Explore lock-in possibilities (parameter studies)
- Inertia and the role of expectations
 - Irreversible investments / costly deinvestment
 - When is a green paradox realistic?

Future work:

- Government finance issues
 - Exclude lump-sum transfers
 - Introduce government consumption (double dividend)
 - Introduce rent seeking activities (non-benevolent government)
 - Discuss distributional issues (heterogeneous households)
- Uncertainties and policy instruments: what can go wrong?
 - Damage function / cost-benefit framework
 - Weitzman meets Stackelberg
Outlook

Next steps – to be published:

- Learning technologies and market failures in the energy system
 - Explore lock-in possibilities (parameter studies)
- Inertia and the role of expectations
 - Irreversible investments / costly deinvestment
 - When is a green paradox realistic?

Future work:

- Government finance issues
 - Exclude lump-sum transfers
 - Introduce government consumption (double dividend)
 - Introduce rent seeking activities (non-benevolent government)
 - Discuss distributional issues (heterogeneous households)

- Uncertainties and policy instruments: what can go wrong?
 - Damage function / cost-benefit framework
 - Weitzman meets Stackelberg
Outlook

Next steps – to be published:

- Learning technologies and market failures in the energy system
 - Explore lock-in possibilities (parameter studies)
- Inertia and the role of expectations
 - Irreversible investments / costly deinvestment
 - When is a green paradox realistic?

Future work:

- Government finance issues
 - Exclude lump-sum transfers
 - Introduce government consumption (double dividend)
 - Introduce rent seeking activities (non-benevolent government)
 - Discuss distributional issues (heterogeneous households)
- Uncertainties and policy instruments: what can go wrong?
 - Damage function / cost-benefit framework
 - Weitzman meets Stackelberg
Thank You for Your Attention!

For further questions contact:

Matthias Kalkuhl: kalkuhl@pik-potsdam.de
Ottmar Edenhofer: edenhofer@pik-potsdam.de

Potsdam Institute for Climate Impact Research.
Potsdam, Germany.
Backup Slides
Imperfect Carbon Pricing: Subsidies and Carbon Prices

Investments are reversible:

Investments are irreversible: