International Research Workshop on Institutions for Climate Governance

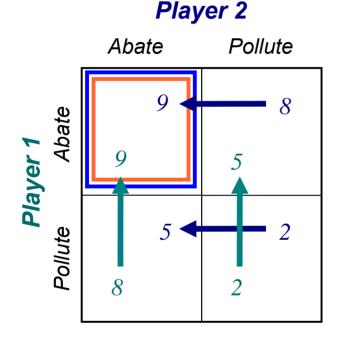
Enhancing Cooperation – New Challenges

Ottmar Edenhofer

March 21st 2010

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

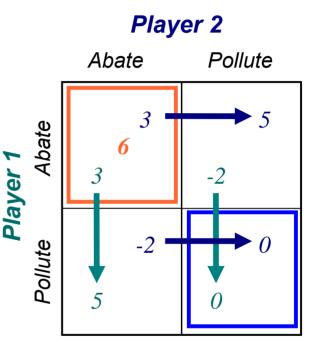
Working Group III Mitigation of Climate Change



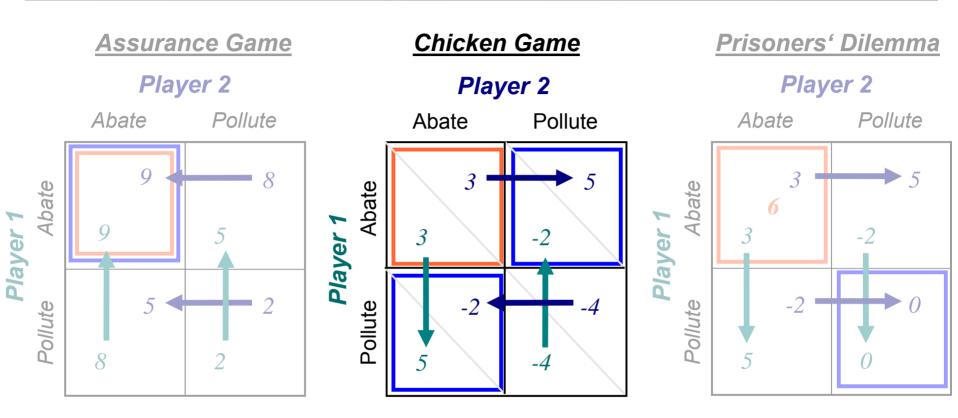
Overview

- 1. What is the structure of the "global warming game"?
- 2. Changing the rules of the game:
 - a. Rewards
 - b. Punishment
- 3. Summary and Outlook

Co-Benefits – an Assurance Game?

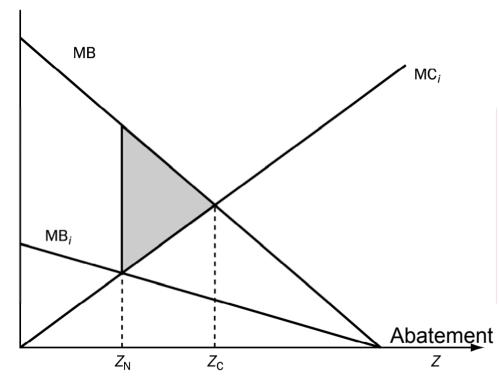


 Nash Equilibrium and Social Optimum coincide


- Attempt to create focal point on Social Optimum:
 - 'Co-Benefits of mitigation so high that unilateral abatement pays, irrespective of others' decision'
 - \rightarrow A mere issue of proper perception
- → Co-Benefits matter, but really large enough to resolve PD automatically?
- → The Hartwell-Paper argues the climate policy should be an indirect outcome of achieving cobenefits

Public Good Provision as a Prisoners' Dilemma

- Provision of a global Public Good:
 - (Same) benefits for every one, say e.g. 5 (per contributing party!)
 - (Same) costs to contribute, say e.g. 7
- Game Structure of the **Prisoners' Dilemma:**
 - Individual rationality for players to act selfishly
 - → Incentive to free-ride
 - → Suboptimal outcome
- If abating global warming resembles a Public Good, then climate negotiations face a Prisoners' Dilemma



Public Good Provision as a Prisoners' Dilemma

- Prisoners' Dilemma (PD) –IEA→ Chicken Game (CG) (Carraro/Siniscalco 1993, Barrett 1994)
- Chicken Game shows partially cooperative behaviour

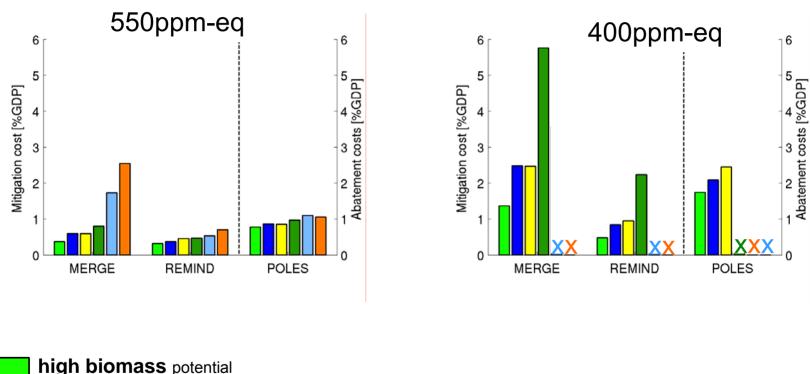
What determines gains from international cooperation?

MB_i : marginal benefits for *i*

 MC_i : marginal costs for *i*

MB : marginal benefits across all countries

full cooperation exceeds noncooperative abatement efficiency gain from full cooperation (shaded triangle)

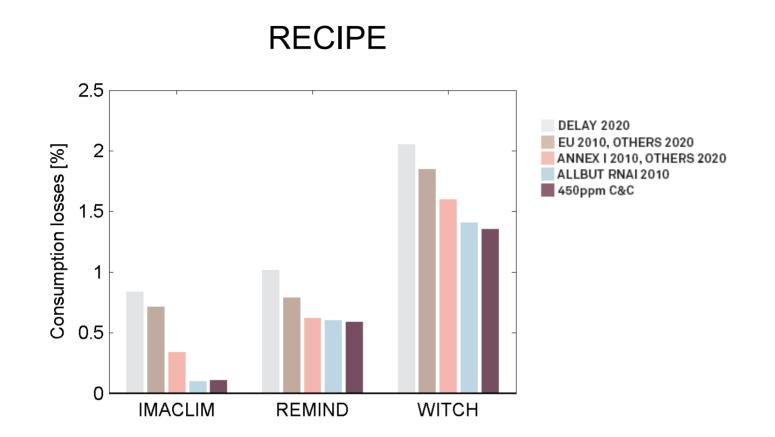

Figure 10.10 A comparison of the non-cooperative and full cooperative solutions to an environmental public good problem

Source: Perman et al. 2003

A theory of global inaction so far?

- The assurance game assumption has become popular. However, it is not justified due to the fact that it exaggerates the impact of cobenefits.
- The prisoner's dilemma can be transformed in a chicken game. However, the paradox of IEA is not resolved: The number of signatories to the self-enforcing IEA will be larger the smaller is the total gain to cooperation.
- Potential candidates: reciprocity, norms, issue linking, credible punishments, heterogeneity of costs and benefits across nation states, firms etc., dynamic evolution of costs and benefits.
- → How well do we know cost, benefit of abatement and the structure of the agreement?

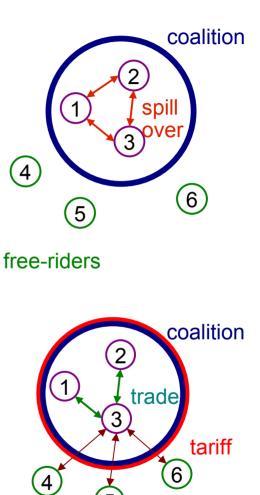
More technological options reduce the costs...



high biomass potential
 with all options
 no nuclear beyond baseline
 low biomass potential
 no CCS
 no renewables beyond baseline

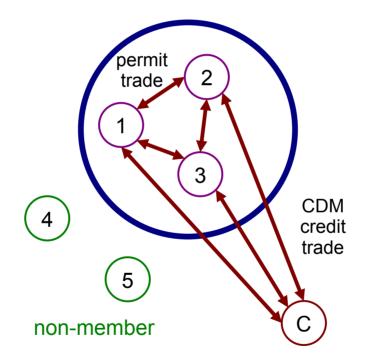
➔ Robust ranking of options

Knopf, Edenhofer et al. (2009)


Delayed participation increases costs...

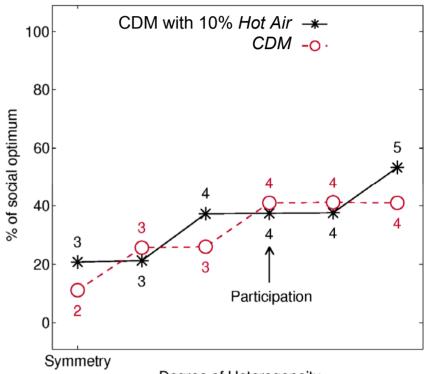
- → Global costs below 2.5% GDP losses for low stabilisation
- → Costs of Delay (2030 Infeasible)
- → Uncertainy: Refine Modeling + Need for real world experiments

- The impact of the risk of climate damages with potential threshold effects has to be taken into account
- The impact of technological change and delayed participation on the pay-off matrix is unclear. These aspects are not well-explored in the literature.
- The structure and the evolution of the agreement.
- A dynamic framework is needed because the impact of increasing damages and change costs due to technological change and delayed participation on the gains of cooperation are unclear!


- Tuning incentives in MICA by treaty design:
 - Positive incentive: *Research Cooperation*
 - R&D spill-over within coalition
 - Participation rises with spill-over intensity
 - Improving *productivity* by R&D shown to be a stronger incentive than improving *abatement*
 - Negative incentive: Import Tariffs
 - · Coalition levies tariffs on imports from free-riders
 - Tariffs induce up to full cooperation
 - Tariffs are individually + socially rational
- Examples, where IEA design changed the game from a dilemma to an assurance game
- For details see
 - Lessmann et al. (2009), Economic Modelling
 - Lessmann and Edenhofer (2010), Resource and Energy Economics

free-riders

Reward: Emission Trading outside Coalition (I)


 Coalition Design enables permit trade with uncapped regions ("improved CDM")

Reward: Emission Trading outside Coalition (II)

Preliminary results:

- When CDM negotiated *together* with abatement targets
 → more stringent targets result
 - \rightarrow stronger incentive to free-ride
 - \rightarrow smaller stable coalitions
- When CDM is negotiated *ex-post:*
 - Positive effect on coalition stability
 - Increase in participation, when volume of traded CDM rises due to heterogeneity between players
 - Hot air (here: 10 percent)
 - Raises participation
 - Sacrifices some environmental effectiveness

Degree of Heterogeneity

Source: own calc., Lessmann/Marschinski/Finus/Edenhofer

Summary and outlook

- The fundamental structure of the game: A Prisoners Dilemma or Chicken Game, despite attempts to create new focal points
- But: Social Dilemma payoff might be changed by a variety of strategies:
 - Rewards, e.g. research partnership, offsetting mechanisms, ...
 - Punishment, e.g. tariffs, border tax adjustments, ...
- Important Research Questions:
 - 1. How to enhance Cooperation after Copenhagen?
 - 2. What is the appropriate formulation and quantitative specification of the payoff matrix and structure of negotiations?
 - (Dynamic game, uncertainty on costs and benefits)
 - 3. The empirical design, institutional feasibility and transaction costs of rewards and punishments