Model Framework 00000 000 0000000 00

Results 0000000 00000000 000 Conclusion 000

Integrated Policy Assessment in the Context of Global Warming

Ottmar Edenhofer Matthias Kalkuhl and Kai Lessmann

Potsdam Institute for Climate Impact Research. Potsdam, Germany.

March 8, 2010

Model Framework 00000 000 0000000 00 Results 0000000 00000000 000 Conclusion 000

Current Policy Debates

The role of renewable subsidies in the context of carbon pricing

- Schould renewable energy be subsidized ?
 - No price only crowd (Sinn, Nordhaus)
 - Yes hybrid crowd (Acemoglou)
- Can renewable subsidies replace a carbon price?
- Can renewable subsidies improve a delayed carbon pricing policy?

The role of technology instruments and renewable subsidies

- Are renewable subsidies necessary if no optimal technology policy (in production sector) is feasible? (Nordhaus)
- Are higher carbon prices welfare increasing if no optimal technology policy is feasible? (Hart)

The role of timing

- Can capital taxes lower resource extraction? (Sinn)
- Suboptimal (private) risk premiums in intertemporal markets? (Sinn)

Integrated policy assessment model (IPAM) to answer these questions

Model Framework 00000 000 0000000 00

Results 0000000 00000000 000 Conclusion 000

Outline

Introduction

Model Framework

Game-theoretic Setting Production Technologies Decentralized Equilibrium Calibration and Implementation

Results

First-Best Optimum Second-best Carbon Pricing Instruments Second-best Technology Instruments

Conclusion

Model Framework 00000 000 0000000 00

Results 0000000 00000000 000 Conclusion 000

Introduction: Policy Instruments against Global Warming

- Optimization of two stocks:
 - Fossil resources in the ground
 - GHG concentration in the atmosphere
- IAMs neglect strategical interactions
- Climate policy instruments focus on the demand-side
- Consider intertemporal incentive structure explicitly (Sinn, green paradox)
- Distribution and transformation of rents
- Interplay of multiple market failures (carbon pricing, technology)
- 2nd-best policy instruments and policy option values

Results 0000000 00000000 000 Conclusion 000

Model Framework

- Dynamic Stackelberg game: Government as Stackelberg Leader
- Decentralized general equilibrium model
- Endogenous growth model (Ramsey)
- Endogenous technological change
- Finite fossil resource stock
- Carbon-Budget approach (cost-benefit approach to be added)

Model Framework

Results 0000000 00000000 000

Stackelberg Leader

Conclusion 000

Game-theoretic Structure

Stackelberg Follower in Nash Equilibrium

Economy-wide and sectoral implementation of instruments, e.g.:

- Capital taxes: production, energy, resource sectors
- Energy taxes: fossil and renewable energy

Model Framework

Results 0000000 00000000 000 Conclusion 000

Government's Optimization Problem (Stackelberg leader)

Ojective:

$$\max_{\{\tau_i,P\}} \quad \int_0^T L \ u(C/L) e^{-\rho t} dt \tag{1}$$

Constraints:

- Political: mitigation target
- Technological: production technologies
- *Strategical*: reaction functions of followers: analytic first-order conditions from intertemporal optimization
- Control variables / policy instruments:
 - Price instruments: taxes and subsidies $\{\tau_i\}$ on factor prices
 - Quantity instruments: permits P

Results 0000000 00000000 000 Conclusion 000

Policy Instruments

Price instruments

- Ad-valorem and unit taxes on factor prices for capital, labor, energy and resources
- E.g. net resource price for resource owners and net interest rate for households read:

$$\bar{p}_R = p_R - \tau_R \tag{2}$$

$$\bar{r} = r(1 - \tau_K) \tag{3}$$

Quantity instrument / carbon bank

- Restrict emissions for economy through permits P
- Allow for intertemporal trading of permits

Government runs clear budget: tax incomes and subsidy expenditures are compensated by lump-sum transfers

O. Edenhofer

Model Framework

Results 0000000 00000000 000 Conclusion 000

Carbon budget approach

- Mitigation target: 2C with p > 67%,
- Meinshausen et al. (2009): Cumulative emissions until 2050 \leq 200*GtC*

Integrated Policy Assessment

Results 0000000 00000000 000 Conclusion 000

Production Technologies

Model Framework

Results 0000000 00000000 000 Conclusion 000

Endogenous Technological Change

Learning-by-Doing (Romer 1986):

- Investments into firm's capital stock K^i increases sector-wide factor productivity A
- General functional form: $A = A_0 + \xi \left(\sum_i K^i\right)^{\varsigma}$
- Individual firms do not anticipate this effect, i.e. $\frac{\partial A}{\partial K^{i}} = 0$ (underinvestment)

• Pigouvian spillover subsidy internalizes positive investment externalities Investment spillovers in production sector:

- Labor-productivity increasing: $A_L = A_L(K_Y)$
- Energy-productivity increasing $A_E = A_E(K_Y)$

...and in renewable sector:

• Productivity increasing: $A_{E,ren} = A_E(K_{E,ren})$

Results 0000000 00000000 000 Conclusion 000

Endogenous Technological Change

Labor productivity augmenting ETC:

$$A_L = A_{L,0} + \xi_L K_Y^{\varsigma_L} + A_{L,exog} \tag{4}$$

$$\hat{A}_{L,exog} = \frac{g}{e^{\zeta t} - g} \tag{5}$$

$$A_{L,exog}(0) = A_{L,exog,0} \tag{6}$$

Energy productivity augmenting ETC:

$$A_E = A_{E,0} + \xi_E K_Y^{\varsigma_E} \tag{7}$$

Renewable energy production augmenting ETC:

$$A_{E,b} = A_{E,b,0} + \xi_{E,b} K_{E,b}^{\varsigma_{E,b}}$$

$$\tag{8}$$

Model Framework

Results 0000000 00000000 000 Conclusion 000

Reaction Function: Households (1)

Objective:

$$\max_{\{C\}} \int_0^T L \ u(C/L) e^{-\rho t} dt \tag{9}$$

Constraints:

$$u = \frac{\left(\frac{C}{L}\right)^{1-\eta}}{1-\eta} \tag{10}$$

$$C = wL + (1 - \tau_{\mathcal{K}})r\mathcal{K} - I + \Pi + \Gamma$$
(11)

$$K = \sum_{j} K_{j} \quad I = \sum_{j} I_{j} \quad \Pi = \sum_{j} \Pi_{j}$$
(12)

$$\dot{K} = I - \delta K \tag{13}$$

$$K(0) = K_0 \tag{14}$$

 $\Gamma =$ lump-sum tax; $\Pi_j =$ sectoral profits

Model Framework

Results 0000000 00000000 000 Conclusion 000

Reaction Function: Households (2)

Hamiltonian:

$$H = L u(C/L) + \lambda_H (wL + (1 - \tau_K)rK - C + \Pi + \Gamma - \delta K)$$
(15)

First-order and transversality conditions:

$$\frac{\partial u}{\partial C} = \lambda_H \tag{16}$$

$$\dot{\lambda}_{H} = \lambda_{H}(\rho + \delta - (1 - \tau_{\kappa})r).$$
(17)

$$0 = \lambda_H(T)K(T) \tag{18}$$

Ramsey-rule:

$$r(1-\tau_{\mathcal{K}}) - \delta = \rho + \eta \hat{C} \tag{19}$$

Results 0000000 00000000 000 Conclusion 000

Reaction Function: Resource Sector (1)

Objective:

$$\max_{\{K_R\}} \int_0^\infty \Pi_R \ e^{-\int_0^t \tilde{r} + \gamma \ ds} dt$$
 (20)

Constraints:

$$\Pi_R = (p_R - \tau_R)R - rK_R \tag{21}$$

$$R = \kappa K_R \tag{22}$$

$$\kappa = \frac{\chi_1}{\chi_1 + \chi_2 \left(\frac{S_0 - S}{2}\right)^{\chi_4}} \tag{23}$$

$$\dot{S} = -R \tag{24}$$

$$\tilde{r} = (1 - \tau_K)r - \delta \tag{25}$$

$$S(0) = S_0 \tag{26}$$

Results 0000000 00000000 000 Conclusion 000

Rogner Curve

Productivity of capital κ decreases with cumulative extraction $S_0 - S$:

$$\kappa(S) = \frac{\chi_1}{\chi_1 + \chi_2 \left(\frac{S_0 - S}{\chi_3}\right)^{\chi_4}} , \quad \frac{\partial \kappa(S)}{\partial S} > 0$$
(27)

Model Framework

Results 0000000 00000000 000 Conclusion 000

Reaction Function: Resource Sector (2)

Hamiltonian:

$$H_{R} = (p_{R} - \tau_{R})\kappa K_{R} - rK_{R} - \lambda_{R}\kappa K_{R}$$
(28)

First-order and transversality conditions:

$$\lambda_R = p_R - \tau_R - r/\kappa \tag{29}$$

$$\dot{\lambda}_{R} = \tilde{r}\lambda_{R} - (p_{R} - \tau_{R} - \lambda_{R})K_{R}\frac{\partial\kappa}{\partial S}$$
(30)

$$\lambda_R(T)S(T) = 0 \tag{31}$$

 Model Framework

 ○○○○

 ○○○

 ○○○○

 ○○○○

 ○○○○

Results 0000000 00000000 000 Conclusion 000

Production Sector

Objective and constraints:

$$T_{Y} = Y - (1 + \tau_{K,Y}) r K_{Y} - (1 + \tau_{L}) w L - p_{E,f} E_{f} - p_{E,b} E_{b}$$
(32)

$$Y = CES(Z, A_E E) , \quad Z = CES(K_Y, A_L L) , \quad E = CES(E_f, E_b)$$
(33)

First-order conditions:

$$(1 + \tau_{K,Y})r = \frac{\partial Y}{\partial K_Y}$$
(34)
$$(1 + \tau_L)w = \frac{\partial Y}{\partial L}$$
(35)
$$p_{E,f} = \frac{\partial Y}{\partial E_f}$$
(36)
$$p_{E,b} = \frac{\partial Y}{\partial E_b}$$
(37)

 Model Framework

 ○○○○○

 ○○○○○○○●

 ○○○○○○○●

Results 0000000 00000000 000 Conclusion 000

Energy Sectors

Fossil energy:

$$\Pi_{E,f} = p_E(1 - \tau_{E,f})E_f(K_{E,f}, R) - rK_{E,f} - (p_R + p_C)R$$
(38)

$$p_R + p_C = p_{E,f} (1 - \tau_{E,f}) \frac{\partial E_f}{\partial R}$$
(39)

$$r = p_{E,f} (1 - \tau_{E,f}) \frac{\partial E_f}{\partial K_{E,f}}$$
(40)

Renewable energy:

$$\Pi_{E,b} = p_{E,b}(1 - \tau_{E,b})E_b - rK_{E,b}$$
(41)

$$E_b(1 - \tau_{E,b}) = \kappa_b A_{E,b} K_{E,b}^{\nu} N^{\nu - 1}$$
(42)

$$r = \rho_{E,b} \frac{\partial E_b}{\partial K_{E,b}} \tag{43}$$

Model Framework
00000
000
000000
●0

Results 0000000 00000000 000 Conclusion 000

Calibration and Implementation

Calibration:

- Model results grossly harmonized with ReMIND results and parameters from literature (e.g. elasticities of substitution)
- Carbon budget: 450 GtC for fossil resources (without CCS)
- Time horizon: 2005-2150
- Population: increase up to 9.5 billion
- Mitigation costs: 2.2 % GDP losses; 3.8 % consumption losses

Elasticities of substitution		Utility function	
Capital-Labor	0.70	STPR ρ	0.03
Composite-Energy	0.35	EIS η	1.00
Fossile-Renewable	2.00		
Capital-Resources	0.15	Initial values	
Capital-Land	1.00	K_0 (trill USD)	98.69
Depreciation δ	0.03	S_0 (GtC)	4,000

Model Framework
00000
000
000000
0●

Results 0000000 00000000 000 Conclusion 000

Implementation Details

- Discrete NLP model
- Maximize welfare subject to technological, political and strategical constraints
- Find optimal instruments numerically with GAMS
- Restrict policy space by restricting specific taxes in GAMS (i.e. $\tau_R = 0$: do not use carbon taxes)

Model Framework 00000 000 0000000 00 Results •000000 0000000 000 Conclusion 000

Optimal Policy Instruments

- Carbon price (tax or permit price)
- Investment subsidy (production sector)
- Renewable subsidy (renewable energy sector)

Model Framework 00000 000 0000000 00 Conclusion 000

Carbon Pricing within the Carbon-Budget Approach

Why do we observe a Hotelling carbon price?

• Optimal carbon price within cost-benefit analysis (Hoel and Kverndokk 1996):

$$\tau_R = \int_t^\infty -d_S(S(\xi))e^{r(t-\xi)} \ d\xi$$

- Carbon budget is a politically created exhaustible resource
- Optimal carbon tax is a Hotelling scarcity price:

$$\tau_R = \tau_0 e^{rt}$$

- Free permit trading also leads to Hotelling price (Kling and Rubin 1996)
- Carbon-Budget Approach does not achieve an intertemporally efficient allocation of climate damages

Model Framework 00000 000 0000000 00 Results 0000000 0000000 000 Conclusion 000

Is a Carbon Tax a Robust Policy Instrument?

- Regulator imposes exponentially increasing ad-hoc carbon tax: $au= au_{0}e^{ heta t}$
- Fast increasing tax ($au_0 = 10, heta = 0.08$): Accelerated extraction
- Slow increasing tax ($\tau_0 = 700, \theta = 0.01$): Posponed extraction
- Model resuluts confirm Sinn (2008) and Kalkuhl and Edenhofer (2010)

Model Framework 00000 000 0000000 00 Results

Conclusion 000

Is a Carbon Tax a Robust Policy Instrument?

- Sinn (2008): increasing ad-valorem taxes lead to accelerated resource extraction
- Kalkuhl and Edenhofer (2010): increasing unit tax $au = au_0 e^{ heta t}$ on carbon
- Green paradox does only occur for critical (τ_0, θ) in Hotelling model without extraction costs:

	Slowly increasing tax $\theta < r$		Tax increases at discount		Fast increasing tax	
			rate		$\theta > r$	
			$\theta = r$			
	τ_0 small	τ_0 large	τ_0 small	τ_0 large	τ_0 small	τ_0 large
	$\tau_0 \leq \tau_0^*$	$\tau_0 > \tau_0^*$	$\tau_0 \leq \tau_0$	$\tau_0 > \tau_0^*$	$\tau_0 \leq \tau_0^*$	$\tau_0 > \tau_0^*$
Timing effect	postpone	postpone	none	none	accelerate	accelerate
	extraction	extraction			extraction	extraction
Volume effect	none	conservative	none	conservative	none	conservative
Green paradox	none	none	none	none	yes	ambiguous
Impact on	-		none	-	++	-/+
damages	timing effect	timing and		volume effect	timing effect	timing vs.
compared to		volume effect				volume effect
zero-tax case						

Critical initial tax level τ_0^* such that $S_0 = \int_0^\infty D\left(\tau_0^* e^{\theta t}\right) \ dt$.

Model Framework 00000 000 0000000 00 Results 0000000 0000000 000 Conclusion 000

Changing Rents

Mitigation changes scarcity rents:

- 1. Fossil resource rent is reduced
- 2. Renewable (land) rent increases
- 3. Permit (carbon budget) rent increases

Model Framework 00000 000 0000000 00 Results 0000000 0000000 000 Conclusion 000

The Size of Market Failures

- Investment spillovers (production sector)
- Investment spillovers (renewable energy sector)
- Insecure property rights (resource sector)

• Mitigation makes renewable spillovers more severe (compared to BAU)

Model Framework 00000 000 0000000 00 Results 0000000 0000000 000 Conclusion 000

Second-best Instruments

Why analyze second-best instruments?

Optimal policies not always feasible in practice due to *additional constraints* for the government:

- Carbon price restriction (infeasible or delayed)
- Innovation and technology policy (asymmetric and costly information)
- Further political economy aspects (commitment, tax system, rent seeking)

In the following, we study alternative policies:

- 1. 2nd-best carbon pricing instruments (no optimal carbon price feasible)
- 2. 2nd-best technology instruments (on optimal subsidies feasible)

Model Framework 00000 000 0000000 00 Results

Conclusion 000

Carbon Pricing Instruments

In the following: no carbon price; but technology instruments

- Tax on fossil energy
- Capital tax on entire economy
- High renewable subsidy
- Delayed carbon pricing (with additional renewable subsidy)

Model Framework 00000 000 0000000 00 Results

Conclusion 000

Capital Taxes (Sinn 2008)

- Capital source tax for resource owners cannot change cumulative extraction (transversality condition)
- 80% tax leads to 450 GtC extraction until 2100
- But economy is not decarbonized (increasing resource extraction)
- 20% economy-wide capital tax: little reduction, slow down economic growth

Model Framework 00000 000 0000000 00 Results

Conclusion 000

Capital Taxes (2nd-best)

Can capital taxes achieve the carbon budget without carbon pricing?

- High capital tax necessary
- 2nd-best capital tax stalls economic growth completely
- 60.5 % GDP and 51.8 % consumption losses

Model Framework 00000 000 0000000 00 Results

Conclusion 000

Renewable Subsidies (2nd-best)

Can renewable subsidies achieve the carbon budget without carbon pricing?

- High subsidy (up to 50 % of GDP used for subsidizing)
- Renewable energy price falls below fossil energy price

Model Framework 00000 000 0000000 00 Results

Conclusion 000

Renewable Subsidies (2nd-best)

- 'Green growth' due to cheap energy
- 7.3 % consumption losses compared to 1st-best (GDP is used for up-scaling renewable energy)

Model Framework 00000 000 0000000 00 Results

Conclusion 000

Renewable Subsidies (2nd-best)

- Rebound effect:
- Renewable subsidies imply higher fossil energy demand

Model Framework 00000 000 000000 00 Results

Conclusion 000

Delayed Carbon Pricing (2nd best)

Can renewable subsidies reduce welfare losses of a delayed carbon pricing policy?

- Global carbon price established from 2035 on: 0.6 % consumption losses
- High early extraction; carbon price starts at higher level
- Additional renewable subsidies: only 0.1 % consumption losses

Model Framework 00000 000 0000000 00 Results

Conclusion 000

Delayed Carbon Pricing (2nd best)

Model Framework 00000 000 0000000 00 Results

Conclusion 000

Second-best Technology Instruments

In the following: no (optimal) technology instruments; but carbon price

- First-best technology policy (TP) in production sector might not be feasible
- Economy-wide capital subsidy and renewable subsidies as 2nd-best option
- Higher carbon prices as substitute for missing renewable subsidies

Model Framework 00000 000 0000000 00 Results

Conclusion 000

Capital Subsidies (2nd-best)

- Economy-wide capital subsidy approx. sectoral Pigouvian investment subsidy
- Welfare losses due to investment distortions in other sectors
- Optimal renewable subsidy has to be lower than Pigouvian level

Model Framework 00000 000 0000000 00 Results

Conclusion 000

Renewable Subsidies (2nd-best)

If spillovers in production sector cannot be internalized:

- Pigouvian renewable subsidy is welfare-improving
- Optimal renewable subsidy is higher than Pigouvian level

Model Framework 00000 0000000 0000000

Results 0000000 00000000 000 Conclusion •00

Summary

Main results:

- Optimal instruments: carbon price (tax or permit) and spillover subsidies
- Market failure in renewable sector becomes more severe under mitigation
- Renewable subsidies have important role:
 - Lowering mitigation costs
 - Substituting missing or delayed carbon price
- Capital taxes dilute economic growth
- Higher carbon pricing is a poor substitute for renewable subsidies

Approach is capable to integrate several market failures

- Climate externality
- Technological spillovers
- Insecure property rights

Model Framework 00000 000 0000000 00

Results 0000000 00000000 000 Conclusion OOO

Outlook

Several model extensions:

- Fine-tuning calibration
 - Technological realism ?
- Introduce damage function
 - Cost-benefit framework
- Irreversible investments / costly deinvestment
- Exclude lump-sum transfers
 - Rent seeking aspects
- Introduce government consumption
 - Public finance
 - Double-dividend
- Transaction and information costs (monitoring)

Model Framework 00000 000 0000000 00 Results 0000000 00000000 000 Conclusion

Thank You for Your Attention!

For further questions contact:

Matthias Kalkuhl: kalkuhl@pik-potsdam.de Ottmar Edenhofer: edenhofer@pik-potsdam.de

Potsdam Institute for Climate Impact Research. Potsdam, Germany.

Backup Slides

Delayed Carbon Pricing

Resource Expropriation Risk

Carbon Pricing as Second-best Technology Instrument

Mitigation

Market Failures: Rent (BAU and RED)

