Carbon Taxes vs. Carbon Trading

Contributing authors:

Ottmar Edenhofer, Robert Pietzcker, Matthias Kalkuhl, Elmar Kriegler, Steffen Brunner, Christian Flachsland, Gunnar Luderer, Jan Steckel

Global Forum on China Economics of Climate Change Beijing, 12th September 2009

Prof. Dr. Ottmar Edenhofer

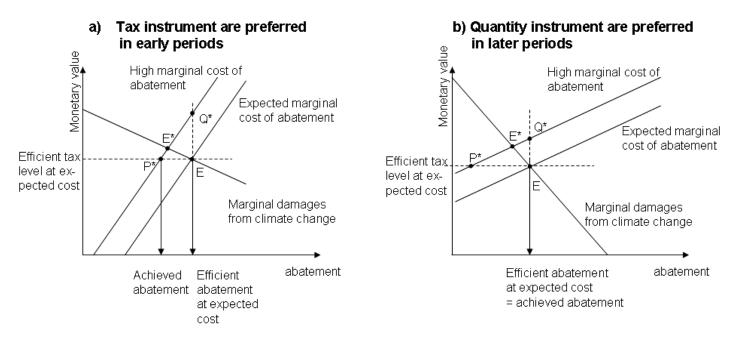
INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Market externality on the largest scale seen by humankind

- Long persistence (>1000 years) of warming & ocean acidification from anthropogenic CO₂ emissions
- Large-scale global impacts with possibility of abrupt climate change
- Mitigating CO₂ emissions requires innovation and restructuring of long-lived capital stocks → long lead time for mitigation

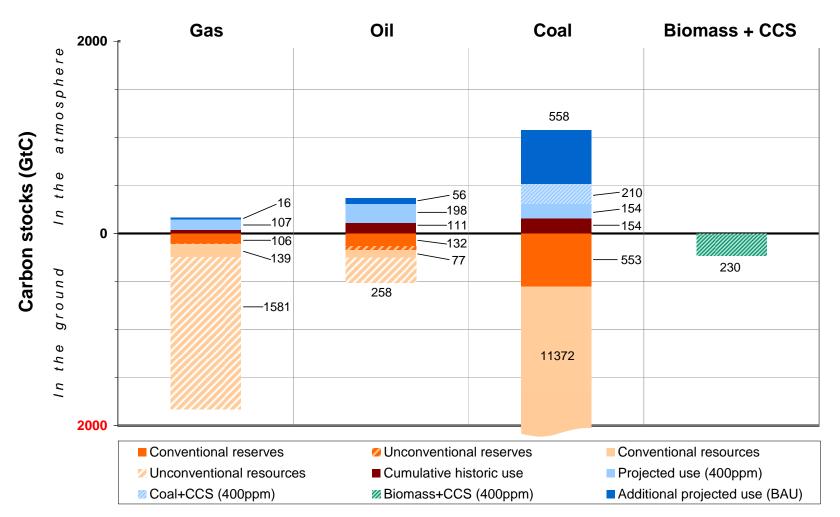
Economic instruments to internalize "social costs of carbon"

Carbon tax vs. cap-and-trade of carbon emissions


1. Putting a Price on Carbon: Carbon Tax vs. Cap & Trade

- Price instruments and the Green Paradox
- Quantity instruments and the Carbon Budget Approach
- 2. International Carbon Markets and Lessons from EU ETS
- 3. Technology Policy
- 4. Options and Opportunities for China

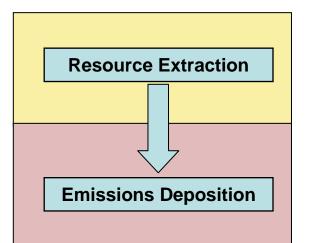
Why Weitzman is the Wrong Framework


- Weitzman criteria for static pollution problem
 - Dynamic stock-pollutant problem: Quantity instrument performs better in the long run (Newell and Pizer 2003)

 Weitzman does not consider supply-side dynamics and strategic behavior: Green paradox (Sinn 2008)

The Supply-Side of Global Warming


Cumulative historic carbon consumption (1750-2004), estimated carbon stocks in the ground, and estimated future consumption (2005-2100) for business-as-usual (BAU) and ambitious 400-ppm-CO2-eq. scenario.


Ottmar Edenhofer Potsdam Institute for Climate Impact Research Source: Kalkuhl, Edenhofer and Lessmann 2009

Lessons from the "Green Paradox"

- Increasing resource taxes change time path of net resource price
 - time-path of extraction is changed
 - Pigouvian taxes on emissions work similar to resource taxes

Dynamic (non-linear) Pigouvian tax

Decreasing cash flow tax or subsidies on non-extraction

Capital source tax

Emissions trading scheme

Conventional Pigouvian tax cannot solve the incentive problem for stock-pollutant \rightarrow inefficient

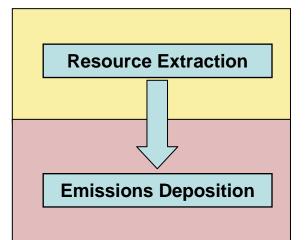
i-th resource owner's problem:

$$\max_{R_t^i} \int_0^\infty (p_t - g^i(S_t^i) - \tau_t) R_t^i e^{-rt} dt$$

$$p - resource price$$

 $R - fossil resources$
 $S - resource stock$
 $g - extraction costs$
 $r - unit tax$

Pigouvian tax:


$$\tau_t = \tau(S_t) = \frac{f_S}{r}$$

How do resource owners anticipate the change of r?

Pigouvian tax changes with aggregated, cumulative extraction!

But resource owners do only see a weak (or even no) relation between individual extraction and aggregated extraction

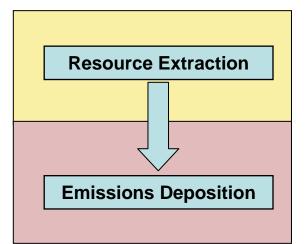
Dynamic (non-linear) Pigouvian tax

Decreasing cash flow tax or subsidies on non-extraction

Capital source tax

Emissions trading scheme

Hotelling rule for the *i*-th resource owner with *n* identical resource owners and conventional Pigouvian tax:



- Acceleration of extraction due to $f_{SS} < 0$
- Tax is inefficient and ineffective
- Resource sector suffers from internal public good problem with respect to $r(S_t)$

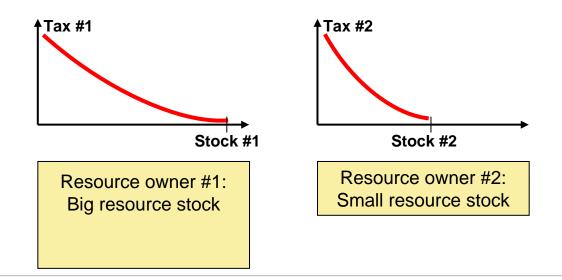
$$\tau(S_t) = \tau(\sum_{i=1}^n S_t^i) = \frac{f_S(\sum_{i=1}^n S_t^i)}{r}, \quad \dot{S}_t^i = R_t^i$$

n=1	Correct anticipation of damages Tax as feedback instrument	$r = \frac{\dot{p} + f'_s}{p - g}$
n=∞	Only time-path is anticipated Tax as open-loop instrument	$r = \frac{\dot{p} + f_s + \frac{f_{ss}}{r}}{p - g(S)}$

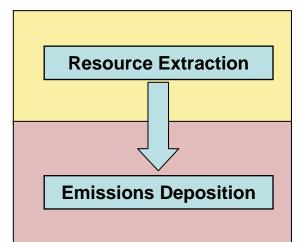
Dynamic (non-linear) Pigouvian tax

Decreasing cash flow tax or subsidies on non-extraction

Capital source tax


Emissions trading scheme

Dynamic (non-linear) Pigouvian tax is optimal, but difficult to implement

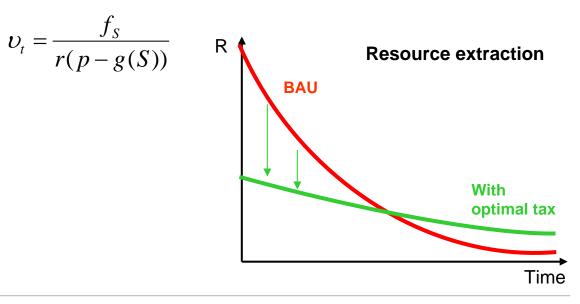

$$\tau(S_t^i) = \frac{f_s(nS_t^i)}{r}$$

Pigouvian tax for i-th resource owners (*n* identical resource owners)

- Tax changes with individual cumulative extraction
- Resource owners have to anticipate dynamic tax rule

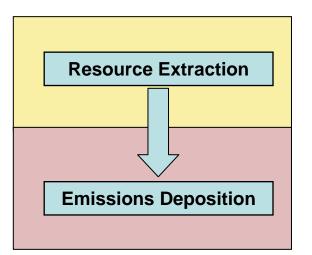
Dynamic (non-linear) Pigouvian tax

Decreasing cash flow tax or subsidies on non-extraction


Capital source tax

Emissions trading scheme

Decreasing cash flow tax or subsidies on nonextraction: Commitment and calculation problems


$$\dot{\theta}_{t} = \frac{-f_{S}^{*}}{p^{*} - g(S^{*})}(1 - \theta_{t}) < 0$$

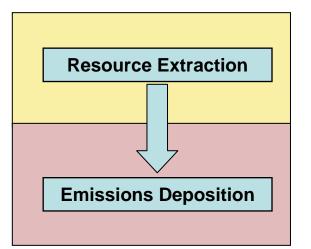
Capital source tax: Limited effectiveness and distortions on capital markets.

Lessons from the "Green Paradox"

Conventional Pigouvian tax

Dynamic (non-linear) Pigouvian tax

Decreasing cash flow tax or subsidies on non-extraction


Capital source tax

Emissions trading scheme

- Carbon price depends on strategic behavior of the fossil resource sector ("Green Paradox")
 - Resource owners anticipate tax path and change their extraction
 - Internalizing of damages is not feasible
 - Increasing taxes could lead to accelerated depletion (as future revenues are cut)
- Government would permanently have to modify the tax to account for economic and strategic uncertainties
 - Daunting informational requirements and reduced planning security for private sector
- Emissions trading scheme an alternative ?

Lessons from the "Green Paradox"

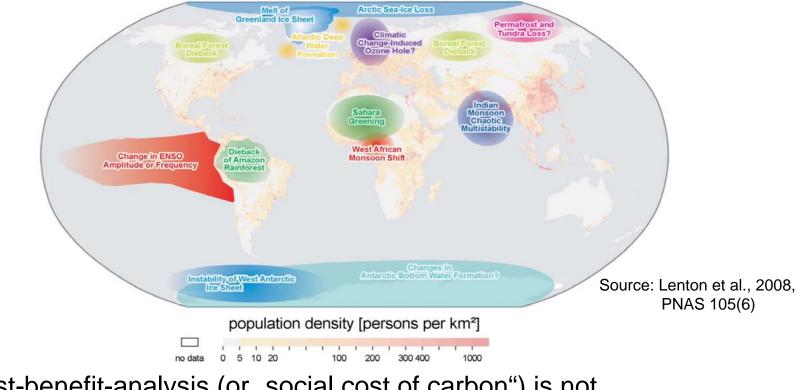
Conventional Pigouvian tax

Dynamic (non-linear) Pigouvian tax

Decreasing cash flow tax or subsidies on non-extraction

Capital source tax

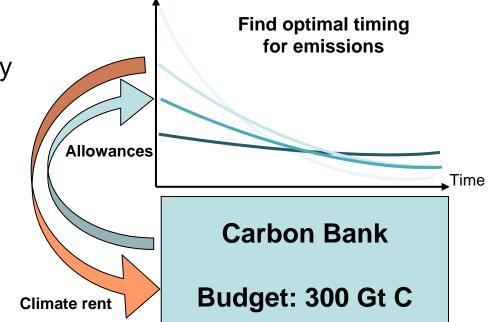
Emissions trading scheme


Emissions trading scheme (ETS):

- Determines aggregated extraction path
- But leaves freedom for resource owners:
 - Which resources to extract (coal, oil, gas, conventional/unconventional)?
 - When to extract (if intertemporal flexibility is implemented)?
- → How to determine caps?
- → How to organize intertemporal permit trade?
- → What happens to the resource rents?
- ... to be explored in the following

Can We Assess the Social Cost of Carbon?

- Monetary valuation of benefits often unfeasible
- High uncertainties which are very difficult to quantify
- Possibility of tipping elements



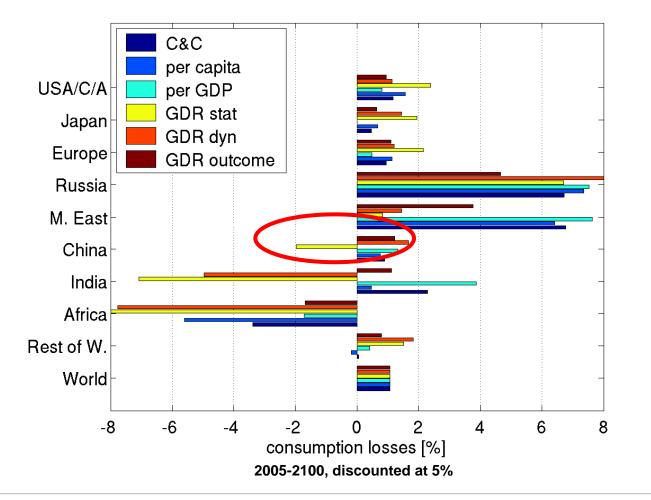
Cost-benefit-analysis (or "social cost of carbon") is not well-suited for climate change problem.

Emissions Trading for Optimal Depletion of Carbon Budgets

- National "Carbon bank":
 guarantees long-term credibility of the budget
 provides public information
 regulates timing of permit use
 - manages climate rent

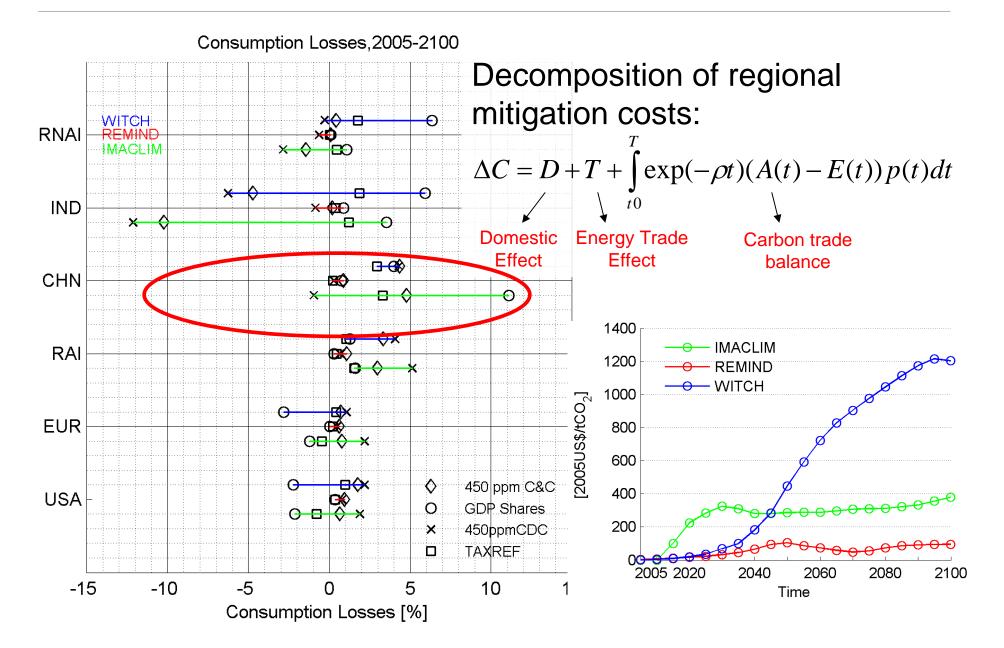
- Banking and borrowing allows for time-flexibility
 - hedge against uncertainties by establishing futures markets
 - reduce volatility in permit markets
 - capital source taxes flatten the permit price path (Hotelling)

Global budget: 850 GtCO₂ for the rest of the 21st century (*in* order to achieve the 2 $^{\circ}$ C target)


- ETS with full coverage guarantees environmental target and costefficiency
- Permit prices reflect "depletion" of the budget (Hotelling price)
- Resource rent is transformed into a climate rent
- There is no room left for strategic resource extraction (no "Green Paradox")

Global budget can be divided into national budgets

The Carbon Budget Approach

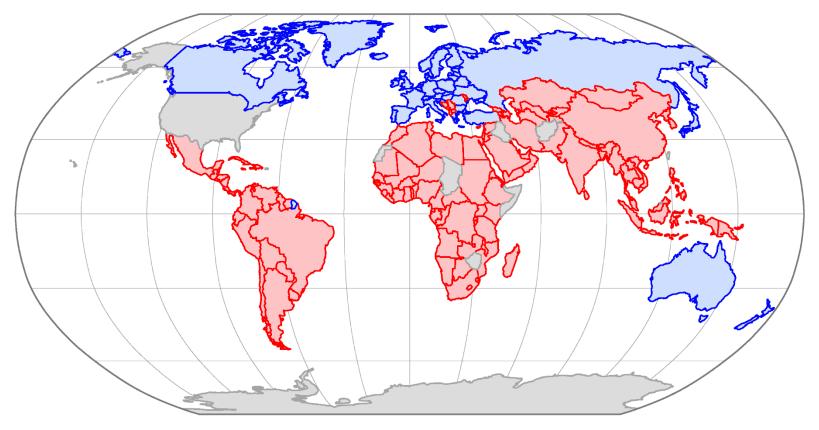

• National budgets: distribute mitigation costs

Allocation rules and regional distribution of mitigation costs

1. Putting a Price on Carbon: Carbon Tax vs. Cap & Trade

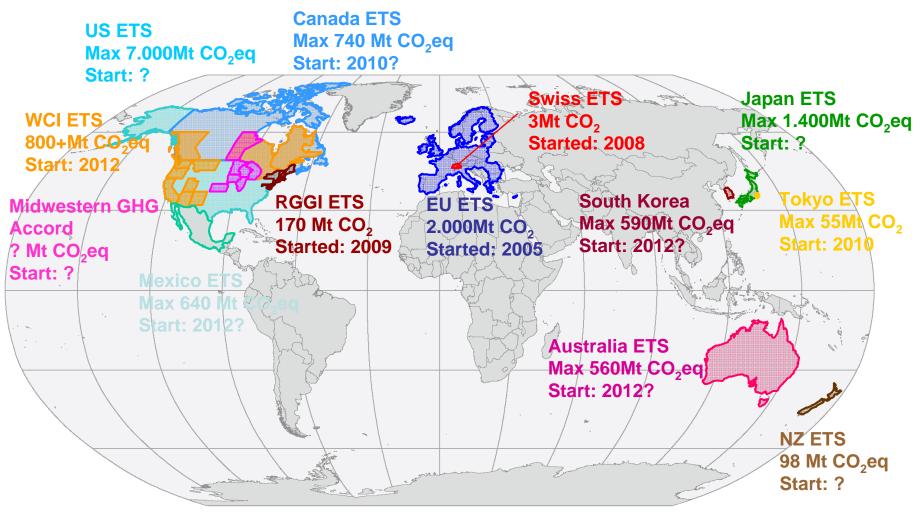
- Price instruments and the Green Paradox
- Quantity instruments and the Carbon Budget Approach

2. International Carbon Markets and Lessons from EU ETS


3. Technology Policy

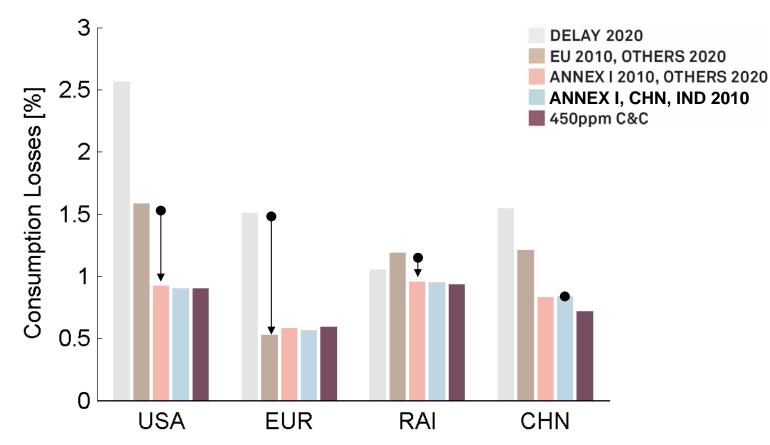
4. Options and Opportunities for China

Top-down Emissions Trading: Kyoto Today


Annex-I: economy-wide cap and trade Non Annex-I: no caps, CDM

Source: Flachsland 2009

Bottom-up: Regional Cap & Trade Systems



Source: Flachsland 2009

The Value of Early Action

 In a world serious about achieving 2°C, early action is beneficial to China:

EU ETS 2013 - 2020

EU-wide cap

- 21% below 2005 levels by 2020
- Linear reduction of 1.74% annually
- Credible long-term trajectory still lacking

Auctioning principal allocation method

- 100% for West-European power sector, increasing shares for industry
- Redistribution of auctioning quotas to poorer member states
- Harmonized rules for benchmarking

Coverage extended to include

- Aviation, petrochemicals, ammonia, and aluminum
- 2 additional GHGs
- Around 50% of all EU GHG emissions

Non-trading sectors

- Road transport, buildings, agriculture, and waste still excluded from ETS
- Sectors required to reduce emissions by 10% by 2020

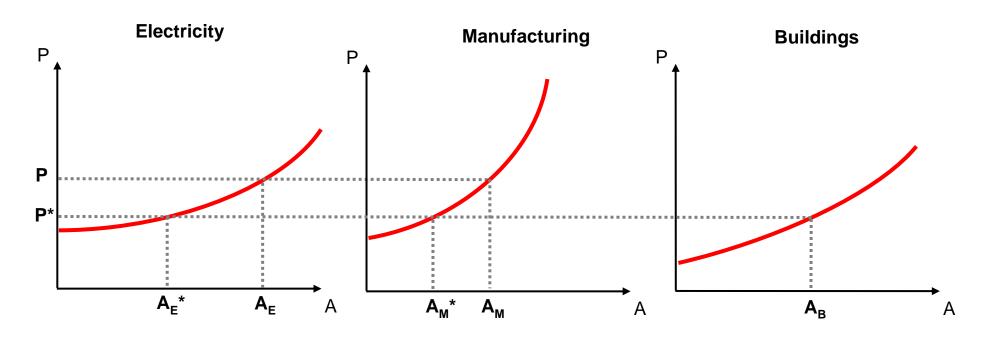
EU ETS 2013 - 2020

Total EU-27 greenhouse gas emissions by sector, 2006

(Source: European Environment Agency) Solvents Waste 0.2% 2.9% Agriculture 9.2% Energy industries (incl. fugitive Households emissions) and services 32.7% 14.8% Transport Industry 19.3% (energy & process related) 21.0%

EU ETS covers 2.02 GtCO2 or ~40% of total

Ottmar Edenhofer Potsdam Institute for Climate Impact Research


Coverage extended to include

- Aviation, petrochemicals, ammonia, and aluminum
- 2 additional GHGs
- Around 50% of all EU GHG emissions

Non-trading sectors

- Road transport, buildings, agriculture, and waste still excluded from ETS
- Sectors required to reduce emissions by 10% by 2020

Broadening Sectoral Coverage Lowers Abatement Costs

Goal: Achieve a given abatement level A

• If coverage is limited to electricity and manufacturing:

 $A = A_E + A_M$ at price P

• If coverage is extended to include buildings:

 $A = A_E^* + A_M^* + A_B$ at lower price **P***

Lessons from EU ETS

Сар

credible long-term trajectory essential for guiding investor expectation

Coverage

'broad is beautiful', including additional sectors (e.g. transportation) enhances cost-effectiveness

Allocation

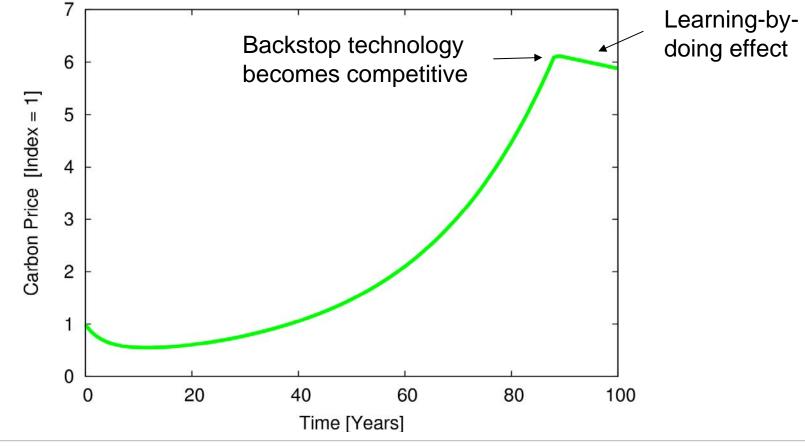
auctioning superior, avoids distortions related to free allocation, generates public revenues ('double dividend')

Intertemporal flexibility

banking/borrowing likely to smooth price volatility

Price bounds

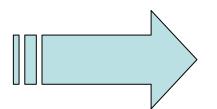
use of price cap/floor still debated, hybrid model might have advantage over pure quantity-based ETS design



1. Putting a Price on Carbon: Carbon Tax vs. Cap & Trade

- Price instruments and the Green Paradox
- Quantity instruments and the Carbon Budget Approach
- 2. International Carbon Markets and Lessons from EU ETS
- 3. Technology Policy
- 4. Options and Opportunities for China

Carbon budget approach: Increasing carbon price (Hotelling) until backstop technologies become competitive

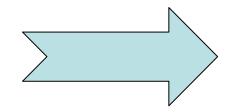


Ottmar Edenhofer Potsdam Institute for Climate Impact Research

The Need for Technology Policy

Invention

Invent new technology

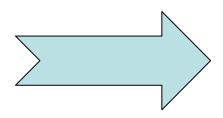


Public R&D expenditures

stimulate inventions in new energy technologies

Innovation

Make product competitive


Production subsidies

quickly reap learning effects through capacity expansion

(e.g. feed-in-tariffs)

Diffusion

Adoption by economy

Information programs

promote information about mitigation technologies for consumers

Process of technological change by Schumpeter (1942)

1. Putting a Price on Carbon: Carbon Tax vs. Cap & Trade

- Price instruments and the Green Paradox
- Quantity instruments and the Carbon Budget Approach
- 2. International Carbon Markets and Lessons from EU ETS
- 3. Technology Policy

4. Options and Opportunities for China

Emissions Trading: Major Options for China

Move beyond CDM!

(1) Economy-wide cap in global post-2012 regime (Joint Mitigation Plan)

- \rightarrow Allocation determines distribution
- \rightarrow Domestic policies required

(2) Domestic cap-and-trade for suited sectors

 \rightarrow Ensure robust design

(3) Sectoral or economy-wide baseline-and-credit

- → Define reduction targets, profitable international sales of excess reductions
- \rightarrow First step to cap-and-trade

Summary

- Credibility of commitment is of utmost importance to provoke long-term investments in low carbon technology
- Permit markets need to be regulated in order to establish stable carbon prices and long-term expectations; technology policy should complement permit markets
- Regulation should raise revenues for the state this is automatically achieved by taxes; permits need to be auctioned
- No tax (or permit) exemptions for whole industries this strongly reduces efficiency and raises costs
- Optimal tax is extremely difficult to calculate due to uncertainty about economic parameters and strategic behavior in the resource sector
- Emissions trading under a fixed carbon budget guarantees ecological integrity despite uncertainties in economic parameters and strategic behavior of resource owners

- Early action might be beneficial to China in a world which is serious about achieving ambitious emission reductions.
- Initiate model comparison project to systematically explore welfare impacts of economy-wide cap for China under different allowance allocation regimes
- Consider economy-wide, sectoral cap-and-trade and baseline-andcredit: emission targets and institutions

