Designing International Climate Agreements: An Economic Analysis Of Free-Riding Incentives

Wissenschaftliche Aussprache von Ulrike Kornek
27. März 2015
Technische Universität Berlin

Climate negotiations: where do we stand?

• 2°C target → reductions to near zero emissions of greenhouse gases

Motivation

Climate negotiations: where do we stand?

• 2°C target → reductions to near zero emissions of greenhouse gases

Possibility of temperature increases until 2100 of up to 4.8°C

Climate negotiations: abatement as a global public good

Climate negotiations: abatement as a global public good

Nash-equilibrium: inefficient **individually rational** choices compared to **collective optimum**

How can international climate agreements achieve ambitious collective abatement targets?

Formal game-theoretic analysis

Motivation

- Formal game-theoretic analysis
- Two-stage, one-shot participation game (Hoel 1992, Carraro and Siniscalco 1993, Barrett 1994)

- Formal game-theoretic analysis
- Two-stage, one-shot participation game (Hoel 1992, Carraro and Siniscalco 1993, Barrett 1994)

Stage 1: Participation decision

sign

free-ride

Stage 2: Treaty

 Equilibrium ⇒ member: free-rider: payoff is reduced when leaving coalition payoff is reduced when joining coalition

- Formal game-theoretic analysis
- Two-stage, one-shot participation game (Hoel 1992, Carraro and Siniscalco 1993, Barrett 1994)

Stage 1: Participation decision

sign

free-ride

Stage 2: Treaty

Overview

This thesis: 1. Heterogeneous countries

2. Other policy instruments

Synthesis:

- Modesty within treaty can decrease burden on members
- Trade-off between participation and welfare possible

Overview

Numerical climate coalition models

Kornek, Lessmann, Tulkens:

Conceptual
Implemen-tation of
stabilities and
transfers

Lessmann, Kornek, et al.:

 Role of heterogeneity and transfers

Kornek, Steckel, Lessmann, Edenhofer:

 Implementation of transfers under adverse effects

Design of abatement targets

Lessmann, Marschinski, Finus, **Kornek**, Edenhofer:

Including CDM trade in climate treaty

Kornek,

Marschinski:

 Instrument choice under uncertainty

Comparison of numerical climate coalition models

Numerical climate coalition models

Kornek, Lessmann, Tulkens:

Conceptual
Implemen-tation of
stabilities and
transfers

Lessmann, Kornek, et al.:

 Role of heterogeneity and transfers Kornek, Steckel, Lessmann, Edenhofer:

Implementation
 of transfers under
 adverse effects

Lessmann, K., U. **Kornek**, V. Bosetti, R. Dellink, J. Emmerling, J. Eyckmans, M. Nagashima, H.-P. Weikard, Z. Yang (2015):

The stability and effectiveness of climate coalitions: A comparative analysis of multiple integrated assessment models.

Environmental and Resource Economics (online first)

Comparison of numerical climate coalition models

Numerical models:

- Calibration based on data from the literature
- Order of magnitude
- Robust findings and differences

Comparison of numerical climate coalition models

Numerical models:

- Calibration based on data from the literature
- Order of magnitude
- Robust findings and differences

Objectives:

- What are the incentives of different regions to sign?
- What are the characteristics of potential of transfers mechanisms?

Methods:

- Scenario design
- Common data evaluation

Treaties solely defining abatement

Stable agreements are small and ineffective

			Closing of welfare
	Number of	Number of	gap non- vs. fully-
Model	stable coalitions	members	cooperative outcome
MICA	1	3	0.09
STACO	1	2	0.03
CWS	1	2	0.77
WITCH	1	2	0.05
RICE	0	0	0.00

Characterization of regions

- 1. Common measure of abatement costs
- 2. Common measure of damages from climate change

Characterization of regions

Characterization of regions: abatement costs

Abatement costs represented rather similarly across models

Characterization of regions: damages

Variation in damages large

Incentive to stay inside coalition: OECD-example

Incentives for common regions differ

Incentive to stay inside coalition

- Incentives for similar regions alike
 - High damages from climate change
 - Low abatement costs
 - Higher incentive to join
- Different to symmetric case:
 - Incentive to sign also for large and ambitious agreements

Incentive to stay inside coalition

- Incentives for similar regions alike
 - High damages from climate change
 - Low abatement costs
 - Higher incentive to join
- Different to symmetric case:
 - Incentive to sign also for large and ambitious agreements

Small island states:
 High damages, low costs

Russia:

Small damages, high costs

Transfers: distribution between winners and losers

- Transfers: Allocation of emission permits to address distributional questions (Altamirano-Cabrera & Finus 2006)
 - Transfers based on normative/pragmatic principles

Reasons?

Selection: grandfathering, equal-per-capita, historic responsibility

No increase in cooperation

- Transfers based on incentives:
 - large number of internally stable agreements
 - close cooperation gap about half

Reasons for transfers failing:

- Pragmatic/normative transfers often flow in the wrong direction
 - → Not designed along incentives
- Equity-based transfers too large in magnitude also when direction right

Reasons for transfers failing:

- 1. Pragmatic/normative transfers often flow in the wrong direction
 - → Not designed along incentives
- 2. Equity-based transfers too large in magnitude also when direction right

Numerical climate coalition models

Kornek, Lessmann, Tulkens:

Conceptual
Implemen-tation of
stabilities and
transfers

Lessmann, Kornek, et al.:

 Role of heterogeneity and transfers Kornek, Steckel, Lessmann, Edenhofer:

 Implementation of transfers under adverse effects

Kornek, U., J. Steckel, K. Lessmann, and O. Edenhofer: The Climate Rent Curse: New Challenges for Burden Sharing Under review at Climate Change Economics

Nordhaus 2007:

"emissions-trading system creates valuable assets in the form of tradable emissions permits"

- Scarce resource creating rents
- Large monetary flows between countries
- Effects like a resource curse possible:
 - Adverse effects of natural resource rents on growth prospects
 - Dutch Disease/Rent Seeking/ Volatility

Nordhaus 2007:

"emissions-trading system creates valuable assets in the form of tradable emissions permits"

- Scarce resource creating rents
- Large monetary flows between countries
- Effects like a resource curse possible:
 - Adverse effects of natural resource rents on growth prospects
 - Dutch Disease/Rent Seeking/ Volatility
- Similar characteristics of a climate rent

Objectives:

 What are the characteristics of potential transfer mechanisms with and without adverse effects?

Methods:

Introduction of adverse effects in economic activity

Performance of transfers

- Large number of regions encouraged to participate
- Equity-Based transfers: 97%-99% developing regions

Transfer Volume

No. of regions encouraged to cooperate

inside potentially internally stable coalitions

Performance of transfers under adverse effects

 When regions anticipate the adverse effects of the transfer received, no incentive to join anymore

Transfer Volume

No. of regions encouraged to cooperate

inside potentially internally stable coalitions

Performance of incentive driven transfers

Decrease in the magnitude of adverse effects:

 Large number of coalitions again stable: positive effect of transfers restored

Prices vs quantities for climate agreements

Design of abatement targets

Lessmann, Marschinski, Finus, **Kornek**, Edenhofer:

Including CDM trade in climate treaty

Kornek, Marschinski:

 Instrument choice under uncertainty

Kornek and Marschinski.

Prices vs. Quantities for International Environmental Agreements. under review at Resource and Energy Economics

Treaty design under different policy instruments

Quantities ⇒ precise emission target

Prices \Rightarrow emissions tax

Treaty design under different policy instruments

Quantities ⇒ precise emission target

Prices \Rightarrow emissions tax

Objectives:

- What instrument will the members base the treaty on?
- What is the participation rate and global overall welfare level?

Methods:

Analytical study

Treaty design under different policy instruments

Quantities ⇒ precise emission target

Prices \Rightarrow emissions tax

Abatement costs

Damages

Previous studies: total costs under instrument-symmetry

$$TC = C (E = \Sigma_i e_i) + D(e)$$

Treaty design under different policy instruments

Quantities ⇒ precise emission target

Prices \Rightarrow emissions tax

• Regulation under uncertain baseline emissions

Abatement costs

Damages

Difference between individually and collectively preferred instrument

$$TC = C_{\varepsilon}(E = \Sigma_i e_i) + D(e)$$

Treaty design under different policy instruments

Quantities

⇒ precise emission target

Regulation under uncertain baseline emissions

Abatement costs

Increase in expected abatement costs **Damages**

- No emission uncertainty
- Secures damage target

Treaty design under different policy instruments

Quantities ⇒ precise emission target

Prices ⇒ emissions tax

Regulation under uncertain baseline emissions

Abatement costs

 Decrease in expected abatement costs **Damages**

- Emisson uncertainty
- Increase in expected damages

First study to consider instrument choice for several regulators

$$TC_i = C_{\varepsilon}(E = \Sigma_i e_i) + D(e_i)$$

Saving in individual abatement costs

VS

Higher global emission uncertainty Higher global expected damages

- Price-regulation leads to individual benefits
- Quantity-regulation leads to global benefits

1. Result: incentives on instrument choice

Members choose treaty based on emission targets

- Internalize increased expected damages
- Non-members regulate via emission tax
- Welfare maximizing coalitions are ambitious

2. Result: quantities reduce participation

Uncertainty decreases size of the coalition

- 1. Non-members save additional costs
- 2. Coalition provides certain amount of public good

3. Result: prices increase participation

Uncertainty decreases size of the coalition

- 1. Non-members save additional costs
- 2. Coalition provides certain amount of public good

Treaty restricted to emission taxes decreases free-riding

- 1. Burden on members decreased
- 2. No extra free-riding incentive

3. Result: prices increase participation

Either treaty design may increase global welfare

Higher participation vs higher emission uncertainty

C :	r	. 1		1 • • •
N17 P	\cap t	the	റ്റേമ	lition
J12C	\mathbf{O}	\cup	COG	

	Treaty in Quantities	Treaty in Prices
Parameter set A	5	18
Parameter set B	3	15

3. Result: prices increase participation

Either treaty design may increase global welfare

Higher participation vs higher emission uncertainty

Welfare losses in utility

	Treaty in Quantities	Treaty in Prices
Parameter set A	95.43	98.83
Parameter set B	93.02	87.38

Summary

Numerical climate coalition models

Kornek, Lessmann, Tulkens:

Conceptual
Implemen-tation of
stabilities and
transfers

- High damage/low cost regions cooperate
- Transfers of moderate magnitude increase cooperation
- Adverse effects on recipient countries impede cooperation
- Transfers of moderate magnitude preferable

Design of abatement targets

Lessmann, Marschinski, Finus, **Kornek**, Edenhofer:

Including CDM trade in climate treaty

- Ambitious formulation in emission targets collectively optimal
- Taxes decrease burden on signatories
- welfare trade-off

Conclusions

- Treaty design influences success
- Transfers crucial for heterogeneous countries
- Well-designed transfers potentially beneficial
- Modesty in treaty design may prefereable for participation

Thank you for your attention.