Achieving stringent climate targets: An analysis of the role of transport and variable renewable energies using energy-economy-climate models

vorgelegt von
Diplom-Physiker
Robert Carl Pietzcker

Fakultät VI – Planen Bauen Umwelt
der Technischen Universität Berlin
zur Erlangung des akademischen Grades
Doktor der Wirtschaftswissenschaften
Dr. rer. oec.

Premises

“Human influence on the climate system is clear. This is evident from the increasing greenhouse gas concentrations in the atmosphere, positive radiative forcing, observed warming, and understanding of the climate system”

AR5, IPCC 2014

“The ultimate objective of this Convention [...] is to achieve [...] stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system”

(UNFCCC Secretariat, 1992)

Integrated Assessment Models (IAMs) are useful tools to determine key actions and critical bottlenecks for emission reductions
Scope of the challenge to achieve 2°C target

Emissions in a reference scenario (REF)

Emissions in a 2°C climate policy scenario (POL)

GHG Emissions [GtCO₂/a]

Time

2010 2030 2050 2100
Are stringent climate targets achievable, and what determines their achievability?
Thesis Structure

Achievability of stringent climate targets

1. What are key sectors and technologies for climate change mitigation?

2. What do different IAMs say about the role of renewable energies for climate change mitigation?

3. How important is solar for power sector decarbonization?

4. How can transport be decarbonized?

5. What are economic costs and challenges of different climate targets?

Variable Renewable Energies

Transport

Achievability of stringent climate targets
Thesis Structure

Achievability of stringent climate targets

5. Luderer, Pietzcker, Bertram, Kriegler, Meinshausen, Edenhofer
 Environmental Research Letters (2013)

Variable Renewable Energies

3. Pietzcker, Stetter, Manger, Luderer
 Applied Energy (2014)

2. Luderer, Krey, Calvin, Merrick, Mima, Pietzcker, van Vliet, Wada
 Climatic Change (2014)

Transport

4. Pietzcker, Longden, Chen, Fu, Kriegler, Kyle, Luderer
 Energy (2014)

Achievability of stringent climate targets

1. Luderer, Pietzcker, Kriegler, Haller, Bauer
 Energy Economics (2013)
Thesis structure

Achievability of stringent climate targets

1. What are key sectors and technologies for climate change mitigation?

Variable Renewable Energies

2. What do different IAMs say about the role of renewable energies for climate change mitigation?
3. How important is solar for power sector decarbonization?

Transport

4. How can transport be decarbonized?
The REMIND model

Hybrid energy-economy-climate model
- Global scope, 11 world regions, international trade
- Time horizon: 2005-2100

Economy:
- Ramsey-type growth model, maximizes intertemporal welfare
- Pareto-optimal solution with intertemporal equilibrium of capital, energy and goods markets

Energy:
- ~70 conversion technologies with full capital vintaging
- Represents endogenous technological improvement (learning curve)

Climate:
- Soft-coupled to MAGICC
Variable Renewable Energies
Thesis Structure

Achievability of stringent climate targets

5. What are economic costs and challenges of different climate targets?

Variable Renewable Energies

3. How important is solar for power sector decarbonization?
2. What do different IAMs say about the role of renewable energies for climate change mitigation?

Transport

4. How can transport be decarbonized?

Achievability of stringent climate targets

1. What are key sectors and technologies for climate change mitigation?
Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power

Robert Carl Pietzcker1,\ast, Daniel Stetter2, Susanne Manger3, Gunnar Luderer1

1Potsdam Institute for Climate Impact Research, 14412 Potsdam, Germany
2DLR German Aerospace Center, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany
3Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

HIGHLIGHTS

- We calculate a consistent global resource potential dataset for PV and CSP.
- We develop a simplified representation of system integration costs of wind and solar.
- We analyze the economic potential of PV & CSP with the energy-economy-model REMIND.
- Solar power produces 48% of the cumulated 2010–2100 electricity in a 2°C scenario.
- PV is deployed first, but CSP catches up due to lower system integration costs.

ABSTRACT

Model storage and grid costs

Analyse PV and CSP deployment in climate mitigation scenarios
Solar Power Technologies

Photovoltaics (PV)
• Can use indirect light – high latitudes
• Easily scalable

Concentrating Solar Power (CSP)
• Needs direct light – low latitudes
• Thermal power production
→ Heat can be stored cheaply

Pietzcker, Stetter, Manger, Luderer (2014) „How important is solar for the power sector?“
Driver 1: VRE Integration

Two main characteristics of Solar

1. Temporal variability
2. Heterogeneity in space

Modeling Challenge:

How to bridge the scales between

Reality

Hourly fluctuations versus Irradiance differs on ~100km

versus

IAM

5-year time steps Continental scale

PVGIS © European Union, 2001-2012
New generic approach – cost markups

Basic idea of approach:

- Integration challenges increase with the share of each VRE

- Variability can be reduced by storage, else results in curtailment

- Parameters based on battery and H2 electrolysis costs, detailed modeling

Pietzcker, Stetter, Manger, Luderer (2014) „How important is solar for the power sector?“
Main takeaways:

- Integration costs can be of substantial size and need to be represented
- Generic, flexible approach that can easily be adopted

Pietzcker, Stetter, Manger, Luderer (2014) „How important is solar for the power sector?“
Driver 2: Resource Potential

Pietzcker, Stetter, Manger, Luderer (2014) „How important is solar for the power sector?“
Driver 3: Technology Costs

Pietzcker, Stetter, Manger, Luderer (2014) „How important is solar for the power sector?“
Results from improved REMIND
In cost-optimal climate policy scenarios,
- PV, CSP and wind are scaled up much earlier and to a larger extent
- Solar supplies 48% of cumulated 2010-2100 power
Solar power has large impact on electricity prices

Average electricity price 2050-2100

Increase over 2010

Relative price increase vs. 2010 [%]

REF-allTech POL-allTech POL-noCSP POL-noPV POL-noSol

Pietzcker, Stetter, Manger, Luderer (2014) „How important is solar for the power sector?“
Results are robust to learning curve assumptions

Pietzcker, Stetter, Manger, Luderer (2014) „How important is solar for the power sector?“
Thesis Structure

Achievability of stringent climate targets

5. What are economic costs and challenges of different climate targets?

Variable Renewable Energies

3. How important is solar for power sector decarbonization?

2. What do different IAMs say about the role of renewable energies for climate change mitigation?

Transport

4. How can transport be decarbonized?

Achievability of stringent climate targets

1. What are key sectors and technologies for climate change mitigation?
Long-term transport energy demand and climate policy: Alternative visions on transport decarbonization in energy-economy models

Robert C. Pietzcker a, *, Thomas Longden b, Wenyong Chen c, Sha Fu d, Elmar Kriegler a, Page Kyle e, Gunnar Luderer a

a Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, D-14412 Potsdam, Germany
b Fondazione Eni Enrico Mattei and Centro Euro-Mediterraneo sui Cambiamenti Climatici, Corso Magenta 63, 20123 Milano, Lombardy, Italy
c Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China
d National Center for Climate Change Strategy and International Cooperation (NCSC), Beijing 100038, China
e Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740, United States

ARTICLE INFO

Article history:
Received 18 January 2013
Received in revised form
23 August 2013
Accepted 30 August 2013
Available online 15 December 2013

Keywords:
Transportation scenarios
CO₂ (Carbon dioxide) emission mitigation
Hydrogen
Energy-economy modeling
BEVs (Battery electric vehicles)
Mobility demand reduction

ABSTRACT

Decarbonizing transport will be necessary to limit global warming below 2 °C. Due to persistent reliance on fossil fuels, it is posited that transport is more difficult to decarbonize than other sectors. To test this hypothesis, we compare long-term transport energy demand and emission projections for China, USA and the world from five large-scale energy-economy models. We diagnose the model’s characteristics by subjecting them to three climate policies. We systematically analyze mitigation levers along the chain of causality from mobility to emissions, finding that some models lack relevant mitigation options. We partially confirm that transport is less reactive to a given carbon tax than the non-transport sectors: in the first half of the century, transport mitigation is delayed by 10–30 years compared to non-transport mitigation. At high carbon prices towards the end of the century, however, the three global models achieve deep transport emission reductions by >90% through the use of advanced vehicle technologies and low-carbon primary energy; especially biomass with CCS (carbon capture and sequestration) plays a crucial role. The extent to which earlier mitigation is possible strongly depends on implemented technologies and model structure. Compared to the global models, the two partial-equilibrium models are less flexible in their reaction to climate policies.

© 2013 Elsevier Ltd. All rights reserved.
Chain of Causality in the Transport Sector

Modeled drivers

- GDP & Population
- Energy Service (Mobility) Demand
- Final Energy Demand
- Primary Energy Demand
- Emissions

Mitigation options

- Demand reduction
 - Modal shift
- Efficient vehicles
 - Advanced vehicles
 - Modal shift
- Different conversion paths allow the use of renewables or nuclear
- Carbon Capture and Storage (CCS)

Pietzcker, Longden, Chen et al. (2014) „How can transport be decarbonized?”
Different views of future transport technologies

Types of transport energy in 2100

<table>
<thead>
<tr>
<th></th>
<th>GCAM</th>
<th>REMIND</th>
<th>WITCH-T</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Biomass
- H2 Bio w/ CCS
- H2 Bio w/o CCS
- Elec Bio w/ CCS
- Elec Bio w/o CCS
- Gas Bio w/ CCS
- Gas Bio w/o CCS
- Liq Bio w/ CCS
- Liq Bio w/o CCS

Fossil
- H2 Fos w/ CCS
- H2 Fos w/o CCS
- Elec Fos w/ CCS
- Elec Fos w/o CCS
- Gas Fos w/ CCS
- Gas Fos w/o CCS
- Liq Fos w/ CCS
- Liq Fos w/o CCS

Pietzcker, Longden, Chen et al. (2014) „How can transport be decarbonized?”
Robust finding: Transport mitigation lags behind

Pietzcker, Longden, Chen et al. (2014) „How can transport be decarbonized?”
Robust finding: Transport mitigation lags behind relative emission reductions.

Pietzcker, Longden, Chen et al. (2014) „How can transport be decarbonized?”
Robust finding 2: Deep reductions possible

Pietzcker, Longden, Chen et al. (2014) „How can transport be decarbonized?”
Thesis Structure

Achievability of stringent climate targets

- What are economic costs and challenges of different climate targets?

Variable Renewable Energies

- How important is solar for power sector decarbonization?
- What do different IAMs say about the role of renewable energies for climate change mitigation?

Transport

- How can transport be decarbonized?

Achievability of stringent climate targets

- What are key sectors and technologies for climate change mitigation?
Economic mitigation challenges: how further delay closes the door for achieving climate targets

Gunnar Luderer¹, Robert C Pietzcker¹, Christoph Bertram¹, Elmar Kriegler¹, Malte Meinshausen¹,² and Ottmar Edenhofer¹,³,⁴

¹ Potsdam Institute for Climate Impact Research, D-14473 Potsdam, Germany
² School of Earth Sciences, University of Melbourne, Victoria 3010, Australia
³ Technische Universität Berlin, D-10632 Berlin, Germany
⁴ Mercator Research Institute on Global Commons and Climate Change, D-10829 Berlin, Germany

E-mail: luderer@pik-potsdam.de

Received 5 May 2013
Accepted for publication 28 August 2013
Published 17 September 2013
Online at stacks.iop.org/ERL/8/034033

Abstract
While the international community aims to limit global warming to below 2 °C to prevent dangerous climate change, little progress has been made towards a global climate agreement to implement the emissions reductions required to reach this target. We use an integrated energy–economy–climate modeling system to examine how a further delay of cooperative action and technology availability affect climate mitigation challenges. With comprehensive emissions reductions starting after 2015 and full technology availability we estimate that maximum 21st century warming may still be limited below 2 °C with a likely probability and at moderate economic impacts. Achievable temperature targets rise by up to ~0.4 °C if the implementation of comprehensive climate policies is delayed by another 15 years, chiefly because of transitional economic impacts. If carbon capture and storage (CCS) is unavailable, the lower limit of achievable targets rises by up to ~0.3 °C. Our results show that progress in international climate negotiations within this decade is imperative to keep the 2 °C target within reach.
Explore the full map of climate mitigation paths

Luderer, Pietzcker et al. (2013) „What are economic costs of different climate targets?”
Economic challenges of mitigation

Long-term mitigation costs

Luderer, Pietzcker et al. (2013) „What are economic costs of different climate targets?”
Economic challenges of mitigation

Long-term mitigation costs

Short-term growth impact

Carbon Market Value

Energy Price Increase

Luderer, Pietzcker et al. (2013) „What are economic costs of different climate targets?”
Thesis Structure

Achievability of stringent climate targets

| 5 | What are economic costs and challenges of different climate targets? |

Variable Renewable Energies

| 3 | How important is solar for power sector decarbonization? |
| 2 | What do different IAMs say about the role of renewable energies for climate change mitigation? |

Transport

| 4 | How can transport be decarbonized? |

Achievability of stringent climate targets

| 1 | What are key sectors and technologies for climate change mitigation? |
Summary

Variable Renewable Energies

• In cost-optimal 2°C scenarios, solar power supplies almost half of the total electricity production in the 21st century

• If neither photovoltaics nor concentrating solar power are available, electricity prices will rise strongly in climate mitigation scenarios

Methodological:
• Integration challenges need to be adequately represented
Summary

Transport Sector

• Different models have different ideas about which technologies will be used to decarbonize transport

• The transport sector only reacts weakly to moderate carbon prices, and mitigation lags 10-30 years behind mitigation in the other sectors

• In the long term, transport emission reductions can be deep (>90%)
Summary

Achievability of stringent climate targets

2°C target is achievable at moderate costs

Immediate action

All technologies

Global cooperation
Top 4 policy implications

1. **Fast climate policy action is key.** Delay increases short-term challenges substantially.

2. The **power sector** is a low-hanging fruit: **variable renewable energies** offer decarbonization with comparatively **low side effects** or risks. Flexibility options need to be further improved and tested.

3. Policy support has achieved impressive **cost reductions** and market growth for **photovoltaics**. If policy makers want to sustain the dynamic and enable cheap power decarbonization, **moderate support** is still needed.

4. There is no silver bullet for transport decarbonization. Understanding and **influencing non-monetary drivers** is important.
Thank you for your attention!

References

“What are key sectors and technologies?”

„What is the role of renewable energy for climate change mitigation?“

„How important is solar for the power sector?“:

„How can transport be decarbonized?“:

“What are economic costs and challenges of different climate targets?“: