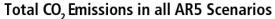

PhD disputation, TU Berlin 28 November 2014


Bioenergy Markets in a Climate-Constrained World

David Klein

Potsdam Institute for Climate Impact Research, Germany

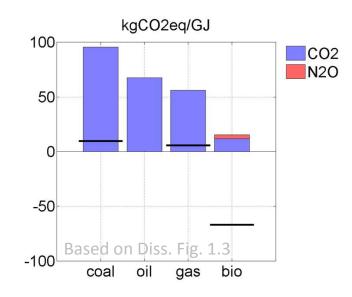
Low-stabilization pathways include negative emissions

Important assumptions

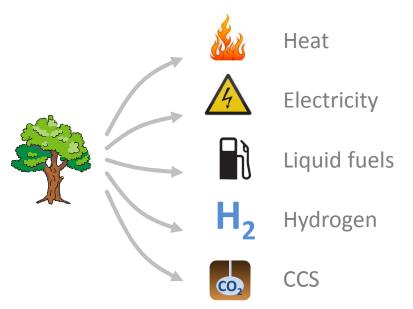
1. <u>Carbon Dioxide Removal options</u>

- Bioenergy with carbon capture and storage (BECCS)
- Afforestation
- Direct air capture
- Enhanced weathering

2. Ligno-cellulosic bioenergy crops


- better GHG balance than food crops
- ecologically less demanding

Properties of bioenergy


Advantages

- low GHG intensity
- negative emissons
- versatility
- dispatchable
- tradable

Important drawbacks

- LULUC emissions
- requires fertile land
- food competition
- biodiversity loss
- water consumption
- pre-mature technol.

climate policy

Research questions

What is the potential contribution of bioenergy to climate change mitigation considering its potential to provide negative emissions?

- What is the global supply of modern biomass?
- How does climate policy affect bioenergy supply?
- What are potential implications for the landuse system?

• Why, when, and how is bioenergy deployed under climate policy?

- economic drivers of demand
- willingness-to-pay for bioenergy
- technology choice
- intertemporal allocation

Papers

Literature review

Can Bioenergy Assessments Deliver?

Creutzig, F.; von Stechow, C.; **Klein, D.**; Hunsberger, C.; Bauer, N.; Popp, A.; Edenhofer, O. (2011), Economics of Energy and Environmental

Landuse implications

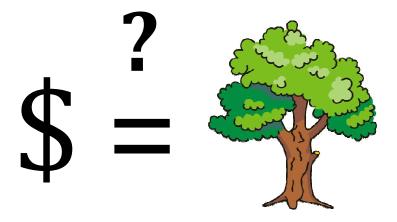
The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system

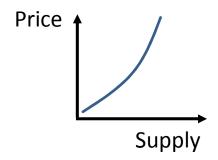
Popp, A.; Dietrich, J.P.; Lotze-Campen, H.; **Klein, D.**; Bauer, N.; Krause, M.; Beringer, T.; Edenhofer, O. (2011), Environmental Research Letters

Technology study

Bio-IGCC with CCS as a long-term mitigation option in a coupled energy-system and land-use model

Klein, D.; Bauer, N.; Bodirsky, B.; Dietrich, J.P.; Popp, A. (2011), Energy Procedia


The global economic long-term potential of modern biomass in a climate-constrained world


Klein, D.; Humpenöder, F.; Bauer, N.; Dietrich, J.P.; Popp, A.; Bodirsky, B.; Bonsch, M.; Lotze-Campen, H.; (2014), Environmental Research Letters.

The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE

Klein, D.; Luderer, G.; Kriegler, E.; Strefler, J.; Bauer, N.; Leimbach, M.; Popp, A.; Dietrich, J.P.; Humpenöder, F.; Lotze-Campen, H.; Edenhofer, O. (2013), Climatic Change

supply price

Bioenergy supply curves – Why?

Bioenergy is an important mitigation option

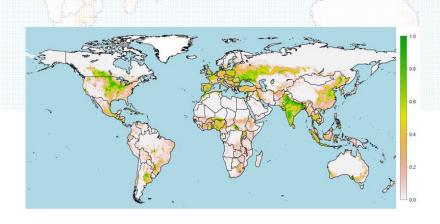
bioenergy potential and costs affect overall mitigation costs

Global supply prices are under-researched

sparse information in the SREEN and AR5

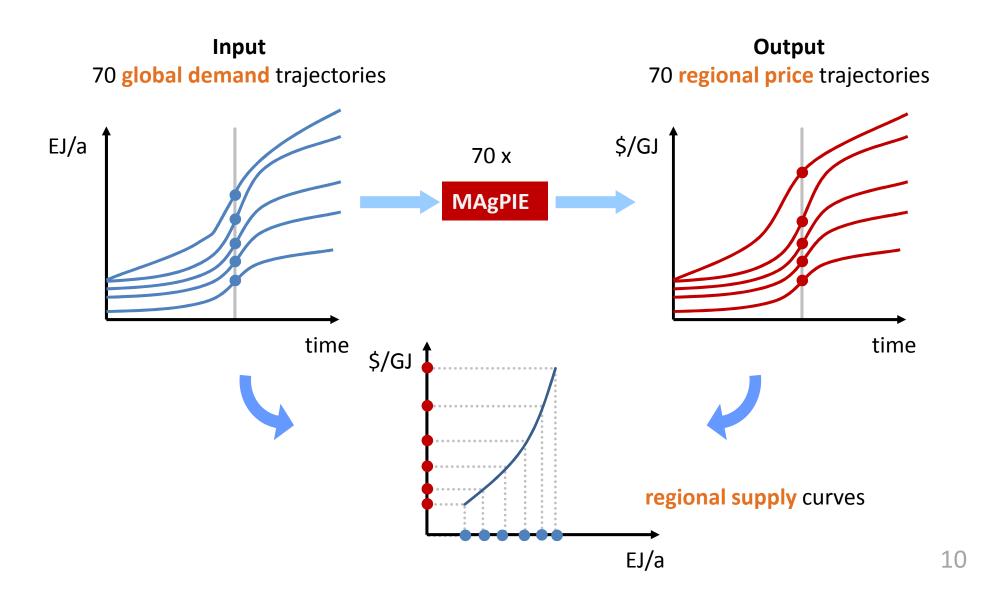
No climate policy considered so far

deforestation is major concern about large-scale bioenergy production


Purpose of this study

- provide supply prices
- investigate the impact of climate policy on bioenergy supply

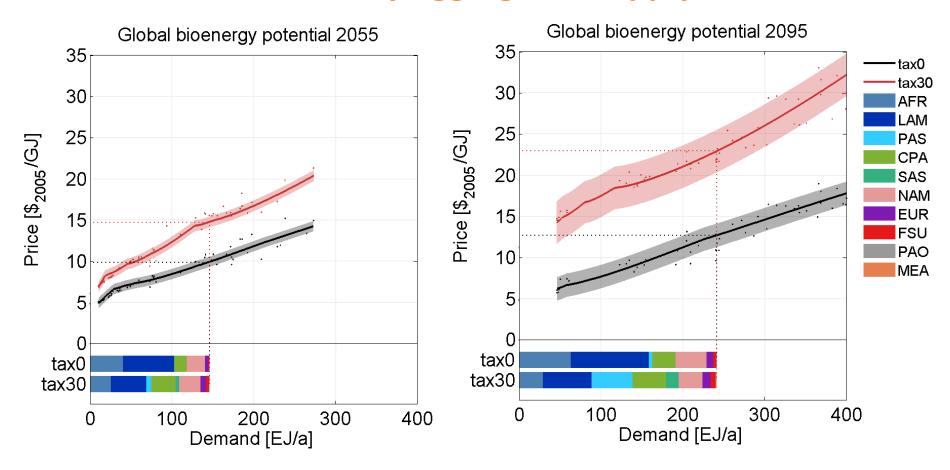
Methods: The landuse model "MAgPIE"


MAgPIE = Model of Agricultural Production and its Impact on the Environment

- partial equilibrium, minimizes total agricultural production costs (rec. dyn.)
 - factor requirement costs (capital, labor, fertilizer, water),
 - land conversion,
 - investments into technological development,
 - GHG emission costs
- endogenous allocation: trade-off between land expansion and intensification
- shadow price for biomass
- full land-use competition with other crops

Methods: Constructing the supply curves

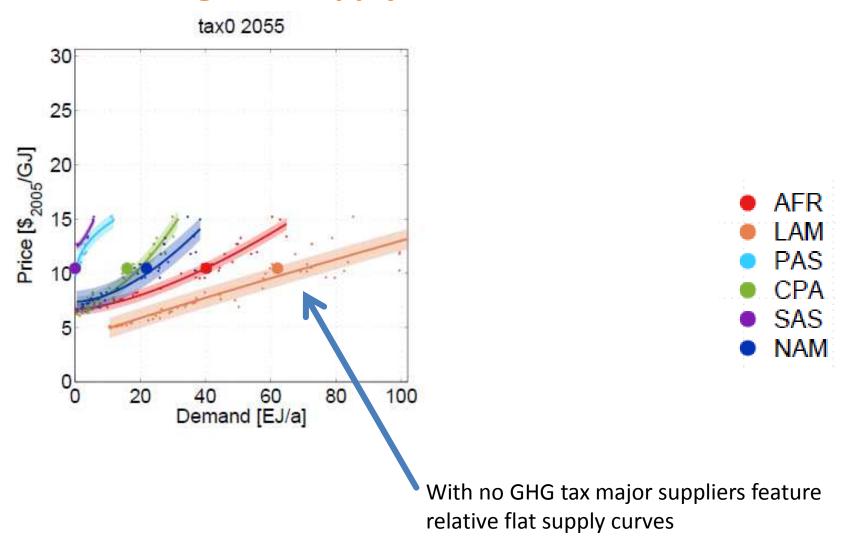
Measuring the price response of MAgPIE to bioenergy demand


Scenarios

Two climate policy scenarios:

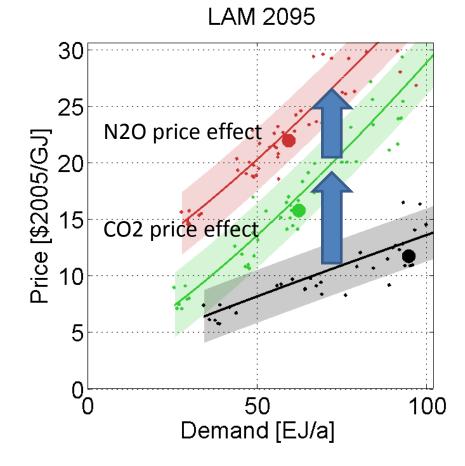
tax0	tax30	
no GHG prices	exponentially increasing GHG price (~ 2°C)	
	2020: 30 \$/tCO2 2055: 165 \$/tCO2 2095: 1165 \$/tCO2	
	CO2, N2O, CH4	

Tax on CO₂ from deforestation only, not on emissions from converting natural vegetation.


Results: Globally aggregated supply curves

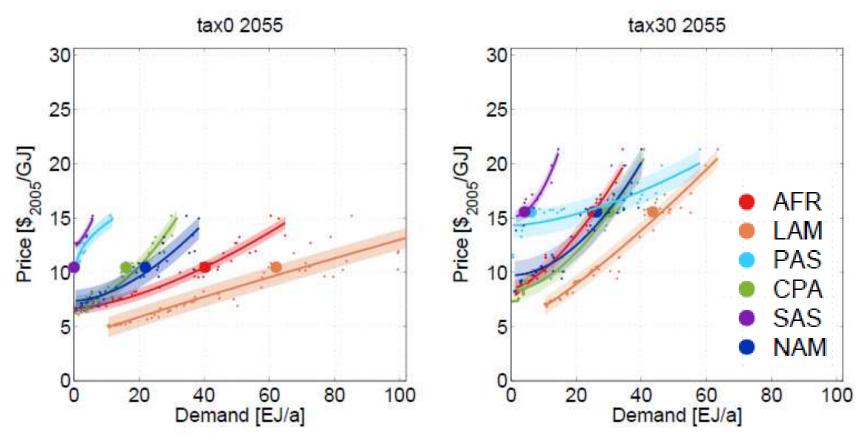
- GHG tax increases bioenergy prices by ~ 5 \$/GJ in 2055 and 10 \$/GJ in 2100
- Without tax: major suppliers are tropical regions with access to fertile forest land
- GHG tax shifts bioenergy production from AFR and LAM to PAS, CPA, SAS

Source: Klein et al. 2014


Results: regional supply curves without and with tax

Source: Klein et al. 2014

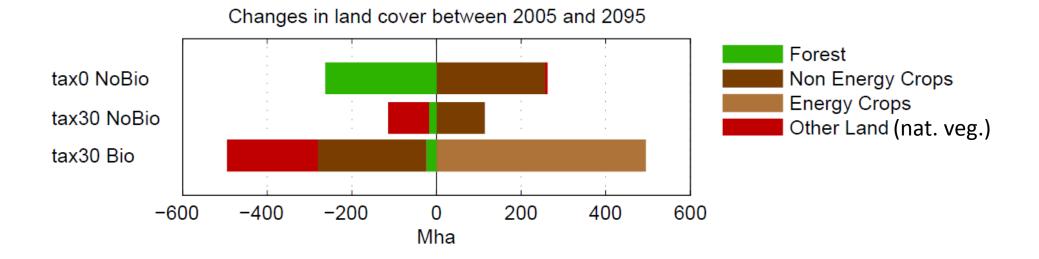
Results: The GHG tax has two price-elevating effects


- tax0 no GHG tax
- tax30c CO2 tax only
- tax30 tax on all GHGs

- CO2 price effect: stops deforestation -> reduces available land -> steepens the curve
- N2O price effect: translation effect due to fertilizer emissions

Source: Klein et al. 2014 14

Results: regional supply curves without and with tax



- GHG tax changes the relative position of the supply curves, since the consequences of pricing differ across regions
- Regions with no forest (CPA, PAS, and SAS) are only affected by the N2O-price effect.
- Regions that deforest in the tax0 scenario additionally show a steepening (AFR, LAM)
- PAS has access to large amounts of natural vegetation

Source: Klein et al. 2014

Results: Land use changes from 2005 to 2095

 Results from a medium demand scenario selected as a sample out of the full portfolio (240 EJ in 2095)

- Carbon tax effectively protects forests
- Compensated by intensification and conversion of nat. veg. (no emission costs)
- Bioenergy production is realized by further intensification and expansion into nat. veg.

Source: Klein et al. 2014

Conclusion 1: Supply

- The bioenergy prices start **above 5 \$/GJ** (emerge under full land-use competition)
- Climate policy significantly increases supply prices
- Combination of carbon tax & large-scale bioenergy causes substantial pressure
- Deforestation is stopped
- It dramatically **reduces land available** for food production
- Requires strong intensification
- Threatens natural vegetation and forest and that is not under emission control

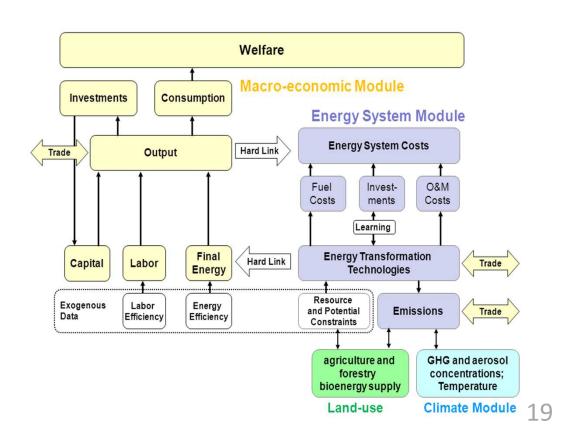
Research questions

What is the potential contribution of bioenergy to climate change mitigation?

Why, when, and how is bioenergy deployed under climate policy?

Versatility & negative emissions

- economic drivers of demand
- willingness-to-pay for bioenergy
- technology choice
- intertemporal allocation


Methodology – The REMIND Model

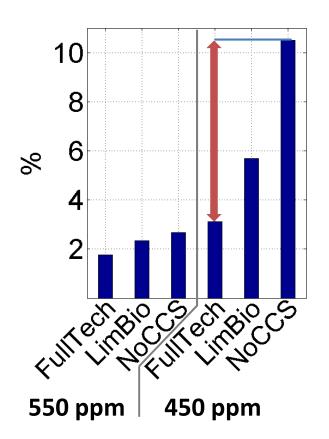
<u>Re</u>gional <u>M</u>odel of <u>In</u>vestment and technological <u>D</u>evelopment

- global **multi-regional** model of the energy-, economy-, and climate system
- combines a macro-economic Ramsey-type growth model with a bottom-up energy-system and a climate model
- computes the **general equilibrium** by maximizing the global welfare
- intertemporal perspective with perfect foresight
- detailed energy system

Representation of landuse sector

- bioenergy supply curves, N2O emission factor
- emission baselines from MAgPIE (subject to MAC)
- -> direct and indirect bioenergy emissions are fully accounted for

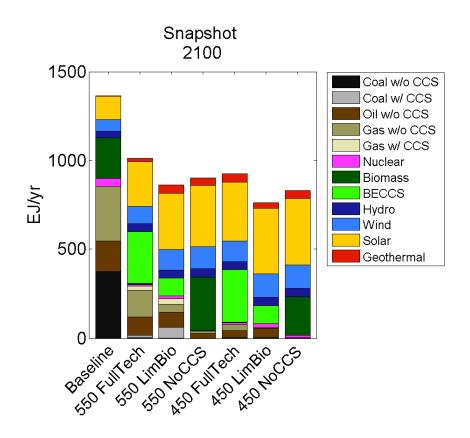
Scenario definition

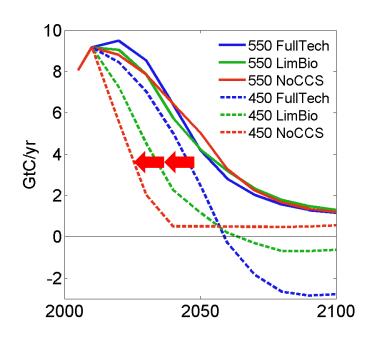

Major uncertainties about main factors that determine bioenergy deployment

- availability of advanced conversion technologies including CCS
- future **development of the landuse system** (unsufficient technological progress)
- negative side effects: food-competition, biodiversity, water consumption

	FullTech	NoCCS	LimBio
	300 EJ	300 EJ	ccs 100
Baseline			
450 ppm CO ₂ eq			
550 ppm CO ₂ eq			

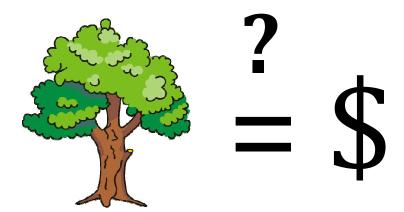
BECCS has high option value for low-stabilization


Cumulated consumption losses relative to baseline scenario

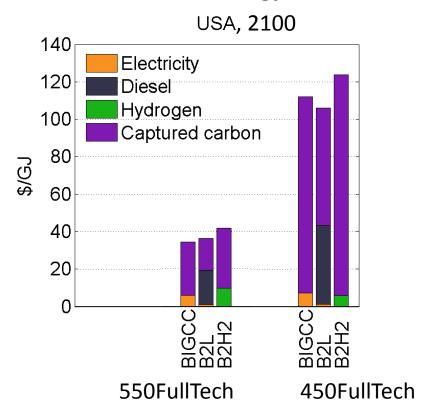

Source: Klein et al. 2013

Global bioenergy deployment

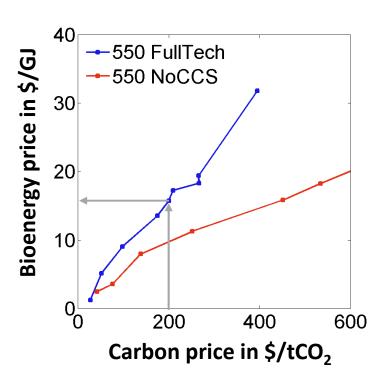
Primary energy demand



Total energy emissions including BECCS


- earlier and higher cumulated deployment •
- exclusively with CCS if available
- decarbonize the transportation sector
- maintaining short-term fossil fuel deployment induces strong demand for BECCS after 2050
- lim BECCS: intertemporal flexibility is reduced

willingness to pay


The value of bioenergy

Revenues from bioenergy conversion

- Diesel revenues are high due to fewer lowcarbon alternatives in transport sector
- The value of carbon tends to dominate over the value of energy
- Driving factor for building capacities are revenues from neg. emis. rahter than energy

Willingness-to-pay

$$p_{bio} = \frac{p_{CO2}}{carbon content \cdot capture rate}$$

 Carbon content links bioenergy price to carbon price and defines the willingness-to-pay

Research questions

What is the potential contribution of bioenergy to climate change mitigation?

- What is the global supply of modern biomass?
- How does climate policy affect bioenergy supply?

Why, when, and how is bioenergy deployed under climate policy?

- economic drivers of demand
- willingness-to-pay for bioenergy
- technology choice
- intertemporal allocation

Conclusions

- Low-stabilization is hard to achieve without negative emissions
- BECCS is a crucial mitigation option
- Maintaining short-term emissions relies on long-term availability of BE and CCS
- Bioenergy is predominantly used to decarbonize the transport sector
- Carbon value tends to exceed energy value
- Strong need for negative emissions induces high willingness-to-pay for BE
- Investment in technologies that woud not be built for energy production

- Ambitious climate targets (BE + CO₂ tax) put pressure on the landuse sector
- Bioenergy prices increase and strong intensification is required
- Threat for land that is not under emission control
- The political decision which land to put under carbon taxation defines how much land is accessible for the supply of bioenergy and food

Inofficial conclusion

Bioenergy with CCS is the only technology that can turn today's energy transformation challenges into far-future landuse problems.

Thank you for your attention

