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Learning or Lock-in: Optimal Technology

Policies to Support Mitigation

Abstract

We investigate conditions that aggravate market failures in energy innovations, and

suggest optimal policy instruments to address them. Using an intertemporal gen-

eral equilibrium model we show that “small” market imperfections may trigger

a (temporary) dominance of an incumbent energy technology over a dynamically

more efficient competitor, given that the technologies are very good substitutes.

Such a “lock-in” into an inferior technology causes significantly higher welfare losses

than market failure alone. More than other innovative industries, energy markets

are prone to these lock-ins because electricity from different technologies is an al-

most perfect substitute. To guide government intervention, we compare welfare-

maximizing technology policies including subsidies, quotas, and taxes with regard

to their efficiency, effectivity, and robustness. Technology quotas and feed-in-tariffs

turn out to be only insignificantly less efficient than first-best subsidies and seem

to be more robust against small perturbations.

JEL classification: O38, Q40, Q54, Q55

Key words: renewable energy subsidy, renewable portfolio standard,
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1 Introduction

Whether technology policy is needed in addition to carbon pricing to combat

global warming efficiently is still debated controversially. Some researchers

have argued that existing, technology unspecific instruments like patents and

research subsidies are sufficient to foster innovations in the energy sector [29].

But other researchers maintain that policy intervention is necessary: Some

identify spillovers as the cause of suboptimal innovation in carbon-free tech-

nologies [26, 13, 32] while others see an initially high innovation rate in the

carbon-intensive sector as the reason for suboptimal green innovation [1].

These papers, however, do not provide a convincing rationale why regulators

should focus on market failures in energy innovations rather than in innova-

tions in general: What is special about innovations in the energy sector to

make technology-specific policy intervention necessary? This paper addresses

this question using an intertemporal general equilibrium model with two com-

peting low-carbon energy technologies. Our analysis draws on two strands of

literature: the first discusses policy instruments to address climate change and

innovation processes, the second investigates technological lock-ins.

Several modeling studies addressing technology policy in the context of global

warming have been published. With regard to the technological structure,

Kverndokk and Rosendahl [26] and Rivers and Jaccard [33] are closest to our

model but do not consider intertemporal resource extraction and endogenous

savings dynamics. Fischer and Newell [13] use a partial two-period equilibrium

model calibrated to the US economy for very moderate mitigation targets.

Gerlagh et al. [16] and Gerlagh and Lise [15] analyze the impact of constant

ad-hoc carbon taxes under (perfectly internalized) technological change within
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an intertemporal general equilibrium model. Finally, Popp [31, 32] studies the

impact of R&D expenditures on carbon prices and mitigation costs within

a social planner model. We differ from these models in analyzing the inten-

sity of technology lock-ins depending on important technological parameters,

spillover and discount rate mark-ups. So far, no modeling study derives optimal

first-best and second-best instruments within an intertemporal general equi-

librium framework. The other strand of literature explores how lock-ins arise

due to increasing returns going back to the seminal work by Arthur [4]. Here,

lock-in is understood as market dominance of an inferior incumbent technol-

ogy at the expense of a superior contender technology. This view is supported

by micro-modeling [3] and various case studies; well-known examples include

keyboard layout and video recorders [9, 8] but also energy technologies [7, 23].

In the context of global warming, research has focused on lock-in into fossil

fuel technologies exacerbating the switch to carbon-free energy [36, 37, 14, 35].

In contrast, this paper examines the case of two competing low-carbon energy

technologies. As the lock-in literature stresses the role of additional market

barriers such as private and public institutions, lock-ins are hard to overcome

by common policy instruments like taxes or subsidies.

For our analysis, we develop an integrated policy assessment model which pro-

vides a consistent and flexible framework to calculate optimal policies and to

conduct a precise welfare analysis (Sec. 2). In our intertemporal general equi-

librium model, lock-ins rise due to imperfections in the innovation process:

Technological progress in the learning backstop sector is driven by learning-

by-doing with intra-sectoral knowledge spillovers. Additionally, we consider

the case of high effective discount rates resulting from risk premiums due to

principle-agent problems between managers and stakeholders and uncertainty
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about future climate policy. We consider three energy technologies: (i) fossil

energy, (ii) a learning backstop energy where significant learning-by-doing oc-

curs as expected for many renewable energy technologies, and (iii) a mature

(non-learning) backstop energy where technology has already experienced past

learning and considerable up-scaling. Candidates for the mature low (or zero)

carbon energy technology are nuclear power, hydropower, combined cycle gas

turbines (CCGT) or coal fired power plants combined with carbon capture

and sequestration technologies (CCS).

We find that a possible lock-in into inferior (non-learning) carbon-free energy

technologies can be very costly compared to the costs of the innovation market

failure alone (Sec. 3). Incomplete appropriation of the gains of innovation gen-

erally leads to higher prices. This is the same for all technology development

that exhibits spillovers, but given sufficient product differentiation, consumers

will buy new products even at higher prices. Impacts of spillovers will be small

because the demand of variety-loving consumers triggers further technologi-

cal progress and cost reductions. Electricity, however, is a very homogeneous

good, and thus price competition dominates the market. The currently cheap-

est technology crowds out other technologies that may be dynamically more

efficient. Hence, the very good substitutability between energy from mature

and learning generation technologies is the reason why energy markets suffer

more from spillovers than many other innovative industries.

Due to the good substitutability, seemingly small market failures have a con-

siderable impact on the energy mix, welfare and carbon prices. We therefore

analyze the performance of different policies in preventing lock-ins by calculat-

ing optimal first-best and second-best policy instruments (Sec. 4). We distin-

guish the following policy instruments: (i) subsidies for the learning backstop

4



technology; (ii) quotas (i.e. portfolio standards), (iii) feed-in-tariffs, (iv) taxes

on the mature backstop technology, and (v) second-best carbon pricing. We

find that only the subsidy achieves the social optimum, but feed-in-tariffs and

quotas specifically targeting the learning backstop technology only incur very

small welfare losses. The other instruments exhibit larger welfare losses up

to the point of showing no improvement compared to the laissez-faire market

equilibrium. Limited commitment and political-economy aspects motivate our

analysis of policy stimuli, i.e. subsidies that are only available for a certain time

(Sec. 5). It turns out, that an optimal subsidy stimulus of only a few decades

reduces consumption losses substantially. Finally, by considering small per-

turbations of the optimal policies we find that the optimal feed-in-tariff and

quota turn out to be fairly robust, while a deviation from the optimal subsidy

of as little as one percent may render the subsidy ineffective in preventing a

lock-in (Sec. 6).

2 The model

We use an intertemporal general equilibrium model that distinguishes house-

hold, production, fossil resource extraction and several energy sectors. 1 In

addition to energy generated by combustion of fossil resources, there are two

carbon-free energy sources: a mature energy sector, and a more expensive

yet learning competitor technology. A further sector extracts fossil resources

from a finite resource stock. We assume standard constant elasticity of sub-

1 The model is built to deal with a large set of climate policy issues like delayed

carbon pricing, supply-side dynamics and double-dividend aspects which go beyond

the research question of this paper.

5



Figure 1. Overview of the modeling framework.

stitution (CES) production functions stated in detail in the appendix. The

economic sectors are in a competitive market equilibrium within a closed econ-

omy. Global warming policy is addressed by a carbon bank – an independent

institution that manages a given carbon (permit) budget intertemporally. The

government, which anticipates the equilibrium response of the economy, im-

poses policy instruments on the economy to maximize welfare. Fig. 1 gives an

overview of the equilibrium and the role of the government.

2.1 The decentralized economy

Here, we concentrate on the description of the agents’ optimization problem

and the interplay with government’s policies; the mathematical description of

production technology as well as the derivation of the first-order conditions

can be found in the Appendices A and B, respectively.
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The representative household

We assume a representative household with the objective to maximize the sum

of discounted utility U , which is a function of per-capita consumption C/L: 2

max
Ct

T
∑

t=0

(1 + ρ)−∆t∆LtU (Ct/Lt)

The factor ∆ denotes the length of a time period in years and ρ is the pure

rate of time preference.

The household owns labor L, capital stocks Kj, and the firms, and therefore

receives the factor incomes wL and rKj, as well as the profits of all firms πj,

where j ∈ {Y, F,R,N, L} enumerates the sectors (consumption good sector

Y , fossil energy sector F , resource extraction sector R, mature (non-learning)

backstop energy sector N , learning backstop energy sector L). Wage rate w,

interest rate r, profits πj and lump-sum transfers from the government Γ are

taken as given. The household is assumed to take the depreciation of capital

at rate δ into account in its investment decision. 3 The household therefore

faces the following constraints:

Ct = wtLt + rtKt − It + πt + Γt (1)

Kt =
∑

j

Kj,t, It =
∑

j

Ij,t, πt =
∑

j

πj,t (2)

Kt+1 = Kt + ∆(It − δKt), K0 given (3)

2 In the following, we often omit the time-index variables t in the main text to

improve readability.
3 Imposing the depreciation dynamics on the saving-side (households) instead of the

investment-side (firms) is done for technical reasons. It does not change investment

behavior but simplifies the capital dynamics within the economic model.
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The production sector

The representative firm in the consumption good sector maximizes its profit

πY by choosing how much capital KY and labor L to rent, and how much

energy to purchase from the various sources: fossil fuels sector, mature and

learning backstop energy sectors (EF , EN , and EL, respectively). It has to

consider the production technology Y(·) and the given factor prices for capital

(r), labor (w), fossil (pF ), mature backstop (pN) and learning backstop (pL)

energy (the price of consumption goods are set to one). Furthermore, the

production sector may need to consider government intervention in form of a

subsidy on the learning backstop energy τL or a feed-in tariff ςF . The latter

takes the form of a subsidy but is cross-financed by a tax τF on energy from

the fossil and the mature backstop technology energy sectors.

πY,t = Y(KY,t, Lt, EF,t, EL,t, EN,t) − rtKY,t − wtLt − (pF,t + τF,t)EF,t

− (pL,t − ςF,t − τL,t)EL,t − (pN,t + τF,t)EN,t (4)

The nested CES production function Y(Z(KY , AYL),E(EF ,EB(EL, EN)))

combines a capital-labor intermediate with energy, assuming an elasticity of

substitution of σ1. Capital and labor are combined to an intermediate input

Z using the elasticity of substitution σ2; similarly, fossil energy and back-

stop energy are combined to final energy with the elasticity of substitution

σ3. Finally learning and mature backstop energy are combined to aggregate

backstop energy EB using the elasticity of substitution σ4.
4 Population L and

4 We do not integrate fossil, learning and non-leaning energy on the same CES-level

because we assume that substitutability between the two backstop energies EL and

EN should be higher than between a backstop and a fossil energy EF and EL. This

is due to the fact that backstop energy is usually considered in the electricity sector
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productivity level AY grow at an exogenously given rate.

Additionally, the government may impose quotas to influence the energy port-

folio. Three quotas are included, differing with respect to how specifically they

can foster energy from the learning backstop technology: Quotas of the first

kind, ψT
L , set a minimum share of energy from the learning backstop (EL)

relative to total energy use. The second type ψB
L requires a minimum share

of EL relative to all carbon free energy. Finally, the quota ψT
B determines the

minimum share of energy from either backstop technology relative to total

energy use.

EL,t ≥ ψT
L,t(EF,t + EN,t + EL,t) (5)

EL,t ≥ ψB
L,t(EN,t + EL,t) (6)

EL,t + EN,t ≥ ψT
B,t(EF,t + EN,t + EL,t) (7)

The fossil energy sector

The fossil energy sector maximizes profits πF with respect to capital KF and

fossil resource use R, subject to the CES production technology EF and given

factor prices for fossil energy, capital and resources (pR). Additionally, it may

consider a carbon tax τR or carbon permit price pC :

πF,t = pF,tEF(KF,t, Rt) − rtKF,t − (pR,t + τR,t + pC,t)Rt (8)

The fossil resource sector

The fossil resource sector extracts resources from an exhaustible stock S us-

ing capital KR. Its objective is to maximize the sum of profits over time,

while fossil energy covers electric as well as non-electric energy consumption.
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discounted at the rate rt − δ 5 :

max
Rt

T
∑

t=0

πR,t∆Πt
s=0

[1 + (rs − δ)]−∆

Resource owners rent the capital used in the extraction process at the mar-

ket interest rate. The productivity of capital ∂R/∂KR decreases with ongoing

depletion of the exhaustible resource stock [34, 30]. The resource sector, there-

fore, has to consider the following constraints:

πR,t = pR,tR(St, KR,t) − rtKR,t (9)

St+1 = St − ∆Rt, St ≥ 0, S0 given (10)

The learning backstop sector

The learning backstop sector maximizes profit πL under capital input and

with a fixed amount of land N . It considers interest rate and renewable en-

ergy prices as given and may additionally consider a risk premium v ≥ 0

which effectively increases the discount rate above the market interest rate.

This risk premium reflects principal agent problems within the firms – i.e.

managers prefer current profits to future profits – an investment behavior

which cannot be monitored by stakeholders appropriately. Another reason for

v > 0 are uncertainties about the political regulation process (i.e. carbon

pricing and technology policy) which affects the intertemporally maximizing

learning backstop sector more than other sectors. 6 The optimization problem

5 As the interest rate already reflects depreciation of capital due to our formulation

of the representative household (see Eqs. 1–3), consumption has to be discounted

by the interest rate net of depreciation.
6 Fossil energy as well as the mature backstop sector do not make an intertemporal

investment decision. At least, the fossil resource extraction sector can suffer from
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of the sector reads:

max
KL,t

T
∑

t=0

πL,t∆Πt
s=0

[1 + (rs + v − δ)]−∆

πL,t = pL,tEL(AL(Ht)KL,t, N) − rKL (11)

Ht+1 = Ht + ∆(EL,t − EL,t−1), H0 given (12)

The productivity AL depends on cumulative output H according to AL =

AL,max

1+( Ω

H )
γ and converges to AL,max when H → ∞. This formulation is based on

Arrows’s learning-by-doing approach [2] and widely used in energy economic

models [e.g. 26, 13]. Ω is a scaling parameter, and γ is the learning exponent.

It is related to the learning rate lr by γ = − ln(1 − lr)/ ln 2, which measures

by how much productivity increases when cumulative capacity is doubled.

As shown in Appendix B, the firms’ internal present value of learning µt is

given by µt−µt−1(1+(rt+v−δ))
∆ = ∆(1−φ)

∂EL,t

∂Ht

(

pL,t − µt + µt+1

(1+(rt+1+v−δ))∆

)

The spillover rate φ ∈ [0, 1] is introduced to indicate how much of the learning-

by-doing effect is anticipated by the individual firm. 7 From a social planner’s

perspective, spillovers are irrelevant as cumulative output determines learning.

In contrast, in a decentralized economy, only a share (1 − φ) of learning is

high discount rates – but under a carbon budget high carbon prices dilute the

intertemporal rent dynamics of the fossil resource sector almost completely. If the

carbon price is set appropriately, it can also correct for higher discount rates (see

also Kalkuhl and Edenhofer [25] for an analytical argumentation).
7 This approach is common [17, 26, 13]. It is consistent with econometric studies

on external learning-by-doing spillovers which suggest that learning does not only

depend on the individual firm’s cumulative production but also – to some extent –

on the other firms’ cumulative output [22, 5].
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appropriated by the firm. Hence, φ introduces an incentive problem. 8

The mature backstop sector

The mature backstop sector sector maximizes profit πN subject to capital

input KN with an AK-technology function:

πN,t = (pN,t − τN,t)EN(KN,t) − rtKN,t (13)

It takes interest rate and energy price as given and has to consider an output

tax τN on energy generation if it is imposed by the government.

The carbon bank

We assume that society’s mitigation goal is formulated as an upper constraint

on cumulative carbon extraction – a so-called carbon budget –, and that the

government has appointed an institution, the carbon bank, to manage the

corresponding carbon permits efficiently. The carbon bank has the objective

to maximize the revenues πC from a given carbon budget B0 ≥ 0. It decides

how much carbon permits P to issue in each time period. As each unit of

carbon extracted by the fossil resource sector requires the purchase of one

carbon permit, it follows that P = R.

max
Rt

T
∑

t=0

πB,t∆Πt
s=0

[1 + ∆(rs − δ)]−1

8 A spillover rate of 100 percent implies that firms perceive the productivity in-

crease as fully exogenous. In contrast, a 0 percent spillover rates implies a perfect

internalization of learning by firms. Learning then is a pure private good.
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πB,t = pC,tRt (14)

Bt+1 = Bt − ∆Rt, Bt ≥ 0, B0 given (15)

Similar to an exhaustible resource, the carbon budget is a stock of permits

which can be used throughout the planning horizon. The resulting carbon price

set by the bank therefore follows the Hotelling rule. This approach allows us

to decouple climate policy (the price on carbon) from technology policies.

2.2 Equilibria of the economy

In this study, we distinguish three types of equilibria for the economy outlined

above. The social optimum given by the choice of a benevolent social planner

serves as the benchmark equilibrium. In the Stackelberg equilibria, a welfare-

maximizing government selects the optimal trajectory of policy instruments

from a pre-defined subset of available policy instruments given the implicit

reaction functions of the economic sectors (see for example Dockner et al.

[10], p. 111). Thirdly, we consider a laissez-faire market equilibrium with no

government intervention.

Social optimum

The intention of considering the social optimum of our model economy, is to

measure the extend to what second-best policies fall short of the first-best. The

socially optimal allocation is determined by solving the welfare maximizing

problem subject to investment, fossil extraction, carbon budget, technology
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and macroeconomic budget constraints according to:

max
{Kj,t}

T
∑

t=0

(1 + ∆ρ)−t∆LtU (Ct/Lt) (16)

subject to Eqs. 2, 3, 10, 12, 15, A.1–A.13

and Ct = Yt − It

Stackelberg equilibrium

The first-order conditions of the sectors described above (and spelled out in

Appendix B) define an intertemporal market equilibrium for given policy in-

struments. The government considers all technology constraints, budget con-

straints, equations of motion and first-order and transversality conditions and

chooses policy instruments to maximize welfare (see Fig. 1).

Furthermore, the government balances incomes and expenditures in any time

with households’ lump-sum tax Γ. In case of the feed-in-tariff, the subsidy ςF

for the learning energy is financed by the tax for fossil and mature energy τF .

Γt = τN,tEN,t − τL,tEL,t + τR,tRt + πB,t (17)

ςF,tEL,t = τF,t(EF,t + EN,t) (18)

Hence, the government’s optimization problem is described by:

max
Θ

T
∑

t=0

(1 + ∆ρ)−t∆LtU (Ct/Lt) (19)

subject to Eqs. 1–15, 17–18 , A.1–A.13, B.1–B.20

Θ = {τL,t, τN,t, τR,t, ςF,t, ψ
T
L,t, ψ

B
L,t, ψ

T
B,t} is the set of government policies. For

the purpose of our paper it will be convenient to restrict policies to a single

instrument while all other instruments are set to zero.
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Laissez-faire equilibrium

The laissez-faire market equilibrium is a special case of the Stackelberg equi-

librium. Here we set all policy instruments to zero – thus, Θ ≡ 0. Note that

this does not include climate policy, as we always assume that climate policy

in form of a carbon budget is implemented by the carbon bank setting pC .

2.3 Calibration and implementation of the model

Model parameters are chosen to reproduce the baseline from a model compar-

ison project in the social optimum without any carbon budget [12]. We use

a carbon budget of 450 GtC for the mitigation scenario. This limits global

warming to 2°C above the preindustrial level with a probability higher than

50 percent [28]. The endogenous fossil energy price starts at 4 ct/kWh in 2010

and increases up to 8 ct/kWh in 2100 (under business as usual) due to in-

creasing extraction costs. The mature backstop technology refers to nuclear,

gas or coal (with CCS) technologies as their learning rates are very low (1-

9%) compared to renewable energy technologies like solar, wind and ethanol

(8-35%) [20, 27]. The cost of the backstop technology is mostly constant at

15 ct/kWh which is at the upper bound of IEA’s cost estimate for nuclear

and gas [21]. 9 For the learning backstop energy we consider two parameter-

9 We use a small negative external learning rate in Eq. A.13 of gN = −0.4% to

obtain constant costs for the non-learning backstop energy because the interest

rate falls over time. A negative learning rate can also be justified by increasing

scarcities (uranium, gas, carbon dioxide storage capacities for CCS) or increasing

safety standards which raised capital costs for nuclear power plants in the past

[11]. However, we ran our model also for gN = 0 and did not observe qualitative
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izations: a moderate learning parameterization with a 17% learning rate and

9 ct/kWh generation costs in 2100 (standard parameterization); and a high

learning scenario with a 25% learning rate and 5 ct/kWh generation costs in

2100. Initially, the average costs are around 28 ct/kWh.

The climate externality can be easily incorporated by a fixed carbon budget

consistent with a certain temperature target. The magnitude of the innovation

market failure, however, i.e. learning spillovers and risk premiums, seems to

be difficult to quantify. Several econometric studies about learning-by-doing

spillovers in manufacturing and semiconductor industry suggest 0.2 ≤ φ ≤

0.6 [22, 18, 5]. 10 Within related integrated assessment or policy assessment

models, spillover rates usually range between 50 and 80 percent [24, 32, 13]. In

the following, we set φ = 0.75. Due to the lack of empiric evidence, we assume

that the risk premium is zero (v = 0). Nevertheless, we elaborate the impact

of deviations from these values in Sec. 3.

The optimization problems as defined by (16) and (19) form a non-linear

program (NLP) which is solved numerically with GAMS [6]. All parameters

of the model are listed in Appendix C. Additional figures with several model

results can also be found in the supplementary material.

differences in the economic dynamics.
10 These spillover rates refer to countries that already have a comprehensive patent

legislation.
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3 The lock-in effect

In this section, we compare the laissez-faire market equilibrium (with Hotelling

carbon price) with the optimal solution. In order to compare the dynamic

outcome of several equilibria we introduce two metrics: (i) consumption losses

refer to the relative deviation of discounted consumption from the social opti-

mum under the same technological parameters (we use a 3% discount rate); (ii)

the delay of learning backstop generation (compared to the social optimum)

is measured by the difference in years until the learning backstop achieves a

share of 10% in the total energy. 11

3.1 Why the energy sector is highly vulnerable to lock-ins

Fig. 2a shows backstop energy generation and costs in the social optimum

(which is equivalent to the laissez-faire equilibrium for φ = 0 and v = 0, i.e.

without market failures) for two different elasticities of substitution σ4 between

EL and EN . Energy from learning backstop technology is used significantly,

although its average unit costs are initially higher compared to those of the

mature technology. But when the learning curve and spillovers are internalized,

future cost reductions for the learning technology are fully anticipated. Hence,

the learning technology dominates the mature backstop technology.

Fig. 2b shows the generation in the laissez-faire equilibrium with intrasectoral

learning spill-overs. The spillovers lead to an imperfect anticipation of the fu-

ture benefits of learning-by-doing. For a low elasticity of substitution (σ4 = 3),

11 As we use a time-discrete model with a period length of ∆ = 5 years, we use a

linear approximation in-between time steps.
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Figure 2. Backstop energy generation and costs (2030-2080) for two different elas-

ticities of substitution (σ4 ∈ {3, 12}) between learning and mature backstop energy:

(a) optimal outcome and (b) laissez-faire equilibrium with 75 percent spillovers and

no additional technology policy instruments.

the laissez-faire outcome does not differ significantly from the optimal solution.

For a higher elasticity of substitution, however, this changes fundamentally:

The learning backstop technology is delayed significantly and energy demand

is met by energy from the mature backstop technology. This has a clear and

intuitive explanation: a low elasticity creates a niche demand for the learning

backstop energy even when it is more expensive than the mature backstop.

Driven by such a niche demand the learning sector may gain experience and

reduce production costs until it becomes competitive. But at high elasticities

of substitution niche demand vanishes. In this case, the technology with the

lowest market price wins.

Fig. 2 shows that a dynamically inferior technology dominates the dynami-

cally efficient technology for many decades. The energy sector “locks-in” into

the mature energy which competes with a learning technology that cannot in-
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ternalize the value of future learning appropriately into its price. The energy

sector is highly vulnerable to lock-in because electricity is an almost perfect

substitute for consumers. In contrast, many innovations in the manufacturing

or entertainment electronic sector provide a new product different from exist-

ing ones (e.g. flat screens vs. CRT monitor). The low substitutability implies

a high niche demand and, thus, provokes ongoing learning-by-doing although

considerable spillovers exist and market prices are distorted.

3.2 Economic impacts of lock-ins

In our standard parameterization the consumption losses due to the lock-

in are 0.8%. Fig. 3 shows how this value changes if several parameters are

modified. As we already argued, a high elasticity of substitution is an impor-

tant condition for a lock-in to occur. A second important condition is that

the generation cost of mature backstop energy is at a critical level: In the

case of 0.2 ≤ AN ≤ 0.25, which corresponds to production costs between 12

and 15 ct/kWh, the mature backstop energy is an attractive option before

learning has started and an expensive one after considerable learning took

place. Thirdly, there must exist a market failure in the learning backstop sec-

tor, which is introduced by the spillover rate or the discount rate mark-up

(risk premium). Beside these three necessary conditions, Fig. 3 indicates that

learning rates and mitigation targets influence the magnitude of consumption

losses. Hence, ambitious climate targets (like 200 GtC) become more expen-

sive if energy markets do not perform well although an efficient carbon pricing

instrument is applied.

Generally we can distinguish two sources of welfare losses. First, the intertem-
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Elasticity of Substitution
Learning Backstop Risk Premium
Learning Spillovers
Learning Rate
Mature Backstop Costs
Carbon Budget

Parameter Lo Std Hi

Elasticity of Substitution σ4 3 12 21

Risk Premium v 0.0 0.2

Spillover Rate φ 0.5 0.75 1.0

Learning Rate lr 0.1 0.17 0.25

Ω 20000 200 60

AL,max 0.6 0.6 0.8

Mature Backstop Cost AN 0.3 0.2 0.1

Carbon Budget B0 200 450 700

Figure 3. Consumption losses due to lock-in for several parameter variations around

the standard parameterization.

porally suboptimal deployment of the learning backstop energy causes con-

sumption losses even if no competitive mature backstop technology is available

(and no lock-in occurs). A doubling of the mature backstop production costs

(i.e. AN = 0.1) for example, makes the learning technology competitive even if

spillovers exist. In this case the mature backstop generation is virtually zero.

The resulting consumption losses due to spillovers are 0.3% for 3 ≤ σ4 ≤ 21

and there is almost no delay in learning backstop generation (< 5 years). In

contrast, in case of lock-in, the delay of the learning backstop deployment in-

creases to 25 years (σ4 = 12) or 35 years (σ4 = 21), respectively. Such a delay

causes much higher consumption losses.

In Fig. 3 only one parameter is varied at a time. This ignores that changes in

multiple parameters may cancel each other out or may mutually reinforce their

effect on the technology lock-in. Indeed, Tab. 1 shows further parameter sets

that cause particularly severe lock-ins with consumption losses greater than

one percent. Even if spillovers are only 50 percent, the existence of an addi-
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tional high risk premium postpones learning energy generation and provokes

consumption losses of 1.4% under a carbon budget of 200 GtC. A (rather

theoretically) upper bound for the consumption losses is given for the case

where spillovers are 100% and the carbon budget is very ambitious. In this

case, consumption losses increase to 8.0%.

The lock-in does not only provoke consumption losses and delayed learning

backstop generation, it furthermore modifies the Hotelling carbon price by

changing the interest rate and the initial carbon price. While the impact on

the interest rate is small, the initial carbon price level increases by 22 percent

to meet the carbon budget in our standard parameterization. The medium-

learning parameterizations in Tab. 1 show similar figures. In contrast, if the

learning rate is high the initial carbon price increases by 77–127 percent com-

pared to the case where no market failures exist.

4 Optimal policy instruments

The previous section showed that in absence of policy intervention there are

significant consumption losses higher than one percent possible due to severe

temporary lock-ins. This motivates the analysis of several policy instruments

to prevent lock-ins and reduce welfare losses. We focus on two illustrative

parameter settings: a high learning scenario (25 percent learning rate) and a

medium learning case (17 percent learning rate).

In the Stackelberg equilibrium, we calculate the welfare maximizing time paths

of (i) learning backstop subsidies, (ii) feed-in-tariffs, (iii) backstop energy quo-

tas, (iv) mature backstop taxes, and (v) a modified carbon price. The perfor-
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lr φ v B0 σ4 Consumption

losses

Delay

(years)

Initial carbon price

(1=optimal)

1 17% 50% 15% 450 21 0.9% 27 1.23

2 17% 50% 15% 200 21 1.4% 35 1.17

3 17% 75% 10% 450 16 1.5% 40 1.27

4 17% 75% 10% 200 16 2.2% 50 1.18

5 25% 50% 15% 450 21 1.1% 16 1.83

6 25% 50% 15% 200 21 1.3% 17 1.77

7 25% 75% 15% 450 13 2.0% 26 2.27

8 25% 75% 15% 200 13 3.4% 37 2.09

9 25% 100% 0% 200 13 8.0% 82 2.15

Table 1

Parameter values that provoke severe lock-ins: Impact on consumption losses, delay

of achieving 10% learning backstop energy share and initial carbon price.

mance of each of these instruments with respect to consumption losses and

delay of learning backstop deployment is shown in Fig. 4. In the following we

discuss these instruments in detail.

4.1 Subsidy for learning backstop energy

Economic intuition suggests that a subsidy would be the appropriate instru-

ment to internalize spillovers and achieve an optimal energy generation. As
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Figure 4. Performance of several policy instruments under the Stackelberg equilib-

rium: (a) Consumption losses relative to the optimal solution; (b) delay to achieve

a share of 10% learning backstop energy.

the social value of the learning technology is higher than its private value,

an instrument is needed to correct for this positive externality. A subsidy is

the most obvious way to implement this. Here, the subsidy τL is lump-sum

financed and changes the energy allocation via an impact on the first-order

conditions of the production sector (see Eq. B.6 in the appendix).
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Figure 5. (a) Optimal subsidy and subsidy stimulus (2010-2030 only) and (b) opti-

mal quota for learning backstop on total energy and share of learning backstop on

total energy in the social optimum.

The numerical calculation confirms that this subsidy is a first-best instrument.

If learning rates are high, the subsidy is initially high as an early deployment
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of learning backstop energy is socially optimal (see Fig. 5a). For lower learning

rates, fossil energy is more attractive in the first decades. Learning energy gen-

eration and the subsidy are delayed because postponed learning costs are lower

due to discounting. Note that after an initial “activation” phase which shifts

the energy generation from the niche to large-scale generation, the subsidy is

declining because of diminishing learning with cumulative output.

4.2 Feed-in-tariff

Although a lump-sum financed subsidy is an efficient instrument, it is scarcely

employed in reality. Governments which prefer a price instrument to a quota

widely choose feed-in-tariffs to encourage renewable energy generation. In con-

trast to the lump-sum-financed subsidy τL, the feed-in-tariff (ςF ) is a subsidy

on learning backstop energy that is cross-financed by a tax on fossil and ma-

ture backstop energy τF . This captures the idea that the costs of feed-in-tariffs

are borne by the entire energy sector.

The optimal path of the feed-in-tariff closely follows the lump-sum financed

subsidy displayed in Fig. 5a. As the cross-financing mechanism causes small

distortions for fossil and mature backstop energy prices, 12 the feed-in-tariff

converges faster to zero. Consumption losses, however, are small (< 0.1%) and

there is no delay in learning backstop energy deployment (Fig. 4).

12 The difference between lump-sum subsidy τL and feed-in-tariff ςF becomes ap-

parent in the first-order conditions (B.5–B.7) in Appendix B.
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4.3 Quota on the energy mix

Some governments use tradable quotas instead of subsidies to encourage re-

newable energy generation. In the following, we calculate the performance of

several quota regimes which differ with respect to their degree of technological

discrimination. In Eqs. (5–7), we introduced three different quota designs: (i)

a minimum quota for the backstop energy on the total energy generation (ψT
B),

(ii) a minimum quota for the learning energy on the total energy generation

(ψT
L), and (iii) a minimum quota for the learning energy on the total backstop

generation (ψB
L ).

Quota for (total) backstop energy

A quota on EB does not increase welfare compared to the laissez-faire equilib-

rium in our model. Hence, it is therefore optimal to keep it at zero. A positive

quota encourages both the learning and the mature backstop technology rela-

tive to the fossil energy technology. However, this is too unspecific to prevent

the lock-in into the mature backstop. A positive quota requirement would be

met primarily by the mature backstop.

Quotas for learning backstop energy

This instrument is more specific. It can indeed increase the generation of learn-

ing backstop energy. However, we find that the reference point of the quota

matters: if the quota is chosen relative to the shares of the two backstop ener-

gies (ψB
L ), it can discriminate mature against learning technology and therefore

prevent a (temporary) lock-in. Nevertheless, it cannot push the learning tech-
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nology relative to the fossil energy which would be necessary to achieve an

efficient timing of learning energy generation.

In contrast, the quota for learning energy relative to total energy (ψT
L) does

not only prevent a lock-in, but also induces a more efficient learning energy

generation at the expense of fossil energy generation. The optimal quota al-

most achieves the socially optimal energy generation (Fig. 5b). Similar to the

feed-in-tariff the quota operates like an implicit subsidy on EL and an implicit

tax on EF and EN . 13 This explains why the quota is set to zero in the second

half of the century: the consumption losses due to the distortion outweigh the

gains due to higher learning backstop generation. Overall consumption losses

are small and of the same magnitude as for the feed-in-tariff.

4.4 Tax on the mature backstop

Instead of promoting the learning technology, the lock-in can alternatively be

addressed by taxing the mature backstop technology which causes the lock-in.

As shown in Fig. 4, this policy is relatively expensive compared to the optimal

subsidy, the feed-in-tariff, or the optimal quota. However, consumption losses

are mainly due to the delay of the learning backstop energy similar to the

case where no (or only a prohibitively expensive) mature energy technology is

available (as discussed in Sec. 3).

13 See the marginal conditions (B.5–B.7) in the Appendix B for mathematical de-

tails.
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Figure 6. Consumption losses with respect to the length of optimal temporary sub-

sidies (starting in 2010).

4.5 Modified carbon pricing

The manegement of the carbon budget by the carbon bank leads to a Hotelling

carbon price. In a first-best setting (no technology failures) this is equivalent

to an optimal carbon tax τR. However, when additional market failures such

as learning spillovers are present, the second-best carbon price differs from

the Hotelling carbon price. In our model the second-best carbon price deviates

from the carbon bank’s carbon price in the laissez-faire equilibrium only during

the short transition phase when massive investments into the learning backstop

technology are made. Nevertheless, the modified carbon tax cannot prepone

this transition phase. A higher carbon price would primarily encourage the

mature backstop technology without enhancing welfare. This is contrary to the

findings of Hart [19] because we consider the case of two backstop technologies.

5 Policy stimulus

The policy instrument analysis in Section 4 calculated optimal first-best and

second-best instruments for the entire time horizon (21st century). In reality
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such a long-lasting commitment by governments might be difficult to imple-

ment. Furthermore, long-term subsidies may have adverse side-effects if they

cause rent-seeking behavior and transaction costs. A charming solution might

be to limit the duration of policy intervention. We therefore calculated the

optimal subsidy starting in 2010 for different time spans. The consumption

losses of these policy stimuli are shown in Fig. 6. A policy stimulus of 30 years

is sufficient to prevent lock-ins and decrease consumption losses below 0.2%. If

learning is moderate the subsidy is relatively unimportant during the first 15

years as the large-scale learning energy deployment begins in 2030. Hence, it

is important that the subsidy is implemented when the transition phase starts

(under the high learning parameterization, this is immediately in 2010). The

optimal stimulus subsidy may differ substantially from the optimal perma-

nent subsidy as indicated exemplarily by Fig. 5a. For the moderate (17%)

learning case, the 25-year-subsidy (and thus, learning backstop deployment)

is preponed because the subsidy is not available in later periods.

6 Robustness of optimal policy instruments

This section provides some elementary considerations about the robustness

of optimal policies by introducing small perturbations. For the three most

efficient instruments we calculate the consumption losses of varying the in-

strument by one percent relative to its optimal use.

As shown in Fig. 7, changes in discounted consumption are small except when

the subsidy is set too low. In this case significant consumption losses in the

range of the laissez-faire outcome can result. Lowering the subsidy by one

percent results in a strong lock-in into the mature backstop technology be-
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Figure 7. Consumption losses relative to the 1st-best optimum of optimal and ’close–

to-be-optimal’ (±1%) instruments.

cause the subsidy is too low to make the learning backstop competitive. This

does not occur for the other instruments. Even the 1%-lower-than-optimal

feed-in-subsidy makes the learning technology early competitive because it

additionally implies a taxation of fossil and mature backstop energy. For the

quota, small perturbations translate directly to small deviations in production

if the quota is binding. Thus, a lock-in cannot occur.

7 Conclusions

Our model provides important insights into the causes and implications of

market failures for energy innovations (Sec. 3). We identified a trio infernale

of necessary conditions that provoke a lock-in into a mature (non-learning)

technology although a superior (learning) contender technology is available:

(i) high learning spillovers, (ii) a high substitutability between these two tech-

nologies, and (iii) a critical range of present and future generation costs of

the competing technologies. The cost level must be such that the contender

technology is more expensive than the mature technology in the short term,

yet cheaper in the long run due to its learning potential. If only (i) and (ii)
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or (i) and (iii) hold, the market failure is small and the associated welfare

losses may be exceeded by the transaction costs of addressing it. For exam-

ple, if the high-cost backstop is prohibitively expensive, no lock-in occurs,

and thus, consumption losses of only 0.3% are caused by suboptimal timing

of innovation alone. Similarly, if substitutability is imperfect, the innovative

technology gains experience in niche markets. In this case, consumption losses

are also low (0.2%). If all three conditions hold, however, the innovation pro-

cess may be delayed by several decades. For plausible parameters, this causes

consumption losses ranging from 0.8% to 3.4% and carbon price increases by

17–127 percent. Hence, lock-ins between low-carbon technologies interfer with

climate policy: Higher carbon prices and mitigation costs make it difficult for

governments to seek for ambitious temperature targets.

Market failure due to spillovers may not only affect the energy sector but all

innovative sectors in the economy. But in contrast to electronic, information

and entertainment industries, energy – and in particular electricity – is a ho-

mogeneous good where almost no product differentiation is possible. 14 Thus,

while in many economic sectors condition (i) and (iii) hold, condition (ii) is

violated. Spillovers and discount rate mark-ups have only small impact on wel-

fare and may not justify (technology-specific) policy intervention. In contrast,

energy from several technologies is an almost perfect substitute which leads

to a strong competition in prices. Thus, the energy sector is at high risk of

lock-ins into dynamically inferior technologies which exacerbates consumption

losses.

14 An exception might be niche markets due to imperfect grid access or benevolent

consumers that are aware of the social costs of lock-ins and therefore purchase the

more expensive learning technology at their own costs.
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Our parameter analysis showed that ambitious mitigation targets, high learn-

ing rates and high risk premiums (discount rates) particularly delay innovation

and raise consumption losses. Even a 50 percent spillover can cause a severe

lock-in with 1.4% consumption loss if discounting mark-ups are high (15 per-

cent) and the mitigation goal is ambitious (200 GtC).

An optimal policy has to internalize spillovers. This can be done by a subsidy

on learning backstop energy which is lump-sum financed (Sec. 4). Feed-in-

tariffs and minimum quotas on learning backstop energy also provide a way

to promote a technology. However, these are cross-financed by an implicit tax

on mature backstop and fossil energy. The distortionary financing mechanism

leads to the occurrence of small inefficiencies (around 0.1%). All these instru-

ments require the regulator to pick the “winner”, i.e. to support the dynami-

cally more efficient technology while discriminating the other technologies. In

reality, the regulator might not have this option due to information, incentive

and political-economy problems. Instead of picking-the-winner, the regulator

could “drop-the-losers”, i.e. discriminate the non-learning technologies by a

tax. In particular, this could be useful if it was easier to identify technologies

which need to be avoided, than to determine which (maybe yet not existing)

technology will be essential for future energy generation. This also enhances

competition under several learning technologies. While such a policy prevents

lock-in, it cannot achieve the optimal timing of innovation leading to con-

sumption losses of 0.3–0.5 percent. Technology-unspecific backstop quotas and

modified carbon pricing are poor instruments resulting in negligible or zero

welfare gains.

Finally, we analyzed the performance of subsidies which are only available for

a certain time (Sec. 5). It turned out that a policy stimulus of 30 years is
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sufficient to decrease consumption losses below 0.2%.

Regarding the robustness of instruments, the implementation of the subsidy

carries the risk of being ineffective if it deviates only slightly from the optimal

value. In contrast, the consumption losses for feed-in-tariffs and quotas are

always small if realized implementation differs from the optimal values (Sec. 6)

although they are never first-best in a deterministic setting. A concluding

evaluation of these risks requires a comprehensive robustness analysis which

considers uncertainties in several economic parameters. While this is beyond

the scope of this paper, it indicates an important question for future research.

A Technology

The following functional forms for utility and production are used:
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EL(AL,KL, N) = ALK
ν
LN

ν−1 (A.11)

AL(H) =
AL,max

1 +
(

Ω

H

)γ (A.12)

EN(KN ) = ANe
∆gN tKN (A.13)

B First-order conditions of decentralized agents

Household sector Maximizing the Lagrangian LH =
∑T

t=0
(∆U(Ct/Lt)) [1 + ρ]−∆t+

λH,t(Kt+1 −Kt −∆(It − δKt))) with respect to Ct and Kt and by using the substi-

tution (1) yields the following first-order conditions:

∂Ut

∂Ct
= λH,t (B.1)

λH,t − λH,t−1(1 + ρ)∆ = −∆λH,t(rt − δ) (B.2)

0 = λH,TKT+1 (B.3)

Production sector Maximizing the Lagrangian LY,t = πY,t +φ
T
B,t(EL,t +EN,t−

ψT
B,t(EF,t +EN,t +EL,t)) + φB

L,t(EL,t − ψB
L,t(EN,t +EL,t)) + φT

L,t(EL,t − ψT
L,t(EF,t +

EN,t + EL,t)) with respect to KY,t, Lt, EF,t, EL,t and EN,t leads to the first-order

conditions:

rt =
∂Yt

∂KY,t
, wt =

∂Yt

∂Lt
(B.4)

pF,t =
∂Yt

∂EF,t
− τF,t − ψ1,tψ2,tφL,t − ψ3,tφB,t, (B.5)

pL,t =
∂Yt

∂EL,t
+ ςF,t + φL,t(1 − ψ1,t) + (1 − ψ3,t)φB,t,+τL,t (B.6)

pN,t =
∂Yt

∂EN,t
− τF,t − φL,tψ1,t + (1 − ψ3,t)φB,t (B.7)

With the KKT conditions:

0 = φT
L,t(EL,t − ψT

L,t(EF,t + EN,t + EL,t)) (B.8)

0 = φB
L,t(EL,t − ψB

L,t(EN,t + EL,t)) (B.9)
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0 = φT
B,t(EL,t + EN,t − ψT

B,t(EF,t + EN,t + EL,t)) (B.10)

Fossil energy sector The common static conditions apply:

pR,t + τR,t + pC,t = pF,t
∂EF,t

∂Rt
, rt = pF,t

∂EF,t

∂KF,t
(B.11)

Fossil resource extraction sector Maximizing the Lagrangian

LR =
∑T

t=0

(

∆πR,tΠ
t
s=0

[1 + rs − δ]−∆ + λR,t(St+1 − St + ∆Rt)
)

with respect to

Rt and St leads to the first-order conditions:

λR,t = pR,t − rt/κt (B.12)

λR,t − λR,t−1(1 + (rt − δ))∆ = −∆(pR,t − λR,t)
∂Rt

∂St
(B.13)

λR,TST+1 = 0 (B.14)

Learning backstop energy sector Maximizing the Lagrangian

LL =
∑T

t=0
(∆πL,tΠ

t
s=0

[1 + rs + v − δ]−∆ λL,t(Ht+1 −Ht −∆(EL,t −EL,t−1))) with

respect to EL,t and Ht and introducing the spillover rate φ leads to the first-order

conditions:

0 =

(

pL,t
∂EL,t

∂KL,t
− rt

)

Πt
s=0

[1 + rs + v − δ]−∆ + (λL,t+1 − λL,t)
∂EL,t

∂KL,t

0 = ∆(1 − φ)
∂EL,t

∂Ht

(

pL,tΠ
t
s=0

[1 + rs + v − δ]−∆ + λL,t+1 − λL,t

)

− λL,t + λL,t−1

0 = λT = λT−1

With µt := λtΠ
t
s=0

[1 + ∆(rs + v − δ)] we can transform this into:

(

pL,t − µt +
µt+1

(1 + rt+1 + v − δ)∆

)

∂EL,t

∂KL,t
= rt (B.15)

µt − µt−1(1 + rt + v − δ)∆ =

∆(1 − φ)
∂EL,t

∂Ht

(

pL,t − µt +
µt+1

(1 + rt+1 + v − δ)∆

)

(B.16)
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µT = µT−1 = 0 (B.17)

Mature backstop energy sector The common static condition applies:

ANe
∆gN t(pN,t − τN,t) = rt (B.18)

Carbon bank Intertemporal optimization results in a Hotelling price:

pC,t = (1 + rt + v − δ)∆pC,t−1 (B.19)

pC,TBT+1 = 0 (B.20)

C Parameters and initial values for numerical solution

Symbol Parameter Value

ρ pure time preference rate of household 0.03

η elasticity of intertemporal substitution 1

δ capital depreciation rate 0.03

Lmax
population maximum (bill. people) 9.5

f population growth parameter 0.04

a1 scale parameter in final good production 0.95

b1 scale parameter in final good production 0.05

σ1 elasticity of substitution energy–intermediate 0.5

a2 scale parameter in intermediate production 0.3

b2 scale parameter in intermediate production 0.7

σ2 elasticity of substitution labor–capital 0.7

a3, b3, a4, b4 scale parameter (energy usage) 1
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Symbol Parameter Value

σ3 elasticity of substitution fossil–backstop energy 3

σ4 elasticity of substitution learning–mature backstop 12

g0 productivity growth parameter 0.026

ζ productivity growth parameter 0.006

a scale parameter in fossil energy generation 0.8

b scale parameter in fossil energy generation 1.65E-4

σ elasticity of substitution energy–intermediate 0.15

χ1 scaling parameter 20

χ2 scaling parameter 700

χ3 resource base (GtC) 4000

χ4 slope of Rogner’s curve 2

ν share parameter learning backstop generation 0.95

AL,max maximum productivity learning backstop 0.6

Ω scaling parameter 200

γ learning exponent 0.27

N land 1

v risk premium (learning backstop) 0.0

φ spillover rate (learning backstop) 0.75

AN productivity mature backstop 0.2

gN productivity change rate -0.004

K0 Initial total capital stock (trill. US$) 165

S0 Initial stock of fossil resources (GtC) 4000

B0 Carbon budget (GtC) 450

H0 Initial experience stock 0.2
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Symbol Parameter Value

L0 Initial population (bill. people) 6.5

AY,0 Initial productivity level 6

∆ length of time period (years) 5

T time horizon (in ∆ years) 30
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