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A Utility quantile criterion

In the context of exploring alternatives to expected utility, we are currently
investigating a utility quantile criterion under probabilistic uncertainty that is
a promising candidate to provide important insight with respect to “robustness”
of policies. The criterion is very flexible as it allows to continuously interpolate
between a maximin (a pessimist’s) and a maximax (an optimist’s) criterion by
a quantile parameter Q. Given the general interest in alternatives to expected
utility, we present a definition of this form of “utility quantile optimisation”
below:

maxI(·)UQ(I(·)) subject to (1)∫
U∈[UQ(I(.)),∞[

dFU (a; I(·)) ≥ 1 − Q, 0 < Q < 1

where FU (a; I(·)) denotes the probability distribution in utility space induced by
the probability measure on a, and UQ(I(·)) the Q-quantile of this distribution.
Maximin optimisation obtained in the limit Q → 0, maximax optimisation for
Q → 1. For Q > 0, Q ≈ 0 the utility quantile optimisation almost acts like
maximin, however, disregards “a few, most extreme states of the world” that
would drive a pessimist to accept very high expected losses in a model that is
very nonlinear. First results indicate that under Q � 1 optimisation, MIND
behaves very similarly to expected utility optimisation. A systematic study of
MIND’s behaviour under quantile-based optimisation as proposed above will be
published elsewhere.
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B The energy sector within MIND

Energy from fossil fuels is produced from fossil resources R and a separate capital
stock using a CES technology. This capital stock for fossil energy generation is
made up by investments from the budget of the macroeconomy. The required
resources R are extracted by use of resource extraction capital Kres according
to the equation

R(t) = κl(t)κs(t)Kres(t)

Resource extraction is subject to learning by doing effects, modelled by κl, and
scarcity effects described by κs. Scarcity about fossil resources is the main
determinant of their costs in MIND. The equations read:

κs(t) =
χ1

Cres(t)
(2)

Cres(t) = χ1 + χ2

(
CRres(t)

χ3

)χ4

(3)

CRres(t) =
∫ t

τ

R(t′) dt′, CRres(τ) = 0 (4)

Eq. (2) simply indexes the productivity of extraction capital by the inverse
of marginal extraction costs Cres in units of the inverse of initial costs χ1 :=
113 $/tC. Eq. (3) is adopted from Nordhaus and Boyer (2000). Once cumulative
extraction CRres reaches χ3, marginal extractions costs have increased by χ2 :=
700 $/tC. The exponent χ4 := 2 determines the curvature of marginal extraction
costs as a function of cumulative extraction, where values of χ4 > 1 imply slowly
rising costs early on (CRres < χ3) and a steeper cost increase for CRres > χ3.
Therefore, parameter χ3 can be regarded as a proxy for the size of the resource
base, and its default value is set to 3500 gigatons of carbon in MIND version
1.1. In the context of this study, we will treat χ3 as uncertain parameter, and
may call it – albeit somewhat oversimplifying – resource base in the following.

Energy from renewable sources is produced by operating the installed ca-
pacity Kren (in Gigawatts) for an average of FLHren := 2190 full load hours per
year, i.e.,

Eren(t) = FLHren Kren(t) .

An investment flow Iren into the renewable energy sector is converted to in-
stalled capacity by multiplication with the productivity κren (Eq. (5)), which is
the inverse of the costs of capacity additions (Eq. (6)). Renewable energy instal-
lations exhibit a vintage structure described by weights ω that give the fraction
of capacity remaining from past investments going back a total of Δt = 30 years.

Kren(t) =
∫ t

t−Δt

ω(t − t′)κren(t) Iren(t) dt′ (5)

κren = (cren(t) + cfloor)
−1 (6)

Costs of capacity additions are comprised by a reducible part cren subject to
learning by doing and floor costs cfloor fixating the minimum cost of additional
capacity. The choice of floor costs and initial costs cren(t0)+ cfloor was informed
by a survey of future energy scenarios Nakićenović and Riahi (2002) and assumed
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to be 500 $/kW and 1200 $/kW, respectively Edenhofer et al. (2005). Due to
the vintage structure of capacities, learning effects are limited to the most recent
capacity additions.

We assume that every doubling of cumulative installed capacity CKren lowers
the reducible installation costs cren by a fraction expressed through the learning
rate l̃r:

μren = − ln(1 − l̃r)
ln 2

(7)

cren(t) = cren(t0)
(

CKren(t0)
CKren(t)

)μren

(8)

CKren(t) =
∫ t

t0

Kren(t) dt (9)

Due to the presence of the irreducible floor costs, the overall learning rate in
the renewable energy sector lr(t) is lower than l̃r, and will decrease with time
when accumulating capacity. It can be easily checked that the learning rate in
the initial period t0 is given by

lr(t0) =
cren(t0)

cren(t0) + cfloor
l̃r . (10)

In MIND versions 1.0/1.1, the learning rate for the reducible part of the in-
stallation costs was set to 15% (Edenhofer et al., 2005), implying an overall
learning rate in the initial period of 8.75%. This choice was informed by the
survey of future energy scenarios by Nakićenović and Riahi (2002). In addition
to the assumption of floor costs, MIND penalises large additions of renewable
energy capacity between adjacent time periods t−1 and t. The rationale is that
learning effects are reduced if investments are increased too rapidly to be fully
efficient. All these effects are captured in the following time-discrete equation
in MIND:

cren,t − cren,t−1 =

cren,0 CKμren
ren,0

(
CK−μren

ren,t − CK−μren
ren,t−1

) ×
(

CKren,t−1

CKren,t

)βren

(11)

Parameter βren := 0.4 in Eq. (11) sees to it that the cost reduction due to
learning by doing is diminished between adjacent time periods.

Carbon capture and storage (CCS) technologies are available to reduce emis-
sions from fossil fuel burning. To capture and store carbon dioxide (CO2), suf-
ficient capacities need to be built along the process chain comprising capture
of CO2 at point sources, transport via pipelines, compression, and injection
into sequestration sites. MIND models each of these steps giving a choice of
technological options.

MIND does not include artificial inertia constraints to limit the pace of
transition between competing fossil and renewable technologies. Such inertia is
introduced in a more intuitive way by (1) the vintage structure of the renewable
energy sector, (2) the efficiency penalty on rapid increases in renewable energy
capacity, and (3) the presence of fossil capital that generally will be used to
the end of its lifetime in efficient solutions. However, the inclusion of the CCS
sector gives the model the ability to rapidly reduce CO2 emissions after an initial
investment phase, if mandated by a very stringent climate target.
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C The climate module within MIND

The climate module calculates the temperature response to anthropogenic forc-
ing. Following Richels et al. (2004) we choose as temperature equation

dT

dt
= μ (ln c − fSO2 − fOGHG) − α T. (12)

Hereby T denotes global mean temperature anomaly, t time, μ the radiative
forcing for a doubling of preindustrial atmospheric CO2 content divided by the
heat capacity of the ocean (dominating the inertia of the climate system) and
ln 2, c the atmospheric carbon dioxide concentration in units of the pre-industrial
level of 280 ppm, fSO2 the sulphur forcing, fOGHG the prescribed forcing due to
other greenhouse gases and aerosols (both forcings in units of the 2×CO2 forcing
divided by ln 2), and finally α the rate by which the climate would respond to
changes in radiative forcing. c is derived from carbon emissions through a
linear differential equation describing atmospheric accumulation and decay. In
this study, we allow for uncertainty in the parameters μ and α determining the
transient as well as equilibrium temperature response.

The climate module represents the simplest model possible to analyse the
response of the climate system to carbon emissions. It is suitable for conceptual
comparative studies like the present article. However, it should be replaced
by a more advanced model when a quantitative assessment for policy advice is
to be provided. In particular, the accumulation of carbon in the atmosphere
may be underestimated for concentrations exceeding twice the preindustrial
value. Otherwise, for temperature excursions up to 2◦ as studied here, the
concentration and temperature response is captured qualitatively well1.

D Parameter uncertainty and sampling strategy

As indicated in the previous section, we consider uncertainty about two key
parameters in the energy system model of MIND, as well as uncertainty about
two key parameters in the climate module.

D.1 Uncertainties in the energy system

Within the energy system we allow for uncertainty about (1) the “fossil resource
base parameter” χ3 (see Eq. (3)) and (2) the learning rate of the generic re-
newable energy technology. The later quantity is affected by uncertainty about
the floor costs cfloor and the learning rate l̃r for the reducible part of capacity
additions (see Eq. (10)). Those parameters are poorly constrained by available
information, but constitute key determinants of future fossil fuel extraction
(χ3) and the potential of renewable energy to provide a cost-effective alterna-
tive (cfloor, l̃r). Sensitivity studies of the model response to variations in χ3 and
l̃r have been published in Edenhofer et al. (2006). Here, we specify subjective
probability distributions2 for the fossil resource parameter (χ3) and the learning

1The temperature equation represents a perturbation approach for excursions out of a
“hypothetical” pre-industrial climate equilibrium state. For a more specific justification of
utilising just one single time scale for the transient climate response, see Appendix E.

2Subjective probabilities emerge in the Bayesian paradigm and reflect degrees of belief,
not limiting frequencies. The notion of subjectiveness refers to the status of probability as

4



rate of a generic renewable energy technology (cfloor, l̃r) that are informed by
the literature.

In the case of χ3, we base our probability assessment on three different
resource base estimates by Nakićenović (1996) (3500 GtC, used as default value
in MIND version 1.1), Rogner (2000) (6500 GtC) and Moomaw and Moreira
(2001) (5000 GtC). Based on these estimates, we derive a beta-distribution for
χ3 ∈ [χ

3
, χ3],

ρ(χ3) =
Γ(α + β)
Γ(α)Γ(β)

(
χ3 − χ

3

χ3 − χ
3

)α−1 (
χ3 − χ3

χ3 − χ
3

)β−1
1

χ3 − χ
3

, (13)

where the four degrees of freedom are fixed by the following assumptions:

1. the mean of the distribution falls on the medium estimate of 5000 GtC by
Moomaw and Moreira (2001),

2. the distribution is left-skewed allocating more probability mass to resource
bases above the mean. Accordingly, the mode is chosen to lie at 5750 GtC,
the average of the estimates by Moomaw and Moreira (2001) and Rogner
(2000),

3. on the lower end, the estimate of 3500 GtC by Nakićenović (1996) shall
represent the 15% quantile of the distribution,

4. and the lower tail of the distribution shall extend down to χ
3
:=2000 GtC.

These assumptions are fulfilled for values of α := 1.78, β := 1.30 and χ3:=7190
GtC. Fig. 1 shows the resulting cumulative beta-distribution for the fossil re-
source base χ3 along with ten points sampled from it.

For describing the uncertainty about the learning rate of a generic renewable
energy technology that can serve as backstop technology in the long run, we draw
on Grübler and Gritsevskyi (2002) and Nakićenović and Riahi (2002). The first
reference characterises the uncertainty by introducing three generic technologies
with learning rates of 0, 10% and 20%, representing nil, moderate and rapid
learners, respectively. The second reference describes a set of scenarios for
average learning rates in the 21st century that reach up to 28% (solar PV), 12%
(wind) and 13% (biomass) (Table 7 Nakićenović and Riahi, 2002). In this paper,
we err on the conservative side by focusing on the learning rates of the more
established, moderate learners among the renewables, and assume a normally
distributed learning rate of the generic renewable energy backstop technology
with expected value of 10%, and a 75% quantile of 12.5% (the average of the
upper bound of biomass and wind learning rates from the scenarios discussed in
Nakićenović and Riahi (2002)). In our model MIND, the average learning rate
of renewables in the 21st century will be path-dependent due to the presence of
floor costs. Therefore, we refer the above probability assessment to the learning
rate in the initial period lr(t0) which is solely a function of the learning rate l̃r

expression of genuine belief, but does not imply biased or distorted belief statements. Ideally,
informed and well-founded subjective probabilities are assessed via an elicitation of experts
in the field. Since such expert estimates do not exist for the energy system parameters
investigated here, and we wish to focus on the methodological side of analysing cost-effective
mitigation policies under uncertainty, we specify our own subjective probabilities based on
information from the literature.
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Figure 1: Sampling of the fossil resource base parameter. We choose equidistant
sampling with respect to to the prior measure (depicted as cumulative density
function at the ordinate).

for the reducible costs of capacity additions and the fraction of the floor costs
relative to the initial costs (see Eq. (10)). Hence, our subjective probability
estimate for lr(t0) is given by the normal distribution N(0.1, 0.037).

For the sake of keeping the analysis simple, we fully correlate the variation in
floor costs cfloor and learning rate of reducible costs l̃r in a way that reflects our
uncertainty assessment about lr(t0). This is achieved by making the following
heuristic assumption:

(
lr(t0)
lrD(t0)

)0.25

= 1 +
cfloor,D − cfloor

cren,D(t0)
(14)

(
lr(t0)
lrD(t0)

)0.75

=
l̃r

l̃rD

, (15)

where the MIND version 1.1 default values of lrD(t0) := 8.75%, l̃rD = 15%,
cfloor,D = 500$/kW and cren,D = 700$/kW serve as reference points. This as-
sumption allows us to convert a sample of overall learning rates lr(t0) drawn
from N(0.1, 0.037) into an associated sample of duplets (cfloor, l̃r) which deter-
mines the learning dynamics in the renewable energy sector in MIND. Fig. 2
shows such a sample of duplets corresponding to the 5%, 15%, ..., 95% quantiles
of our subjective probability distribution for lr(t0).

We have drawn samples from the probability distributions of χ3 (of size
K = 10) and lr(t0) (of size L = 10) according to a technique called descrip-
tive sampling (Saliby, 1990). Descriptive sampling is similar to Latin Hyper-
cube Sampling (LHS) in that it divides the uncertainty space in n hypercubes
with equal probability weight, but deviates from LHS in that it does not make
a random selection from each hypercube 1 ≤ i ≤ n, but rather chooses the
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Figure 2: Coupled sampling of (initial) learning rate (of renewable energy tech-
nologies) and their floor costs.

(i − 0.5)/n-quantile in a perfectly deterministic manner. Descriptive sampling
has been shown to offer an improvement over LHS sampling in terms of estima-
tor variance (Saliby, 1997). Concerns about biased estimates from descriptive
sampling for highly varying response surfaces have lead to further development
of the method Tari and Dahmani (2006). However, this is not an issue here since
sensitivity analyses of MIND (e.g. in Bauer et al., 2005; Edenhofer et al., 2006)
have shown that the macroeconomic response to variations in energy system
parameters is smooth and without local extrema.

D.2 Uncertainties in the temperature response

Concerning the climate system, we allow for uncertainty about the parameters
α and μ in temperature Eq. (12). However, we specify our prior probability
distribution in another coordinate system that is more adjusted to the knowledge
accumulated in the climate science community, i.e., a coordinate system spanned
by climate sensitivity (CS) and the effective heat capacity of the ocean Coc. CS
is defined as the equilibrium response of T to a doubling of atmospheric CO2

concentration relative to its preindustrial value (i.e., doubling c from 1 to 2).
From Eq. (12), we conclude CS = (ln 2)μ/α. The ocean heat capacity Coc is
proportional to 1/μ (Kriegler and Bruckner, 2004).

In the last six years, there have been numerous attempts to derive probability
estimates for key parameters of the temperature response, in particular climate
sensitivity. For this study, we have chosen to follow Frame et al. (2005) since
(1) they use the same energy balance model (i.e. climate module) as utilised in
MIND version 1.1, and (2) they present probabilistic information on the joint 2D
parameter space of that model, consisting in a 5% likelihood contour (in percent
of the maximum likelihood) in the joint CS-Coc parameter space. The likelihood
contour is derived by using patterns from HadCM3, a state of the art coupled
ocean-atmosphere general circulation model, to distinguish carbon dioxide and
sulphur dioxide forcing effects in the 20th century temperature record, and then
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Figure 3: Sample of correlated climate parameters, nonlinearly transformed
from a uniform sample in CS-Coc-space.

comparing the filtered signal with the output of their energy balance model.
We decided to proceed with this likelihood contour, pragmatically disregarding
parameter combinations outside of its volume, and then assuming a uniform
prior distribution over the remaining area in CS-Coc-space. In this way, we
include dependencies between climate sensitivity and ocean heat capacity that
are induced by the 20th century temperature record.

In line with the assumption of a uniform prior, we chose equidistant sampling
on the Coc-axis and equidistant sampling of CS conditioned on Coc to observe
the boundaries of the confidence volume. This gives us a sample of M = 301
(CS,Coc) combinations. However, as for the coupled economy-climate dynamics
time scales are key, we find it instructive to present the sample equivalently in
CS-α-space, as α represents the rate at which the climate system would respond
to anthropogenic forcing – the second important system property one needs in
addition the equilibrium property CS (see Fig. 3).

One may ask how the so derived distribution related to probabilistic in-
formation on CS as assembled in IPCC (2007), Ch. 9 (e.g. Fig. 9.20) and 10.
Fig. ?? compares the projection of our distribution on CS with probability den-
sity functions from the IPCC report in thin lines, that are reported there in
non- weighted a manner. We observe that our somewhat ad hoc reconstruction
embraces a major fraction of distributions from the IPCC report.

To further sharpen our assessment of the joint probability on CS and effec-
tive ocean heat capacity we include a likelihood function for climate sensitivity
that was derived from temperature data for the Last Glacial Maximum (LGM,
approximately 21000 years ago), based on a study by Schneider von Deimling
et al. (2006). In that work, the large temperature to carbon dioxide signal
between LGM and modern day climate was assessed in a dynamically consis-
tent way using a climate model of intermediate complexity, thereby providing
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Figure 4: Uncertainty in transient climate response can predominantly be ex-
plained by climate sensitivity according to a uncertainty experiment with a
complex climate model Schneider von Deimling et al. (2006). The remaining
uncertainty must stem from uncertainty on time scales.

new constraints on CS. The LGM data provide a new source of independent
information that has been represented as an additional Gaussian likelihood on
CS of mean 3.06◦C and standard deviation 0.907◦C (Schneider von Deimling
et al., 2006). In Fig. 6 of the main part we display our marginal pdf on CS
after including LGM information by a bold solid line. It is apparent that the
learning effect from LGM data is considerable. It can also be seen that the
community’s knowledge on CS can hardly be represented by a single pdf at
present. We nevertheless proceed with the choice of a single pdf as required
for our demonstration of an expected utility analysis of climate policies under
chance constraints.

E Details on the uncertainty analysis of the cli-
mate module

E.1 Justification of choosing only one T time scale

The climate module, containing only one single time scale 1/α is the simplest
possible when considering transient climate responses on external forcing. How-
ever we feel that for the semi-quantitative analysis performed in this article such
a module is sufficiently complex, for the following reason: uncertainty analyses
with a climate model of intermediate complexity (i.e. on the order of thousands
of prognostic variables (as against three in the present module; Schneider von
Deimling et al. 2006)) reveal that uncertainty transient climate response is pre-
dominantly governed by uncertainty in climate sensitivity. The latter explains
roughly 3/4 of response uncertainty (see Fig. 4; the “transient climate response
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(TCR) displayed there is defined as the global mean temperature one obtains
when forcing the climate module by a carbon dioxide concentration that in-
creases with 1%/yr from pre-industrial levels, until it reaches twice that level),
the remaining uncertainty stems from uncertainties in time scales. Here we ar-
gue that considering not uncertainty in climate sensitivity in isolation, but the
joint probability of climate sensitivity and the most important time scale rep-
resents the next- important step of accuracy and transgresses considerations of
the latest IPCC report (IPCC, 2007). Given that only 1/4 of the signal remain
to be explained, choosing one time scale appears as just about right.

E.2 Interpreting our emission paths in view of IPCC prob-
ability density functions for CS

One may ask to what degree the emission paths that we derived would observe
the 2DC temperature guardrail when various probability density functions for
CS cited in the latest IPCC report were utilised. As the strength of our ap-
proach lies in a joint pdf for CS and response time scale, and this information
is not provided in the IPCC report, we proceed in the following way: per pdf
taken from the IPCC report we rescale our joint pdf such that the marginal in
CS equals that of the IPCC’s while the conditional distribution p(α|CS) stays
invariant. Thereby we can still utilise a correlation structure between CS and
time scale.

This is accomplished by the following numerical procedure: (1) fit a pdf
into our marginal distribution pdf0(.) for CS, made-up by 301 ensemble mem-
bers by constructing a 10-bin histogram, that we then cubically interpolate and
renormalise to 1, (2) any member of the 301-shot climate ensemble 1...m...301
gets weighted (in addition to learning from LGM) by the ratio pdfIPCC(CSm)
/pdf0(CSm), (3) the weighted ensemble is renormalised to 1.

The probability density functions on climate sensitivity reported in IPCC
(2007) stem from Andronova and Schlesinger (2001); Forest et al. (2002, 2006);
Frame et al. (2005); Gregory et al. (2002); Hegerl et al. (2006); Knutti et al.
(2002, 2005); Piani et al. (2005).

E.3 Table of the climate parameter ensemble

The climate parameter ensemble is set up by uniform sampling of 1/μ−CS-
space within the 5% likelihood contour given by Frame et al. (2005), Fig. 1a.
We sample 1/μ equidistantly and derive for each given μm′ an equidistant set
CSm′.1, ..., CSm′.m′′ , ...CSm′.M ′′(m′):
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m′ 1/μm′ CSm′.1 CSm′.M′′(m′) M ′′(m′)
[yr/◦C] [◦C] [◦C]

1 0.593634 1.5 2 3
2 1.48409 1 3 11
3 2.37454 0.7 3.5 15
4 3.265 0.6 4 18
5 4.15545 0.5 5 24
6 5.04589 0.6 6 28
7 5.93634 0.7 6 28
8 6.82682 0.8 7 33
9 7.71724 1 8 37

10 8.6077 1.2 7.5 33
11 9.49821 1.5 6 24
12 10.3886 2 6 21
13 11.2791 2.5 6 18
14 12.1695 3.5 5 8

α is diagnosed from (CS, μ) through CS=(ln2)μ/α (Kriegler and Bruckner,
2004).

F A 3×3 sensitivity experiment with quantile-
adjusted climate sensitivity

One may ask whether it is really necessary to utilise the demanding chance
constrained programming, whether not by adjusting just climate sensitivity (and
climate response time scale 1/α, correlated with CS, accordingly) approximative
results could be obtained from a simple deterministic approach.

We find that for our marginal distribution for CS (including LGM) the lower
P ∗ =75%-quantile is 3.646 ◦C. The chosen values for α[1/yrs] are (1.562, 2.463,
5.821) ·10−2, the first and last component resulting from the extreme values, of
(CS,α)’s support, given CS=3.646 ◦C.

The technology dimensions we correlate as follows

m l̃rm cfloor.m χ3.m

$/kW GtC

1 0.082 628 6878
2 0.160 486 4837
3 0.237 385 2796
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