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Abstract

This article explores efficient climate policies in terms of investment
streams into fossil and renewable energy technologies. The investment de-
cisions maximise social welfare while observing a probabilistic guardrail
for global mean temperature rise under uncertain technology and climate
parameters. Such a guardrail constitutes a chance constraint, and the
resulting optimisation problem is an instance of chance constrained pro-
gramming, not stochastic programming as often employed. Our analy-
sis of a model of economic growth and endogenous technological change,
MIND, suggests that stringent mitigation strategies cannot guarantee a
very high probability of limiting warming to 2◦C since preindustrial time
under current uncertainty about climate sensitivity and climate response
time scale. Achieving the 2◦C temperature target with a probability P ∗

of 75% requires drastic carbon dioxide emission cuts. This holds true
even though we have assumed an aggressive mitigation policy on other
greenhouse gases from, e.g., the agricultural sector. The emission cuts
are deeper than estimated from a deterministic calculation with climate
sensitivity fixed at the P ∗ quantile of its marginal probability distribu-
tion (3.6◦C). We show that earlier and cumulatively larger investments
into the renewable sector are triggered by including uncertainty in the
technology and climate response time scale parameters. This comes at an
additional GWP loss of 0.3%, resulting in a total loss of 0.8% GWP for
observing the chance constraint.

We obtained those results with a new numerical scheme to imple-
ment constrained welfare optimisation under uncertainty as a chance con-
strained programming problem in standard optimisation software such
as GAMS. The scheme is able to incorporate multivariate non-factorial
probability measures such as given by the joint distribution of climate
sensitivity and response time. We demonstrate the scheme for the case of
a four-dimensional parameter space capturing uncertainty about climate
and technology.
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1 Introduction

The analysis presented in this article investigates efficient climate change mit-
igation options under uncertainty about energy technologies and the climate
system. We follow the dominant decision-analytic approach in assuming that
uncertainty can be represented by probability distributions. We employ a model
of economic growth and endogenous technological change, MIND (Edenhofer
et al., 2005), to identify intertemporally optimal investment streams into com-
peting energy technologies under such uncertainty. In this model, present-day
fossil fuel based energy technologies emitting greenhouse gases compete with
carbon-free energy generation from fossil fuels using carbon capturing and se-
questration (CCS), with renewable energy technologies, and with investments
in energy efficiency. MIND includes a simple climate module that maps green-
house gas emissions onto global mean temperature rise. This allows MIND to
derive the welfare maximising investment path under the boundary condition
that global mean temperature rise (as against pre-industrial values) shall not
transgress 2◦C1. Following Gerlagh and van der Zwaan (2004) we call the so
derived model futures 2DC scenarios.

The discussion of constrained welfare optimisations has often been accom-
panied by information about the cost-effectiveness of long-term climate change
mitigation policies (e.g. Manne and Richels, 1997). In this context, the costs of
efficient (in the sense of welfare maximising) climate policies are evaluated by
comparing production and/or consumption streams from the constrained wel-
fare maximisation with an unconstrained business as usual (BAU) case, which
reflects the optimal behaviour of the economy in the absence of climate change.
As a cost metric for the policy vs. BAU case we explore the traditionally used
net present value (NPV) of production. We will show (in Fig. 3 displayed be-
low) that in our application relative NPV losses roughly equal relative losses in
balanced growth equivalent (a cost metric proposed by Mirrlees and Stern 1972
and employed in Stern (2007)) up to a factor of 1.5.

Cost-effectiveness and welfare analyses of climate policies have been per-
formed for more than a decade, but gained renewed attention recently. The
inclusion of endogenous technological change led to the derivation of unprece-
dented low mitigation costs for reaching ambitious climate protection targets at
or below an atmospheric CO2 concentration of 450 ppm (approximately 0.5%
net present value GWP loss 2000-2100 with GWP discounted at 5% per year).
Costs of such magnitude were particularly affirmed in the Innovation Modelling
Comparison Project (IMCP) which included ten economic models (Edenhofer
et al., 2006).

However the basic results of IMCP are based on average values of key uncer-
tain economic and climate system parameters. Here we ask how these results
would change if the investment portfolio was optimised under uncertainty about
key parameters in the economic and climate system (for an overview see Kann
and Weyant, 2000; Peterson, 2006).

A series of economic studies have undertaken sensitivity studies with respect
to such parameters. Nordhaus (1994) performed extensive sensitivity analy-
ses in his seminal work on unconstrained welfare optimisation with the DICE
model (weighing costs and avoided damages of mitigation policies Nordhaus,

1Employing constraints in an economic optimisation may be interpreted as a high degree
of discontinuous risk-aversion.
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1994; Nordhaus and Boyer, 2000). Gerlagh and van der Zwaan (2004); van der
Zwaan and Gerlagh (2006) demonstrate that general findings from determinis-
tic climate policy optimisations under a temperature constraint are not robust
against variations in key uncertain parameters (see also Bürgenmeier et al.,
2006). Edenhofer et al. (2006) investigate the sensitivity of optimal portfolios
of mitigation options for achieving greenhouse gas concentration targets, and
find that changing fossil resource base or learning parameters by a few per-
cent, results in relative changes in the optimal energy mix of the same order of
magnitude. (Below we will argue that those parameters are in fact even more
uncertain.)

Mastrandrea and Schneider (2004) provide an example of how to transcend
mere sensitivity study by propagating probabilistic information on uncertain
parameters (climate sensitivity and damages) onto model output (dangerous
anthropogenic interference). Yohe et al. (2006) investigate the outcome of (car-
bon tax) policies on the probability of disrupting the Atlantic thermohaline cir-
culation. Hereby the disruption probability is calculated for prescribed carbon
policies based on probability distributions of four climate system parameters.
Thus Yohe et al. present a sensitivity analysis over policies.

Once a set of influential uncertain parameters is identified by some sort
of sensitivity analysis, it would be of highest importance for decision advice to
obtain control paths that are optimal under the given uncertainty. In contrast to
sensitivity analysis which investigates the dependence of optimal policies on the
variation of fixed parameter values, or alternatively the dependence of outcome
probabilities on the variation of fixed policies, decision analysis includes the
uncertainty about policy outcomes in the objective function. This is the focus
of the analysis presented here. Decision criteria under uncertainty, such as the
expected utility criterion, have been intensively explored by decision theory.
Decision frameworks usually extend to the important case of learning about the
uncertain state of the world, and subsequently of adapting the optimal policy
to improved information at latter points in time.

Contributions to be found in the literature may be classified in terms of
constrained or unconstrained optimisation, how uncertainty is absorbed in the
optimisation functional, whether learning is anticipated, and whether the anal-
ysis is along a highly simplified discretised or, on the contrary, quasi-continuous
control, parameter or output space. For highly stylised conceptual investiga-
tions which (other than this article) consider optimising expected utility under
learning see e.g. Nordhaus (1994) and Valverde et al. (1999).

Richels et al. (2004) provide the probability P ∗ of observing the 2◦C tem-
perature target as function of a carbon tax. They then invert this information
in order to obtain the tax that would induce a desirable P ∗ (Table 7), given
uncertainty in climate sensitivity, climate response time scale and GWP growth
rate (with 3 × 3 × 5 states of the world). Richels et al. can utilise their sensi-
tivity programming to assess decision making under uncertainty, but the setup
crucially depends on P ∗ being a monotonous function of the control parameter
“tax”.)

Yohe et al. (2004) analyse optimisation under an uncertain temperature tar-
get, in combination with uncertain climate sensitivity, the value of both to be re-
vealed under a single learning step in the year 2035. They optimise over a binary
control space (tax or no tax) and obtain that a modest initial tax is the dominant
strategy. According to their result, it would be rational to mitigate now instead
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of waiting until uncertainty has been reduced. This is in line with the findings
of Nordhaus (1994) when including uncertainty in the optimisation. Quite to
the contrary, Keller et al. (2004) find decreasing near-term abatements, when
considering the effects of uncertainty stemming from highly nonlinear damage
functions. (Hereby the authors optimise over a quasi-continuous intertemporal
control space, involving a sophisticated non-local optimiser.) This underlines
that including new dynamical effects may result in unexpected implications of
uncertainty.

In contrast to unconstrained optimisation where costs and benefits are fully
reflected in the objective function, Syri et al. (2007) optimise expected util-
ity under a constraint on temperature increase which safeguards the climate.
Within their approaches that assume just a few possible states of the world
(involving among other uncertain parameters climate sensitivity), they manage
to obtain emissions paths that observe the temperature target in each state of
the world. Ambrosi et al. (2003) solve the same functional for an intertemporal
abatement control, using the intertemporal optimisation software GAMS (Gen-
eral Algebraic Modeling System; Brooke et al., 1992). They show that inclusion
of uncertainty results in earlier abatement.

However, expected utility optimisation subject to a constraint generally leads
to a chance-constrained programming problem (Charnes and Cooper, 1959). If
full compliance with the constraint cannot be guaranteed under uncertainty (for
any policy), framing the decision problem as stochastic programming (i.e., opti-
misation of expected utility while observing the constraint for all sampled com-
binations of parameters) will lead to conceptual problems, since the feasibility
of a solution becomes a function of the uncertainty sampling. In particular, full
(numerical) compliance with the constraint may be possible only under severe
undersampling of the probability measure. A fat tail of a probability density
distribution will generally prohibit the existence of a policy that can observe a
temperature guardrail with (almost) certainty. For that reason, by employing
a stochastic programming approach, the above mentioned contributions could
not address the fat-tail of the probability distributions assembled for climate
sensitivity IPCC (2007b) adequately.

In order to address this fact, one needs to employ chance-constrained pro-
gramming: optimisation while prescribing a minimum probability P ∗ of observ-
ing a certain (temperature) constraint. McInerney and Keller (2008) opera-
tionalise this by adding a penalty to the optimised expected utility (“reliability
constraints” in their terminology). They find that reducing the odds of a North
Atlantic meridional overturning circulation collapse to 1/10, would require an
almost complete shutdown of emissions within a few decades.

In this article we present a different numerical scheme for optimising nonlin-
ear welfare under a chance constraint that does not rely on penalty functions.
The scheme employs the optimisation software GAMS and is suitable for com-
plex models of economic growth that would not allow for an analytic treatment
(in MIND dozens of paths of prognostic variables are coupled in a nonlinear
way). We constrain global mean temperature rather than greenhouse gas con-
centration as temperature is closer to the politically relevant impacts of global
warming, hereby following the arguments by Commission of European Commu-
nities (2007); Gerlagh and van der Zwaan (2004); Richels et al. (2004).

While we acknowledge that learning and adaptive strategies are of great
importance for climate mitigation policies, we do not include this case in our
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analysis here. This is owed to the complexity of the analysis which involves –
in addition to MIND’s complexity mentioned above – a four-dimensional uncer-
tainty space, and a high dimensional policy space. Given this overall complexity,
we begin with the natural first step to investigate efficient one-shot policies, and
defer the incorporation of learning to future research.

This article is organised as follows. Section 2 introduces our decision criteria
for optimisation under uncertainty, including our definition of a probabilistic
guardrail. We also summarise the model MIND and elaborate on those key
parameters that are considered uncertain in this study. In Section 3 we define
our strategy of sampling from probability distributions on the space of uncertain
parameters and our numerical implementation of optimisation under uncertainty
within GAMS. In Section 4 we operate the deterministic version of MIND in
sensitivity mode to outline the relative influence of the uncertain parameters. In
our main Section 5 we present results from probabilistic optimisation. Finally
in Section 6 we summarise the main findings of this article.

2 Methodology and model

For our analysis, we are using MIND, the Model of Investment and Technolog-
ical Development. The original model version 1.0 was presented in Edenhofer
et al. (2005). Later on, an endogenous carbon capturing and sequestration
(CCS) module was added (version 1.1, Bauer (2005)), and a more elaborate
carbon cycle and atmospheric chemistry module included (version 1.2IMCP
Edenhofer et al., 2006). In this paper, we use MIND in its previous version 1.1
with only a few changes2.

In particular, we use the carbon cycle-climate model employed in Edenhofer
et al. (2005) (see Appendix C). This carbon-cycle climate module (introduced
in Petschel-Held et al. (1999) and described in detail in Kriegler and Bruck-
ner (2004)) uses carbon dioxide and sulphur dioxide emissions as inputs, and
converts them into concentrations and subsequent radiative forcing of the earth
system. The sum total of the forcing is calculated by adding an exogenous sce-
nario for the aggregate radiative forcing of other greenhouse gases (OGHGs)
and aerosols (see Fig. 1). In MIND version 1.1, this scenario has been assumed
to follow the SRES B2 scenario (IPCC, 2001). Since constraining global mean
temperature change to 2◦C warming since preindustrial time is extremely diffi-
cult with CO2 abatement alone (Hare and Meinshausen, 2006; IPCC, 2007a), we
have assumed an OGHGs forcing scenario modelled after a proposal of Hansen
and Sato (2001) incorporating aggressive mitigation measures. This scenario
follows the lowest available SRES scenarios (B1 for halocarbons, A1T for ni-
trous oxide), and goes even further for methane and tropospheric ozone, whose
forcings are assumed to be reduced by 60% until 2100. After 2100, the de-
clining trend of most radiative agents is linearly extrapolated. The resulting
aggregated forcing for the other greenhouse gases and aerosols (excluding CO2,
sulphate and carbonaceous aerosols from fossil fuel burning) is shown in Fig. 1.

2The population scenario was updated from SRES B2 Nakićenović and Swart (2000) to
the common POLES/IMAGE baseline (CPI, van Vuuren et al. (2003)). Instead of the SRES
B2 scenario for CO2 emissions from land-use change, we use the SRES A1T scenario. In
Edenhofer et al. (2005), the 2◦C climate policy also limited temperature increase per decade
to 0.2 K, but this guardrail is not included here.
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Figure 1: Total radiative forcing from other greenhouse gases and aerosols (ex-
cluding CO2, sulphate and carbonaceous aerosols from fossil fuel burning) re-
flecting an aggressive exogenous mitigation policy (Hansen and Sato, 2001) for
those radiative agents.

Similar to Nordhaus’ DICE model, MIND is based on an optimal growth
framework to describe the macroeconomy (Nordhaus, 1994; Nordhaus and Boyer,
2000). However, it differs from DICE in mainly two respects. Firstly, techno-
logical change is endogenous to MIND. This is important to us, because tech-
nological change induced by environmental policy may substantially differ from
business-as-usual projections, especially over the course of a century or more.
Secondly, the energy sector of the economy includes the technological detail
reminiscent of energy system models. This enables us to discuss mitigation
options such as energy from renewable sources and carbon capture and stor-
age explicitly. In this sense, MIND is a hybrid energy system-macroeconomic
growth model.

The following Subsections introduce those portions of MIND in greater de-
tail that are relevant to the paper. This includes the model equations defining
the parameters under investigation, i.e., the development of renewable energy
technologies, in particular their expected learning by doing effects, the avail-
ability of fossil fuels, and the temperature response to anthropogenic forcing.
It also includes the specific setup of the welfare maximisation in MIND, both
in its deterministic version, and its extension to the probabilistic optimisation
problem investigated here. More complete discussions of the model equations
may be found in Edenhofer et al. (2005); Bauer (2005); Edenhofer et al. (2006).

2.1 Deterministic welfare analysis

The objective of economic activity in MIND is maximisation of social welfare.
As a proxy for welfare, we use the present value of utility which itself is given
by the discounted logarithm of per capita consumption under an exogenously
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given population scenario L(·). Compared to the DICE model where economic
output is distributed over consumption, a generic emissions control, and invest-
ment in production capital (Nordhaus, 1994), MIND provides greater flexibility
in allocating output Y . It can be consumed (C) or invested (I) in (i) indus-
trial capital, (ii) R&D sectors generating labour and energy augmenting tech-
nological change, (iii) generic fossil and renewable energy technologies, and (iv)
carbon capture and sequestration. Hence, the control variables of MIND are
constituted by the investment paths I(·) in various economic and energy sectors
(to be discussed in greater detail below), with the residual output allocated to
consumption according to the budget constraint

C(t) = Y (t) −
∑

i

Ii(t) , C(t) ≥ 0 . (1)

The investment paths are chosen according to

maxI(·)

∫ 2300

1995

dt L(t) ln
(

C(t; I(·))
L(t)

)
e−ρt (2)

subject to ∀t∈[1995,2400] T (t; I(·)) ≤ 2◦C.

Hereby, ρ is the pure rate of social time preference (PRTP), and set to 1%
per year in this study. The temperature constraint, which we may refer to as
“guardrail” in this study, signifies the climate policy requirement to be reached
in an efficient manner. The time horizon of the guardrail exceeds the horizon
of the economy to account for inertia in the climate system. For these years
we assume continuous resource extraction and land use change to the extent
of the year 2300 and continuous leakage from CCS sites to be sources of CO2

emissions. In the BAU case, the objective function is maximised without such
constraint. Obviously, nonlinear optimisation problem (2) is deterministic in
nature, since utility and temperature are assumed to be known with certainty
for given investment decisions I(·).

2.2 Extension to probabilistic welfare analysis

In case several model parameters – summarised by vector a – are regarded as
uncertain, the outcome of a climate policy in terms of temperature and intertem-
poral utility will be a function of a. Therefore, above optimisation problem needs
to be generalised. For the purpose of this study, we (i) assume that uncertainty
on a ∈ A can be modelled by means of a probability distribution F : A → [0, 1],
and (ii) choose to maximise the expected utility of an investment decision I(·).
Although this reflects the conventional approach to decision making under un-
certainty, we note that both assumptions (of probability and of maximising the
expectation) may have to be dropped in sophisticated applications which seek
robust policies under deep uncertainty about the state of the world.3 Alterna-
tive uncertainty representations and decision criteria have been explored, e.g.,

3In fact Knight (1921) highlighted as early as almost a century ago that decisions under
“risk” (based on known probability distributions) should be distinguished from other sorts of
decision situations involving lack of information or incomplete knowledge (so called deep or
“Knightian” uncertainty). In this article, we disregard “Knightian” uncertainty in the sense
that we assume that the available information on uncertain parameters is sufficient to justify
the use of probability distributions. On the other hand one may argue that we address part of
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by Lempert (2002) (and references therein) using an evaluation of regret, and
Kriegler et al. (2007) employing imprecise probability theory. However, in line
with our incremental approach to the analysis of efficient climate policies under
uncertainty, we make the natural first step (in the framework of complex eco-
nomic models) in this paper, and will investigate the consequence of relaxing
the conventional assumptions for our application of MIND in future work. The
key step for generalisation, however, will be the inclusion of sequential learning
under uncertainty.4

In order to implement expected utility maximisation with a chance con-
straint, we also need to generalise the temperature “guardrail” imposed in opti-
misation problem 2. The future temperature trajectory T (·; I(·), a) now depends
on a as well, and therefore it may be impossible to exclude the violation of the
guardrail with certainty. In Kleinen (2005), it was suggested to generalise the
temperature guardrail by including a lower limit for the probability P of ob-
serving it, i.e.,

∀t {P (T (t; I(·), a) ≤ 2◦C) ≥ P ∗}
⇔ ∀t {P (T (t; I(·), a) > 2◦C) ≤ 1 − P ∗} (3)

This implies a time-point-wise observation of the guardrail with a certain prob-
ability P ∗ that needs to be decided on in addition to the temperature value of
the guardrail. However, since this condition ignores the path dependency of T
on a we assert that for most global warming impacts it would be desirable to
observe the stricter condition

P (∀t {T (t; I(·), a) ≤ 2◦C} ) ≥ P ∗

⇔ P (∃t {T (t; I(·), a) > 2◦C} ) ≤ 1 − P ∗ (4)

Condition (4) implies Condition (3). The stricter condition recognises that for
many impacted systems it matters whether the guardrail was violated at all,
but not the time of violation.

Then the probabilistic optimisation reads

maxI(·)

∫
dF (a)

∫ 2300

1995

dt L(t) ln
(

C(t; I(·), a)
L(t)

)
e−ρt (5)

subject to P
(∀t∈[1995,2400] {T (t; I(·), a) ≤ 2◦C} ) ≥ P ∗. (6)

For a given emission path (or a distribution of paths), the left hand side of
the inequality constraint can be derived from the probability measure on the
parameters of the carbon carbon cycle-climate model, and the model’s map-
ping from emissions onto temperature. The measure that we use is given in

Knightian uncertainty as we are willing to subscribe to the concept of subjective probabilities
as representation of epistemic uncertainty (i.e., uncertainty that comes from lack of knowledge
rather than real-world stochastic processes).

4In the context of exploring alternatives to expected utility within GAMS, we are currently
investigating a utility quantile criterion under probabilistic uncertainty that is a promising
candidate to provide important insight with respect to “robustness” of policies. The criterion
is very flexible as it allows to continuously interpolate between a maximin (a pessimist’s) and
a maximax (an optimist’s) criterion by a quantile parameter Q. See Appendix A for details.
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Figure 2: Probability density functions (pdfs) for climate sensitivity (CS) ac-
cording to the latest IPCC report (thin lines). When marginalising our joint
pdf on CS, a rather flat pdf results (bold dashed line). After learning from
additional data from the last glacial maximum (Schneider von Deimling et al.,
2006), the pdf sharpens significantly (solid line). We assume that usage of such
data will become standard in the future and proceed with the solid line in our
optimisation.
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Appendix D.2. It is one of the few available that capture climate system un-
certainty in terms of a joint probability for climate sensitivity (CS) and climate
response time scale (dominated by ocean heat uptake). For reasons of compari-
son with probability estimates in the literature, Fig. 2 displays a 1D- projection
of our 2D probability measure w.r.t. climate sensitivity (i.e. the marginal distri-
bution in CS). All probability densities in dashed lines incorporate observational
data of the 20th century, IPCC distributions as thin curves (IPCC, 2007b), ours
in bold. It can be seen that we consider a rather non-informative distribution
in CS.

In Section 5, we will find that using climate sensitivity pdfs incorporating
only 20th century observations leads to very low probabilities for achieving the
2◦ degree target, even for the most stringent emission reductions that remain
feasible.

The maximum P ∗ that can be achieved with such distribution is closer to
1/2 than to 1, yielding a compliance probability that would be difficult to defend
as a chance constraint. Only if we absorb additional constraining information
from paleo data (Schneider von Deimling et al., 2006) in the climate sensitivity
pdf (solid line) we obtain a more confined distribution allowing for P ∗ ≥75%.
A confined distribution like this was also obtained by Annan and Hargreaves
(2006), and a similar interval for plausible values of climate sensitivity was
presented by IPCC (2001). For all those reasons we continue with a pdf for
climate sensitivity confined by paleo data (black solid line) and the underlying
2D probability measure as working hypothesis for this paper.

2.3 Formulation of the macroeconomy

In MIND, gross world product is produced by a single industrial sector with a
technology of constant elasticity of substitution (CES). Inputs to production are
industrial capital, labour, and energy. The latter two may be enhanced by re-
search and development (R&D) investments in corresponding knowledge stocks.
Substitution possibilities between the three factors are limited by choosing an
elasticity of substitution of 0.4. Gross world product is allotted to consumption
and investment flows into various sectors in order to maximise the objective
function. Sectors comprise the industrial production sector, R&D sectors to
enhance labour and energy productivity, respectively, and four stylised sectors
describing the energy system (fossil fuel extraction, fossil energy generation,
carbon capture and sequestration and renewable energy generation).

The energy input to production is an additive compound differentiating three
main energy sources: energy from fossil fuel combustion with or without cap-
ture and storage of the resulting emissions, renewable energies, and traditional
nonfossil energies (mainly large-scale water power and nuclear power, both via
an exogenous scenario).

The energy sector and the carbon cycle-climate dynamics as represented in
the MIND version of this article are described in Appendices B and C, respec-
tively. We allow for investments in a fossil sector, renewable sources as well as
energy efficiency. The fossil sector emits carbon and sulphur dioxide that both
interfere with the radiative balance of the climate system.
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3 Numerical implementation of probabilistic op-

timisation

We consider two uncertain technology parameters, the fossil resource base χ3

and the economic potential of renewable energy as described by the technol-
ogy learning rate l̃r and the technology floor costs cfloor (see Appendix B). For
reducing the dimensionality of the uncertainty space, we have made the sim-
plifying assumption that learning rate and floor costs of the renewable energy
technology are fully correlated. χ3 assumes values between 2500 and 7000 GtC,
l̃r between 0.08 and 0.24, and cfloor between 390 and 630 $ per kW final energy
production capacity (see Appendix D; final energy includes electricity, heat and
fuel). In addition we treat climate sensitivity (CS; long-term climate response
to carbon dioxide concentration elevation) and the response rate α of the cli-
mate system as uncertain (see Appendices D&E and Fig. 2). By sampling these
four uncertain parameters within the given ranges, we cover a large fraction of
uncertainty relevant for the decision problem of this article.

We assume that the uncertainty about the fossil resource base χ3, the over-
all learning rate of renewable technologies determined by the duplet (cfloor, l̃r),
and the temperature response parameter duplet (CS,α) are independent of each
other, as these parameters emerge in very different domains. The assumption
of independence permits us to combine the corresponding samples for χ3 (in-
dexed by k ∈ {1, ..., K = 10}), (cfloor, l̃r) (indexed by l ∈ {1, ..., L = 10}), and
(CS,α) (indexed by m ∈ {1, ..., M = 301}) by full factorial design. Although a
suboptimal choice from a sampling point of view, full factorial design allows to
restrict the associated sample of model realisations to the parameters that ac-
tually affect the individual model variables, which in most cases will be smaller
than the size of the overall sample with 30100 (10 × 10 × 301) members.

The combined sample provides the basis for the numerical evaluation of ob-
jective function and constraint in the probabilistic optimisation problem (5)-(6).
A numerical implementation requires to replace (i) the integral over time with
a sum over discrete time steps (in our case 62 time steps of Δt = 5 years from
1995 to 2300) and (ii) the expectation operation on the uncertain parameter
space with an estimator based on the sum of utilities over a parameter sample.
The probability of observing the temperature guardrail will also have to be esti-
mated from the sample of model realizations, using an indicator function for the
compliance of the temperature trajectory in each model realization (0: viola-
tion of guardrail, 1: compliance). Noting that consumption depends only on the
choice of fossil resource base and learning rate of renewable energy technology
(i.e., the sum over utilities is indexed only by k,l, not by the climate parameter
index m; no climate damages are taken into account in our constrained welfare
maximization), and temperature only on (CS,α) and fossil resource base (which
affects emissions for a given investment stream in the extraction sector; i.e. the
indicator function is indexed only by k,m), we find the following expression as
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discretised versions of Eqs. (5) and (6).

maxI(·)
∑
k,l

Δt

2300∑
t=1995

Lt ln
(

Cklt(I(·))
Lt

)
e−ρ(t−1995) (7)

subject to
∑
k,m

wm B(Tkm) ≥
(

K
∑
m

wm

)
P ∗ (8)

with B(Tkm) =
{

1 ∀t∈[1995,2400] Tkmt(I(·)) ≤ 2◦C
0 ∃t∈[1995,2400] Tkmt(I(·)) > 2◦C

the indicator function whether or not a particular temperature trajectory Tkm

has violated the temperature guardrail at some time. If the probability measure
on our four parameters underlying the sampling of the parameter space is up-
dated with a likelihood function derived from additional observational data (e.g.
paleo data), this does not necessarily require to resample the parameter space.
The likelihood information can be included by adding likelihood weights wm to
the sum of indicator functions over our (fixed) sample. In the remainder of the
article, wm will be utilised to re-weight the measure on CS when incorporating
new information from analyses of the last glacial maximum (LGM; see Fig. 2,
solid vs. dashed lines, Appendix D and Schneider von Deimling et al. (2006)).

Due to the requirement that the temperature trajectory needs to observe
the guardrail at all times, the indicator function B depends only on the maxi-
mum temperature obtained along a trajectory. Since the use of the maximum
operator in optimization problems should be avoided, we introduce an auxiliary
variable T ∗

km (see Eq. 9) that will converge to the maximum temperature of each
trajectory in the optimal solution. Finally, to remain in the class of nonlinear
continuous programming problems, we smooth the binary indicator function by
approximating it with an error function that rapidly changes sign at the point
of non-compliance (alternatively an arcustangens function may be used).

∀t∈[1995,2400] T ∗
km ≥ Tkmt (9)

B(Tkm) = 0.5
(

Erf
(

2◦C − T ∗
km

ε

)
+ 1
)

(10)

with Erf(x) :=
∫ x

−∞
dx′ 1√

2π
e−

1
2x′2

, (11)

The parameter ε controls the non-linearity of the approximation, and has to be
chosen carefully to balance accuracy of the indicator function against stability
of the optimisation. In this study, we have used a value of ε := 0.01.

We have implemented the probabilistic formulation of the model MIND
with objective function and chance constraint as expressed in Eq. (7) in the
GAMS utilising the nonlinear solver CONOPT3 (Drud, 1992). Of course, the
approximation of the continuous probabilistic optimisation problem (5) by sam-
ple estimators for expected utility and probability of observing the temperature
guardrail (compare Eq. (7)) will give rise to sampling error that may affect the
optimal policy. We will have to investigate the influence of sampling error in
greater detail in future work. However, previous sensitivity analyses (Bauer

12



0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

3

discounted GDP loss in percent

B
al

an
ce

d 
G

ro
w

th
 E

qu
iv

al
en

ts
 (

B
G

E
)

 

Figure 3: Two measures of economic loss: net present value GWP loss (dis-
counted at 5% per year) and balanced growth equivalents (BGE) for a sensi-
tivity analysis of efficient climate policies over the 30100 member ensemble of
climate and economic parameter values.

et al., 2005; Edenhofer et al., 2006) of the model response surface as well as pre-
liminary analyses using a hierarchy of samples indicate that sampling error has
only a second order effect on the optimal solution – see also the last paragraph
before our conclusions section.

4 Economic impact of climate parameters

Before analysing the results from the expected utility maximisation, we investi-
gate the sensitivity of efficient climate policies and their associated mitigation
costs in the deterministic version of MIND1.1 to the parameter uncertainties
discussed above.

Sensitivity studies of mitigation costs with respect to climate parameters
have been published by Gerlagh and van der Zwaan (2004) who varied the
temperature guardrail for fixed climate sensitivity. In their approach, this is
approximately equivalent to a varying CS for fixed temperature guardrail, and
their range of variation covered an equivalent of CS=2...4◦C. They find an in-
crease of the costs of mitigation from 0.06% to 0.29% when moving to stricter
temperature guardrails (equivalent to moving to higher climate sensitivities)5.

5Their rather low mitigation costs are due to the fact that their baseline scenario, i.e. BAU,
already contains a significant share of renewable source such that imposing a guardrail does
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Probabilistic Climate

Figure 4: Sensitivity analysis of net present value (NPV) GWP loss of observing
the 2DC target (discounted at 5% per year, in percentage of NPV GWP in BAU
case) with respect to climate sensitivity for (i) the ensemble of climate response
parameter values CS,α with economic parameters fixed at MIND version 1.1
default values (χ3 = 3500 GtC, l̃r = 0.15, cfloor = 500$/kW, n = 301 – indicated
by crosses), (ii) the full ensemble across all climate and economic parameter
values in the sample (n = 30100 – indicated by grey dots). Note that for a large
fraction of parameter settings, solutions are infeasible under the constraint and
no costs estimates can be given. This further depicts the conceptual limitations
of such a simple sensitivity study under a deterministic constraint, that can only
fully be resolved by chance constrained programming.
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As outlined in the introduction, we define mitigation costs as net present
value (NPV) GWP loss in the climate policy case relative to the business as
usual (BAU) case without temperature constraint, and express these costs in
percentage of NPV GWP in the BAU case. We assume a constant interest rate
of 5 percent to discount GWP losses, because there is no explicit interest rate in
MIND. Instead two proxies were checked for consistency with this assumption.
The MIND model exhibits an average marginal productivity of capital at 4.6
percent and a shadow price of capital accumulation at 6.5 percent (both for the
period 2015 to 2115 where they are approximately constant).

In addition to NPV GWP losses, we have considered a welfare loss criterion
based on balanced growth equivalents (BGEs Mirrlees and Stern, 1972). The
BGE of a welfare maximising consumption stream is described by the initial
value of consumption that when extended into the future with a prescribed con-
stant growth rate leads to the same intertemporally aggregated social welfare.
Based on the optimal consumption streams calculated in MIND1.1 we chose
a constant growth rate of 2.1% per year to derive the BGEs for the welfare
maximising climate policy and BAU solutions. The welfare losses were then
calculated – in complete analogy to NPV GWP losses – by taking the difference
in BGEs between BAU and policy case, and expressing it as percentage of the
BGE in the BAU case. We ask how the two loss measures may differ across
the ensemble of welfare maximising GWP and consumption streams under a
2DC temperature guardrail that can be obtained when varying the climate and
economic parameter values in MIND1.1 over the 30100 members of our sampled
parameter uncertainty. The results are displayed as a scatter plot in Fig. 3. Ob-
viously, the two are strongly correlated, and BGE losses appear approximately
1.5-times larger than NPV losses. Due to the close correlation between the two
we will use only one cost metric, i.e. NPV GWP loss, in the remainder of the
paper.

Fig. 4 shows the mitigation costs as a function of climate sensitivity across
the ensemble of sampled climate and economic parameter values. Our study
covers a much larger range of climate sensitivity than considered in Gerlagh
and van der Zwaan (2004). The NPV GWP losses for implementing climate
policies observing the 2DC guardrail increase significantly with climate sensi-
tivity, reflecting the fact that the more sensitive the climate responds to carbon
dioxide forcing, the more binding a 2◦C guardrail acts on the energy sector.
Concentrating first on the sensitivity with respect to variations in the climate
response parameters CS,α for fixed economic parameters (crosses), we find an
increase in loss of roughly 1/4 %/◦C in CS.6

Note that the larger CS, the larger the fraction of parameter combinations
for which feasible GAMS-solutions cease to exist, i.e. no matter how fast carbon
dioxide emissions were reduced, the 2DC target would still be violated. This
is not a numerical effect, but is intuitively to be expected due to the combina-
tion of two factors, the (i) additional fixed forcing from other greenhouse gases
(OGHGs) and (ii) the warming commitment from the carbon stock already in
the atmosphere.

When considering the uncertainty in GWP losses across the entire ensemble
of climate and economic parameters (grey dots), it can be seen that climate

not demand as much emission reductions as in other models.
6If instead of the aggressive mitigation scenario for OGHGs we use a standard OGHGs

forcing following the SRES B2 scenario, then the loss-to-CS-ratio increases to 1/2 %/◦C.

15



sensitivity is a crucial factor in determining the mitigation costs, but that the
economic parameters also account for a major fraction of overall uncertainty
(populated vertical lines for fixed CS), and that variations in response rate α
have a smaller influence (vertical spread in crosses). In contrast to the feasibility
limit imposed by the climate component, the economic module responds rather
smoothly to CS-tuning due to the flexibility in the energy sector to mitigate
carbon dioxide. In this context, it is interesting to note that the model calculates
much higher costs (up to 6.5% NPV GWP loss) of climate protection if both
CCS and an increase of capacity in the renewable energy sector are switched off
(Edenhofer et al., 2005).

Our sensitivity analyses revealed that within the chosen parameter ranges
optimal emission paths vary from BAU emissions to almost immediate cessation
of emissions. It seems therefore infeasible to identify robust features of optimal
controls, even on a conceptual level, from such a sensitivity study. Hence we
strongly argue in favour of a full-fledged optimisation under uncertainty in which
the normative issue of how to deal with such uncertainty is explicitly conceptu-
alised in the formulation of the optimisation problem. In this study, Eqs. (5)-(6)
represent our choice for optimisation under uncertainty.

5 Results from probabilistic optimisation

In the following we investigate the climate policy under uncertainty, and its
associated set of model futures, that emerges as solution of the numerical ap-
proximation (7)-(8) of the optimisation problem (5)-(6) for the sample described
in Section 3. To the best of our knowledge it is the first time that a probabilis-
tic optimisation of a coupled climate-macroeconomic growth model including
a chance constraint has been performed within a GAMS environment, suitable
for models that cannot be solved in analytic form. We note that the optimi-
sation process required more than a week of CPU time (IBM 1.1 GHz Power
4). The resulting curves are less smooth than one would expect (optimality
usually implies smoothness). We know from selected experiments that tighten-
ing the optimality tolerance improves the smoothness but without qualitative
impact on the results. We have thus refrained from the additional computa-
tional burden. The results of a model run consists of a single set of investment
streams. Due to the modelled economic uncertainty in resource extraction and
learning of the renewables the optimal investments give rise to 10×10 economic
futures that differ e.g. in resource use, energy mix, and emissions. And taking
climate uncertainty into account, each of the emissions futures (10 per optimal
investment policy) gives rise to 301 temperature reactions. Out of these 3010
temperature paths, a fraction P ∗ observes the temperature guardrail. It should
also be recalled that the solutions to stochastic optimisation problem (7)-(8)
are based on sample estimates of expected utility and the probability to observe
the temperature guardrail, and therefore are somewhat contingent on the choice
of the parameter sample (see Appendices D&E). We will discuss the possible
influence of sampling error at the end of the next Subsection.
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Figure 5: Optimal carbon dioxide emission paths that observe the 2◦C guardrail.
Solid lines: 10 emissions paths (for the 10 different values of fossil resource base)
from the probabilistic optimisation with P ∗ = 75%. The trajectories include
an exogenous scenario for CO2 land use change emissions (A1T). Dotted lines:
Corresponding resource extraction. Dashed line: single emission path from the
deterministic application of MIND version 1.1 with default values for economic
and climate parameters (l̃r=0.15, χ3=3500 GtC, CS = 2.8◦C, α=0.016855/yr).
Emissions need to be reduced to 2 GtC/yr in 2040 while extraction peaks in
2030. This difference is mainly due to carbon capture and sequestration. The
mitigation requirements are much more stringent under the chance constraint
as compared to the standard deterministic case.

5.1 Optimal emission paths

We cannot expect to find a feasible solution of optimisation problem (7) if
the chance constraint of observing the guardrail is set too high. In our model
setting, we find a value of P ∗ = 80% to be the most stringent probability
constraint that still allows to find a feasible solution, i.e., a set of investment
streams in the various economic sectors that complies with the probabilistic
temperature guardrail. For higher values of P ∗, such a solution ceases to exist7.
For our analysis, we decided to use a compliance probability of P ∗ = 75% for
the following two reasons: (i) it is intuitively accessible (the odds of compliance
are 3 out of 4), and (ii) it is located close to, but not directly at the boundary
of the feasibility region where extreme climate policy scenarios will be realized.

Fig. 5 displays the optimal carbon dioxide emissions that observes the 2◦

guardrail with P ∗ = 75%, along with the underlying resource extraction. Car-
bon capture and sequestration allows to increase extraction of fossil resources
while at the same time emissions decline. Note that a unique optimal solu-
tion in terms of investment streams defines a set of 10 emissions and extraction

7This means that, within GAMS, even if the energy sector reduced emissions at the fastest
rate possible, the probability of T > 2◦C would still transgress P ∗.
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Figure 6: Temperature response driven by the emission paths depicted in Fig. 5.
We display the probability that a maximum temperature is not exceeded at any
time. By construction our solution does so with P ∗ = 75% for a maximum
temperature rise of 2◦C according to the probability measure that we used in
the probabilistic optimisation (solid line, including paleo data (from LGM)).
Most probability estimates from the IPCC lie above when updated with the
same paleo data (thin solid lines).

paths due to the uncertainty about the efficiency of the investments in the fossil
extraction sector which is influenced by the fossil resource base parameter χ3

(see Appendix D). For comparison, Fig. 5 also shows the CO2 emissions path
derived from the deterministic application of MIND1.1 with default parameter
values, including MIND’s standard climate sensitivity of 2.8◦C. It is apparent
that much earlier and drastic emission cuts are necessary in the probabilistic
case, reflecting the fact that the specification of the chance constraint is pushing
the model to take into account the upper tails of the probability distributions
for the uncertain parameters (e.g., the 75% quantile of the marginal pdf for CS
is 3.6◦C).

In Fig. 6, bold solid line, we display the probability that given those emission
paths a prescribed temperature is not exceeded at any time. By construction,
according to our joint probability measure for CS and the time scale of the tem-
perature response, the 2◦C guardrail is observed with probability P ∗ = 75%.
We ask further which targets would be observed according to the probability dis-
tributions reported by IPCC 2007b. As IPCC 2007b does specify only marginal
distributions in CS, we pragmatically keep the correlation structure of our joint
probability density function (pdf), while adjusting the marginals along CS (for
details see Appendix E). With and without paleo data, our probability distribu-
tions for temperature is more on the conservative (i.e. lower) side of distributions
that can be derived from the IPCC estimates. Without consideration of paleo
information (dashed solid lines), the compliance probability can be as low as
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Figure 7: Left graph: Histogram of net present value of GWP losses (discounted
by 5%; 2DC policy vs. BAU in units of BAU output) under a 75%-2◦C guardrail.
Right graph: GWP losses over time. The losses culminate in 2035. For some
ensemble members net gains are seen after 2060 for parameter combinations
that favour renewable energy technologies and assume scarce fossil resources.

50%, and even for the lowest pdf of CS reported in the IPCC barely reaches up
to P ∗ = 75%.

However, it should be noted that P ∗ increases steeply at CS=2◦C. Hence, a
rather small relaxation of the guardrail would result in a large gain in probability
of observing the guardrail.

One may ask how robust our results are with respect to sampling error of our
subjective probability distributions. When switching to an extremely reduced
climate parameter ensemble (23 instead of 301) we find that carbon dioxide
emissions paths calculated on the basis of the reduced ensemble oscillate around
the bundle derived from the large ensemble with a spread of up to ±1GtC/yr.
We suggest to use this number as a very conservative error bar.

5.2 Chance constraint-induced GWP losses

We now analyse the costs of the 2DC climate policy under uncertainty. Since
output from the industrial sector directly depends on the fossil resource base
and the learning potential of renewable energy technologies (sampled with KL
= 100 different parameter constellations), we have to calculate GWP loss for
each of those sample members. In contrast, output depends not directly on the
temperature response, which affects it only indirectly via the influence of the
probabilistic climate guardrail on the choice of optimal policy. The left graph in
Fig. 7 displays the distribution of NPV GWP loss. It can be seen that GWP loss
lies in the range 0.76%± 0.13% (one standard deviation across the ensemble).

The right graph in Fig. 7 disaggregates the GWP losses along the time axis
for each of the 100 ensemble members. The losses peak around 2035 at 2%
GWP loss, and then decline towards the end of the century. For a significant
fraction of ensemble member, net gains in 2100 are realised.

In order to analyse the cause of the ensemble spread in GWP losses in the
year 2100, we generated a reduced ensemble by averaging over learning rate and
floor costs in the renewable energy sector. This is possible due to the factorial
design we have chosen. We find that the averaging removes half of the ensemble
spread, and with it the majority of “net gain paths” in 2100. Accordingly,
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Figure 8: Intra-ensemble spread of output in terms of GWP, in units of ensemble
mean output. Left graph: BAU case. Right graph: 2DC case. The spread
expands when the transformation of the energy system occurs.

a high learning potential of renewable energy technologies in combination with
scarce fossil resources are responsible for net output gains in the future if binding
climate targets were applied.

To further disentangle the effect of the individual parameter uncertainties
on the mitigation costs, we ask for the relative GWP gain across the ensemble
of output streams with respect to the ensemble mean for both the BAU and
2DC cases. For this purpose we consider the ratio

qY.n(t) :=
Yn(t)− < Y > (t)

< Y > (t)
(12)

whereby Y is output, n the ensemble member index and < . > denotes
the ensemble mean per time slice. We consider the BAU case first. The left
graph in Fig. 8 reveals an increasing uncertainty in output during the century
in terms of groups and sub-groups, the maximum showing ≈ 0.8% loss with
respect to the ensemble mean. This hierarchy of structures suggests that one
of the two economic parameters (fossil resource base vs. the duplet of learning
rate for reducible costs and floor costs in the renewable energy sector, henceforth
summarised as “learning potential”) may dominate output. Averaging over the
learning potential eliminates the sub-structure so that the main variance in
output must be due to uncertainty in the fossil resource base.

We follow an analogue procedure for the 2DC case and derive the right graph
in Fig. 8. Variance expands around 2030 and shrinks after 2070. The maximum
losses are 0.8% of GWP relative to the ensemble mean. As in the BAU case,
we observe a hierarchy of structures. Averaging over the fossil resource base
parameter eliminates the sub-structure. Hence for the 2DC case, the learning
potential in the renewable energy sector is decisive while for the BAU case
the resource base was. It should be noted, however, that the mitigation costs
depicted in Fig. 7 are based on the difference between BAU and 2DC case, and
therefore affected by both economic parameters.

5.3 Optimal investment paths in renewable energy

Fig. 9 displays optimal investment paths into the renewable energy sector. The
stream for chance constrained optimisation (thick solid line) peaks at 3% GWP
in 2050. Accordingly it would be necessary to increase the share of investments
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Figure 9: Optimal investment paths in the renewable energy sector, given our
aggressive mitigation scenario in OGHGs; results for (a) chance-constrained
programming (bold solid line), (b) standard deterministic MIND (bold dashed-
line), (c) 3 curves for deterministic MIND, but with 75%-quantile-adjusted CS
and probability-weighted average of climate response time scale (thin dashed
lines), for 3 extreme technology parameter settings, from left to right: highest
learning rate for renewables and scarcest fossil resources, centre: probability-
weighted averages, right: lowest learning rate for renewables and most abundant
fossil resources, (d) as (c), but for slowest climate response. Under the 75%
chance constraint, investment into renewables must occur about 30 years earlier
than in the standard case. Furthermore we compare the chance constrained case
to possible deterministic substitutes (cases c, d), in particular to the average
case (thin centre dashed line). The chance constrained case invests 10 years
and cumulatively more. It resembles the “pro-renewable” case (left thin dashed
curve) more than the “renewable-neutral” case. Note that the “fast climate”
case leads to infeasibility and hence cannot be shown, further illustrating the
limitations of an attempt to substitute for the full chance constrained solution.
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into the renewable sector by more than an order of magnitude as against present-
day values. Compared to standard MIND settings, investments into renewables
are pulled forward by 30 years.

5.4 Prospects for bypassing chance constrained program-
ming

Now we ask whether choosing a CS at the P ∗ = 75%-quantile from the marginal
distribution on CS would emulate our rather complicated probabilistic optimi-
sation. Accordingly, CS would assume the value 3.6◦C. In Fig. 9 we display in-
vestment streams for that elevated CS value, for the the following (3×3)-matrix
of parameter settings (for the numerical parameter values, see Appendix F):

In the first dimension we let the learning rate vary from the smallest to
the largest number represented in our ensemble and anti-correlate it with the
extreme numbers of the fossil resource base. That way we cover the extreme
cases of competition between renewable energy and fossil fuels. As centre values
we choose the probability-weighted averages.

In the second dimension we vary the climate system response time scale,
from the smallest to the largest value, given CS=3.6◦C, supported by our joint
distribution for CS and climate response time scale. We find that for the fastest
climate response, there does not exist a feasible solution. This already shows
that CS alone does not determine the feasibility boundary for the compliance
probability P ∗ alone.

However, one may hope that the central deterministic combination (centre
thin dashed line and centre of our (3 × 3)-matrix) results in a solution not too
different from our chance-constrained one. First, we find that investments in
renewables are underestimated and delayed by 10 years (see centre thin dashed
curve). Correspondingly, emissions are higher than in the chance-constrained
solution (not shown). For the deterministic solution, we find a probability of
observing the 2◦C target of 66% instead of 75%. Finally, the corresponding
GWP loss is 0.49% instead of 0.76%. Hence the loss by the deterministic solution
would have to be increased by 50% in order to emulate the loss by the chance
constrained optimal solution.

In summary, the simple quantile-adjusted deterministic solution is not able
to reproduce the chance constrained optimal solution to a satisfactory degree.
Future work could show whether more sophisticated ways of parameter settings
for deterministic solutions would obtain better matching results.

6 Conclusions

We have analysed the impact of uncertainty about (i) climate response to ele-
vated greenhouse gas concentrations, and (ii) economic response to investments
in the energy sectoron the optimal energy investment portfolio. For the anal-
ysis, we employed the state of the art model of induced technological change
MIND, assuming uncertainty in fossil resource base, learning rate and floor costs
of renewable energy technology, climate sensitivity and timescale of climate re-
sponse. The analysis was implemented as an expected welfare maximisation
with a probabilistic guardrail aiming to limit global mean temperature rise to
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2◦C with at least some minimum probability P ∗. This constitutes a chance-
constrained programming problem.

Given the inertia within our economic module, we find that a probability of
P ∗ = 80% to observe the guardrail can be achieved at maximum, even though
we already assume a very aggressive mitigation scenario for other greenhouse
gases (OGHGs). When optimising expected utility under the weaker constraint
P ∗ = 75% we find much more stringent emission cuts than those obtained from
the deterministic version of MIND with default parameter values. Investment
paths into renewable energy sources peak at 3% GWP between 2030 and 2050,
implying an increase in investment by more than an order of magnitude against
present-day values.

Only the chance-constrained approach allows deriving the optimal policy for
achieving a climate target under uncertainty, and the associated distribution of
GWP loss, in a meaningful way. This is because for a significant fraction of
parameter combinations in our sample, the 2◦ target cannot be achieved under
any feasible emissions path. If one considers only the feasible deterministic solu-
tions, one obtains a strong increase of mitigation costs with climate sensitivity,
i.e. 1/4 % GWP loss per degree Celsius in climate sensitivity for the aggressive
OGHGs scenario and 1/2 % GWP loss per degree Celsius in climate sensitivity
for a OGHGs forcing following the SRES B2 scenario. For full-fledged chance-
constrained solution, we obtain a GWP loss of 0.76% (with a standard deviation
of 0.13%).

Our probabilistic approach can only crudely be mimicked by a computa-
tionally less demanding deterministic counterpart: When we replace standard
climate sensitivity by its (marginal) 75% quantile, i.e. 2.8◦C by 3.6◦C, the prob-
abilistic economy by an averaged economy, and probabilistic climate time scale
by its CS-conditioned averaged value, we observe the following deficits: (i) GWP
losses would have to be corrected for by 1/2, (ii) the chance of observing the
guardrail is too low by 0.1, (iii) investment streams in renewable sources are
delayed and cumulatively too low. An in-depth analysis of the “irreducibility”
of our probabilistic optimisation must be left for future work.

The calculations were performed by using the optimisation software GAMS.
Within the GAMS environment we invented an algorithm to implement chance-
constrained welfare optimisation, suitable for state of the art models of induced
technological change, based on a dozen control paths, dozens of prognostic vari-
ables and investment periods. Future work has to reveal the numerical advan-
tages and disadvantages when compared to the method by Keller et al. (2004)
and McInerney and Keller (2008) that is not based on GAMS.

The numbers presented should be interpreted in a semi-quantitative manner,
as the model representation of the energy system, even though sufficient to
resolve the major mitigation options, is highly stylised. Due to its generality
our scheme could be applied to more sophisticated integrated assessment models
with higher resolution of the energy sector and more complex climate modules.
Ultimately, the scheme should be extended to include hedging while anticipating
future learning.
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