Growth in emission transfers via international trade from 1990 to 2008

Glen P. Petersa, b, Jan C. Minx, b,c, Christopher L. Weber, d,e, and Ottmar Edenhoferc,f

*Center for International Climate and Environmental Research-Oslo, N-0318 Oslo, Norway; bDepartment for Sustainable Engineering, and cDepartment of the Economics of Climate Change, Technical University Berlin, 10623 Berlin, Germany; dScience and Technology Policy Institute, Washington, DC 20010; eCivil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213; and fPotsdam Institute for Climate Impact Research, D-14412 Potsdam, Germany

Edited by William C. Clark, Harvard University, Cambridge, MA, and approved March 29, 2011 (received for review May 12, 2010)

Despite the emergence of regional climate policies, growth in global CO2 emissions has remained strong. From 1990 to 2008 CO2 emissions in developed countries (defined as countries with emission-reduction commitments in the Kyoto Protocol, Annex B) have stabilized, but emissions in developing countries (non-Annex B) have doubled. Some studies suggest that the stabilization of emissions in developed countries was partially because of growing imports from developing countries. To quantify the growth in emission transfers via international trade, we developed a trade-linked global database for CO2 emissions covering 113 countries and 57 economic sectors from 1990 to 2008. We find that the emissions from the production of traded goods and services have increased from 4.3 Gt CO2 in 1990 (20% of global emissions) to 7.8 Gt CO2 in 2008 (26%). Most developed countries have increased their consumption-based emissions faster than their territorial emissions, and non-energy-intensive manufacturing had a key role in the emission transfers. The net emission transfers via international trade from developed to developing countries increased from 0.4 Gt CO2 in 1990 to 1.6 Gt CO2 in 2008, which exceeds the Kyoto Protocol emission reductions. Our results indicate that international trade has a significant factor in contributing to the change in emissions in many countries, from both a production and consumption perspective. We suggest that countries monitor emission transfers via international trade, in addition to territorial emissions, to ensure progress toward stabilization of global greenhouse gas emissions.

Author contributions: G.P.P., J.C.M., and C.L.W. designed research; G.P.P., J.C.M., and C.L.W. performed research; G.P.P., J.C.M., C.L.W., and O.E. analyzed data; and G.P.P., J.C.M., C.L.W., and O.E. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. Freely available online through the PNAS open access option.

1To whom correspondence should be addressed. E-mail: glen.peters@ cicero.uio.no.

This article contains supporting information online at www.pnas.org/suppl/div/doi:10.1073/pnas.1006388108/DCSupplemental.

Worldwide, CO2 emissions have increased more than fourfold from 1970 to 2008. From 1990 to 2008, emissions in developed countries increased by 58% (decreasing from 4.3 Gt CO2 in 1990 to 7.8 Gt CO2 in 2008), while emissions in developing countries more than doubled (26%). Most developed countries have increased their consumption-based emissions faster than their territorial emissions, and non-energy-intensive manufacturing had a key role in the emission transfers. The net emission transfers via international trade from developed to developing countries increased from 0.4 Gt CO2 in 1990 to 1.6 Gt CO2 in 2008, which exceeds the Kyoto Protocol emission reductions. Our results indicate that international trade has a significant factor in contributing to the change in emissions in many countries, from both a production and consumption perspective. We suggest that countries monitor emission transfers via international trade, in addition to territorial emissions, to ensure progress toward stabilization of global greenhouse gas emissions.
net exporters are positive (surplus) and net imports are negative (deficit). Throughout the text we explicitly indicate the direction of net emission transfers and report positive values only.

Our analysis is global but disaggregated into 113 regions (including 95 individual countries), each with 57 economic sectors. We use two detailed attribution methods (20) for the years 1997, 2001, and 2004, and develop a method to construct annual estimates from 1990 to 2008 (see Materials and Methods). All three methods include the emissions that occur in the supply chain to produce consumed goods and services (22) (e.g., products produced in China but consumed in Europe). The detailed models are more accurate and cover domestic supply chains (15) (emissions embodied in bilateral trade, EEBT) or global supply chains (16, 17) (multiregional input-output, MRIO). We use both methods as they address different perspectives in allocating the emissions from international trade (20). The full-time series from 1990 to 2008 (time-series with trade, TSTRD) is based on gross domestic product (GDP), bilateral trade, and emission statistics from established global datasets and is calibrated to the EEBT method based on the proxy years 1997, 2001, and 2004 (see Materials and Methods). Although the proxy years 1997, 2001, and 2004 are more detailed and accurate, the TSTRD method allows the assessment of trends over long time periods and to more recent years. We focus on CO2 emissions from fossil-fuel combustion, cement production, and gas flaring (23) because of the absence of detailed time-series data on land-use change and other greenhouse gas emissions with the necessary detail.

Results

Global CO2 emissions from the production of exported products have increased from 4.3 Gt CO2 in 1990 (20% of global CO2 emissions) to 7.8 Gt CO2 in 2008 (26% of global CO2 emissions) (Table 1). This increase makes CO2 emissions from the production of exported products similar in magnitude to land-use change-related emissions (5). Moreover, from 1990 to 2008, emissions from the production of exported products grew 4.3% per year, faster than the growth in global population (1.4% per year), CO2 emissions (2.0% per year), GDP (3.6% per year), but slower than the dollar value of international trade (12% per year) (Fig. 1). Although there has been strong growth in international trade at the aggregated level, the structure of international trade has also changed. Combined with different emission intensities in different regions, the changes in international trade structure and volume indicate large regional shifts in the location of emissions from the production of goods and services and the location of consumption. We analyze these regional shifts using the concept of net emission transfers as defined earlier and discussed in the Materials and Methods. First, we consider net emission transfers in the context of developed (Annex B) versus developing (non-Annex B) countries, and then at the regional and country level.

The net emission transfers from non-Annex B to Annex B has grown from 0.4 Gt CO2 in 1990 to 1.6 Gt CO2 in 2008 (17% per year average growth) (Fig. 2 and Table 1). Emission transfers from non-Annex B to other non-Annex B countries have grown fastest, followed closely by the emission transfers from non-Annex B to Annex B countries (Fig. 1, Table 1, and SI Appendix, Fig. S9). For comparison, if the average emission reduction target for Annex B countries in the Kyoto Protocol (~5% reduction of 1990 emissions) is applied to CO2 emissions only, representing ~0.7 Gt CO2 per year, then the net emission transfers from non-Annex B to Annex B countries is 18% higher on average (1990–2008) and 130% higher in 2008. Because estimated Annex B emission reductions from 1990 to 2008 are only ~2%, representing 0.3 Gt CO2, the net emission transfers from non-Annex B to Annex B countries is 520% higher in 2008. Cumulatively, we find that international trade has relocated 16 Gt CO2 from Annex B to non-Annex B countries from 1990 to 2008. If historic trends continue linearly (Fig. 2), the net emission transfers from the group of non-Annex B countries to Annex B countries will be around 2.3 Gt CO2 per year in 2020, representing 16% of Annex B emissions in 1990. This finding is comparable to the most optimistic 2020 emission limitations offered by Annex B countries in the Copenhagen Accord (24).

For the years 1997, 2001, and 2004, we have more detailed and robust datasets that allow comparisons with the time-series method, TSTRD. We find that the more detailed methods increase the estimated net emission transfers from non-Annex B to Annex B countries (Fig. 2), signifying that the TSTRD method produces conservative estimates. For the 3 y where all methods overlap, 24% (TSTRD), 25% (EEBT), and 33% (MRIO) of the growth of non-Annex B emissions can be assigned to Annex B consumption. The results are higher for the MRIO method, because it considers not only the trade activities between two individual countries, but also the trade through multiple countries until the final product is delivered to consumers (16, 20). Comparisons of the TSTRD and EEBT methods with the MRIO method consistently show that including the global supply chain attributes more non-Annex B emissions to Annex B countries compared with methods that do not fully consider the role of emissions-associated imports, which are then used to produce exports (SI Appendix). This finding indicates the growing importance of trade between non-Annex B

Table 1. Allocation of global emissions to Annex B and non-Annex B countries separated into domestic and internationally traded components

<table>
<thead>
<tr>
<th>Component</th>
<th>1990 (Gt CO2)</th>
<th>2008 (Gt CO2)</th>
<th>Growth (%/y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annex B Domestic</td>
<td>11.3</td>
<td>10.8</td>
<td>–0.3</td>
</tr>
<tr>
<td>Trade component</td>
<td>2.1</td>
<td>2.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Production</td>
<td>0.7</td>
<td>0.9</td>
<td>1.8</td>
</tr>
<tr>
<td>Consumption</td>
<td>14.2</td>
<td>13.9</td>
<td>–0.1</td>
</tr>
<tr>
<td>Non-Annex B Domestic</td>
<td>6.2</td>
<td>11.7</td>
<td>4.6</td>
</tr>
<tr>
<td>Trade component</td>
<td>1.1</td>
<td>2.6</td>
<td>7.0</td>
</tr>
<tr>
<td>Production</td>
<td>0.4</td>
<td>2.2</td>
<td>21.5</td>
</tr>
<tr>
<td>Consumption</td>
<td>7.7</td>
<td>16.4</td>
<td>5.9</td>
</tr>
<tr>
<td>Trade totals</td>
<td>7.4</td>
<td>14.8</td>
<td>5.3</td>
</tr>
</tbody>
</table>

countries in the production of goods consumed in Annex B countries (25).

When the reported territorial emissions are adjusted for net emission transfers, a consumption-based emission inventory is obtained (analogous to a carbon footprint for CO\textsubscript{2} only) (20, 26) \textit{(SI Appendix, Figs. S10 and S11)}. For individual countries, a shift to consumption-based emissions often changes the emission ranking of countries. For example, China is the largest emitter of CO\textsubscript{2} emissions with a territorial-based inventory, with the United States second, but with a consumption-based inventory the United States is first and China second \textit{(SI Appendix, Fig. S11)}. Most developed countries increase their ranking with a consumption-based inventory \textit{(SI Appendix, Dataset S1)}. Globally, all territorial emission growth has taken place in the group of non-Annex B countries, despite variations in individual Annex B and non-Annex B countries (5). However, the difference between Annex B consumption-based emissions and territorial emissions is growing over time (Fig. 2 and \textit{SI Appendix, Fig. S10}). In terms of consumption-based inventories, 11\% of the growth in global CO\textsubscript{2} emissions can be attributed to Annex B consumption (instead of a 3\% reduction for territorial). Thus, a significant share of the growth in Annex B consumption since 1990 is reported in the emission statistics of non-Annex B countries. This share would be further increased if a share of capital formation was allocated to exports instead of considering capital as domestic consumption only (27, 28).

Within the group of Annex B nations, territorial emission reductions and changes in net emission transfers with non-Annex B countries have varied. Fig. 3 compares the change in net emission transfers for selected countries with the estimated change in territorial emissions from 1990 to 2008 and the Kyoto Protocol reduction commitments. In all cases shown, net emission transfers have grown over time, despite variations in the change in territorial emissions. The United States has increased emissions 17\%, despite a pledge to reduce emissions by 7\% (3), yet at the same time the change in emission transfers have additionally supported increased consumption in the United States. Similarly, with a 6\% reduction in territorial emissions, Europe is close to meeting its Kyoto Protocol target of an \textasciitilde 8\% reduction (3); however, the additional net emission transfers from non-Annex B countries are larger than these reductions. The remainder of the non-Annex B countries have had a substantial reduction in territorial emissions (\textasciitilde 16\%), primarily because of the collapse of the Russian Federation and Ukraine in the early 1990s. However, even in this case, the net emission transfers with non-Annex B countries have increased over time. Collectively, the net CO\textsubscript{2} emission reduction of \textasciitilde 2\% (0.3 Gt CO\textsubscript{2}) in Annex B countries from 1990 to 2008 is much smaller than the additional net emission transfer of 1.2 Gt CO\textsubscript{2} from non-Annex B to Annex B countries (equivalent to subtracting the net emission transfers in 2008 from 1990 in Fig. 2).

Fig. 4 shows the total emission transfers for six aggregated regions (exports and imports shown separately in \textit{SI Appendix, Figs. S4 and S5}) for both Annex B and non-Annex B countries. The net emission transfers via international trade are shown between each region with all other regions (black line) and the net emission transfers between the United States, Europe, and the rest of Annex B with the non-Annex B countries (dotted black line). Consistent with other studies, we find particularly rapid growth in Chinese exported emissions (10, 11). Our results show that Chinese emissions accounted for 55\% of the growth in global

\textit{Fig. 1.} The development of various global macrovariables indexed to 1990. Source: Population (US Census Bureau), GDP, and international trade in constant prices (United Nations National Account Estimates of Main Aggregates), fossil-fuel and process emissions (Carbon Dioxide Information Analysis Center) (23), emissions embodied in global trade (present study), and the net emission transfers between Annex B and non-Annex B countries (present study).

\textit{Fig. 2.} The net emission transfers between non-Annex B and Annex B countries using the TSTRD, EEBT, and MRIO methods. The change in the net emission transfers over time are compared with the Kyoto Protocol emission reduction target of \textasciitilde 5\% relative to 1990 (red line) and the average net emission transfer from 1990 to 2008 (black line). The EEBT and MRIO methods give a larger net emission transfer from non-Annex B to Annex B countries, signifying that the TSTRD method is conservative. The MRIO is larger than the EEBT method as the MRIO considers global supply chains (see text).
CO₂ emissions from 1990 to 2008 and the production of Chinese exports accounted for 18% of the growth in global CO₂ emissions. Furthermore, the production of Chinese exports later exported to Annex B countries accounted for 75% of the growth in Annex B consumption-based emissions. We also identify large growth in the emissions from the production of exports in other non-Annex B countries and, as with China, a considerable share of the growth is toward other non-Annex B countries. The United States has shown rapid growth in imported emissions, largely because of China and other developing nations (14). Because of the collapse of the former Soviet Union, Europe had a drop in net emission transfers with the rest of the world in the mid 1990s, despite strong growth from 1990 to 2008 in emission transfers with non-Annex B countries (as for the United States). The remainder of the Annex B countries have had strong growth in imported products, despite including net exporters such as Australia, Ukraine, and the Russian Federation, with net importers, such as Japan. SI Appendix, Dataset S1 has detailed results for 95 individual countries from 1990 to 2008.

In terms of sector contributions, 40% of the emissions from the production of traded products at the global level are because of energy-intensive industries (cement, steel, pulp and paper, and so forth) and this has been stable from 1990 to 2008 (SI Appendix, Fig. S6). Non–energy-intensive manufacturing (textiles, electronics, furniture, cars, and so forth) accounts for a growing and substantial share at 30% of global exported emissions in 2008, rising from 24% in 1990 (SI Appendix, Fig. S6). There has been a strong growth in the export of both energy-intensive and non–energy-intensive products from non-Annex B to Annex-B countries (SI Appendix, Fig. S7), accounting for most of the change in emission transfers from 1990 to 2008 (Fig. 5). International trade in non–energy-intensive manufactured products dominates the net emission transfers (accounting for 41% of the growth), despite the policy focus on energy-intensive manufacturing. In the early 1990s, Annex B countries were small net exporters of emissions from energy-intensive manufacturing, but because of strong growth in imports (accounting for 35% of the growth) they are now substantial net importers.

Discussion

Our analysis shows that a significant and growing share of global emissions are from the production of internationally traded goods and services. Although this finding may follow directly from increases in international trade itself, it could have unintended
consequences for climate policy, as it leads to a spatial disconnect between the point of consumption and the emissions in production. Under the IPCC accounting rules of only reporting territorial emissions, many developed countries have reported stabilized emissions. However, our results show that the global emissions associated with consumption in many developed countries have increased with a large share of the emissions originating in developing countries. This finding may benefit economic growth in developing countries, but the increased emissions could also make future mitigation more costly in the developing countries. In addition, we find that the emission transfers via international trade often exceed the emission reductions in the developed countries. Consequently, increased consumption in the Annex B countries has caused an increase in global emissions contrary to the territorial emission statistics reported to the UNFCCC.

Our analysis indicates that the emission transfers reflect macroeconomic imbalances of the world economy, which are caused by a multitude of socioeconomic drivers and policies. Although growth and structural changes in international trade are important, our analysis does not determine what factors cause these changes. Apportioning changes in emission transfers to specific policies requires additional modeling. Based on existing general computable equilibrium studies of (strong) carbon leakage, it is likely that existing national or regional climate policies themselves—such as the European Emission Trading Scheme—have had a minimal effect on international trade (29, 30). If these modeling studies are robust, they suggest that other economic and policy factors have determined past production decisions (and hence emission transfers), which is also consistent with the broader literature on this topic (31–36). Based on this theory, the likely cause of the large emission transfers we report here are preexisting policies and socioeconomic factors that are unrelated to climate policy itself. As an example, we find that both the United States and European Union have had a large increase in net emission transfers, but only the European Union has a broad-based climate policy. Net emission transfers, which are independent of the policy and socioeconomic drivers, are often called weak carbon leakage (as opposed to strong carbon leakage) (15, 16, 37, 38), although others have used demand-driven displacements (as opposed to policy-induced displacement) (39).

Given that emission transfers via international trade are a significant and growing share of country, regional, and global emissions, we suggest that policies that affect international trade should not be continually separated from climate policy, particularly in the context of a fragmented mitigation architecture (as in the Kyoto Protocol). Our results do not directly imply that a fragmented mitigation architecture is not effective at reducing global emissions, but they do suggest caution is required if there is rapid and differential growth in emission transfers as we report here. Even if these emissions have not been induced by climate policies, careful analysis may be required to determine if changes in international trade might influence the mitigation costs and strategies when a fragmented mitigation architecture is in place.

Although there may be many mechanisms to address emission transfers via international trade in climate policy, as a first step we suggest that Annex B and other key countries regularly compile emission statistics for international trade and consumption-based inventories (7, 20, 26) observed and monitored, in addition to existing territorial emission statistics (e.g., IPCC and UNFCCC). In early stages, reporting may be limited in country and temporal coverage, but as data and methods improve reporting can become more regular and widespread. The method we use here allows updated and regular monitoring to track recent trends, and can be followed up with more detailed and accurate studies as new data are released. Although some argue that the calculation of consumption-based emissions is too difficult and uncertain at the national level, evidence suggests otherwise. The data and methods have existed for decades (8, 9, 22, 26, 40) and are the foundation of the System of National Accounts compiled by most countries. Even though uncertainty is higher for consumption-based emissions compared with territorial emissions (41), the absolute values and trends are robust across data, methods, and independent studies (8, 9). Although we believe that territorial emission statistics should still remain central to climate policy, our results show a need for a regular monitoring, verification, and reporting of emission transfers via international trade.

Materials and Methods

For a given country, r, our analysis follows trends in territorial-based emissions (production, \(P \)) and consumption-based emissions, \(C \). The territorial emission inventories cover CO\(_2\) emissions from fossil-fuel combustion, cement production, and gas flaring (23). We do not include emissions from land-use change, as the data are not available in the necessary detail, although this is an area of current research. We define the difference between the territorial- and consumption-based emissions a "net emission transfer," \(T_r = P_r − C_r \). The net emission transfer can be expressed equivalently in terms of "embodied emission transfers," \(T_f = E_f − M_f \), where \(E_f \) are the emissions in r to produce exports and \(M_f \) are the emissions outside of r to produce imports (20, 38). The emission transfers (or embodied emissions) are not a physical part of the exports but, rather, are emitted in the production of the exports. If \(T_f \) is negative then \(r \) is a net importer of embodied emissions, and if positive then \(r \) is a net exporter. To facilitate a comparison of how \(P \) and \(C \) change over time, we analyze the net emissions transfers, \(T \), if \(T \) becomes increasingly negative, \(P \) grows faster than \(P_r \); if \(T \) becomes increasingly positive, then \(P \) grows faster than \(C \). We often reference the net emission transfers to 1990, \(\Delta T(t) = T(t) − T(1990) = \{P(t) − C(t)\} − \{P(1990) − C(1990)\} = \{P(t) − P(1990)\} − \{C(t) − C(1990)\} = \Delta P(t) − \Delta C(t) = \Delta E(t) − \Delta M(t). \) Thus, if \(\Delta T(t) \) is negative, then \(C \) (or \(M \)) has grown more than \(P \) (or \(E \)) relative to 1990. We also compare emission transfers between developed and developing countries only, \(T_d = E_d − M_d \), where \(r \) may represent an Annex B country and s a non-Annex B country.

We use three different methods to construct the consumption-based emission inventories, \(C \), for CO\(_2\) by adjusting established territorial emission inventories with estimates of emission transfers via international trade. We use two detailed attribution methods for the years 1997, 2001, and 2004, and develop a method to construct annual estimates from 1990 to 2008. All three attribution methods include the emissions that occur in the supply chain to produce consumed goods and services (e.g., products produced in China, but consumed in Europe). Allocation along the supply chain is based on a well-established method, environmentally extended input-output analysis (22), but applied for multiple regions (20). The first method, EEBT, enumerates the domestic supply chain and considers total bilateral exports (15, 20). We repeat our earlier analysis using 2001 data (15) to additionally cover 1997 and 2004 using different releases of the Global Trade Analysis Project (GTAP) database (42). The second method, MROI analysis, further disaggregates the EEBT method into globally connected supply chains by treating final consumption as exogenous and international trade for intermediate consumption as endogenous (16, 17, 20). The MROI and EEBT
methods give the same global emissions, but distinct regional emissions because of the different allocation of intermediate consumption (20). We present results from both approaches as they provide different perspectives of how to allocate the emissions from international trade to countries (SI Appendix and ref. 20). For the EE BT method, we repeat our earlier MRIO analysis using 2001 data (17) to additionally cover 1997 and 2004 using different releases of the GTAP databases (42). We scale the GTAP CO2 data to match our territorial emission database (23) and further overwrite the emissions in some countries using more accurate data wherever possible (SI Appendix). Details on the particular method and data used in this article can be found in our previous work (15, 17, 20, 43) and SI Appendix.

Because it is resource-intensive to construct detailed datasets on an annual basis (42), in this article we develop a method for annual estimates of the emissions embodied in international trade and consumption-based emission inventories from 1990 to 2008 using more aggregated information (time-series with a trading partner) for the TSTRD method. The TSTRD method is based on widely available GDP, bilateral trade, and emission statistics from established global datasets and is calibrated to the simpler and more related EE BT method. We use a two-step process. Our estimates start with GDP data by final expenditure from the United Nations Statistic Division (UNSD) National Accounts Main Aggregates Database and territorial emission estimates (23). We use the GDP data to construct a one-sector input-output table analogous to the EE BT method. It is not possible to use the GDP data directly as it does not represent the supply chain nor the different emission intensities in different economic sectors. We use the EE BT method in 1997, 2001, and 2004 as proxies to estimate the industry consumption of imports and the supply-chain emission in each country and each sector, and apply it to the TSTRD method: 1990 to 1998 (1997 EE BT estimates), 1999 to 2002 (2001 EE BT estimates), and 2003 to 2008 (2004 EE BT estimates). Our results are not significantly affected by using different base years as the proxy for the other years. The TSTRD method is calibrated to the EE BT method in common years 1997, 2001, and 2004. In some countries there are small differences in estimates from EE BT and TSTRD because of different GDP data in GTAP and UNSD. The second and final step of the TSTRD method is to distribute the estimated emissions from the production of exports to receiving countries. We do this distribution after weighting the harmonized GTAP time-series trade data (42) with sector and region emission intensities from the EE BT method: 1990 to 1998 (1997 EE BT estimates), 1999 to 2002 (2001 EE BT estimates), and 2003 to 2008 (2004 EE BT estimates). We performed a variety of comparisons of the EE BT and TSTRD methods and found the results to be consistent with available evidence. Details on the method and method comparisons can be found in the SI Appendix and SI Appendix, Dataset SI.

Our analysis has uncertainties in both the input data and model calculations (SI Appendix). The territorial emission estimates are the most certain (23) and uncertainty increases as we disaggregate the results into regions and sectors (41). Because of averaging of errors, uncertainty decreases as we again aggregate the results (41). Despite large potential uncertainties, there is not a strong tradition of performing uncertainty analysis in input-output analysis because of the relative lack of information on uncertainty distributions (44). Instead, we do a model comparison across a variety of independent studies and find sufficient agreement to support our findings (SI Appendix).