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a b s t r a c t 

World markets are highly interlinked and local economies extensively rely on global sup- 

ply and value chains. Consequently, local production disruptions, for instance caused by 

extreme weather events, are likely to induce indirect losses along supply chains with po- 

tentially global repercussions. These complex loss dynamics represent a challenge for com- 

prehensive disaster risk assessments. Here, we introduce the numerical agent-based model 

acclimate designed to analyze the cascading of economic losses in the global supply net- 

work. Using national sectors as agents, we apply the model to study the global propagation 

of losses induced by stylized disasters. We find that indirect losses can become compara- 

ble in size to direct ones, but can be efficiently mitigated by warehousing and idle ca- 

pacities. Consequently, a comprehensive risk assessment cannot focus solely on first-tier 

suppliers, but has to take the whole supply chain into account. To render the supply net- 

work climate-proof, national adaptation policies have to be complemented by international 

adaptation efforts. In that regard, our model can be employed to assess reasonable leverage 

points and to identify dynamic bottlenecks inaccessible to static analyses. 

© 2017 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

We here present the dynamic agent-based model acclimate describing the propagation of disaster-induced production 

losses in the global economic network. We define disasters as unanticipated local events leading to an unpremeditated

production reduction of the affected firms. These can be natural disasters such as earthquakes and volcano eruptions and

climate extremes such as heatwaves, floods, and tropical cyclones. For the economic system, the latter are likely to become

even more challenging in the future as they are projected to increase in intensity and frequency under ongoing climate

change ( Field et al., 2012; Herring et al., 2015 ). In the present-day global economy, local firms and markets are highly

interlinked forming a complex network of supply and value chains. In the process of globalization, the density of inter-

firm linkages has increased significantly ( Maluck and Donner, 2015 ). In addition, production principles have changed. Lean
∗ Corresponding author at: Potsdam Institute for Climate Impact Research, Climate Impacts and Vulnerabilities, Telegraphenberg A56, 14473 Potsdam, 

Germany. 

E-mail address: christian.otto@pik-potsdam.de (C. Otto). 
1 with equal contributions 

http://dx.doi.org/10.1016/j.jedc.2017.08.001 

0165-1889/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.jedc.2017.08.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jedc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2017.08.001&domain=pdf
mailto:christian.otto@pik-potsdam.de
http://dx.doi.org/10.1016/j.jedc.2017.08.001


C. Otto et al. / Journal of Economic Dynamics & Control 83 (2017) 232–269 233 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

production schemes have been implemented that permit reducing storage costs, but, at the same time, render sectors more

dependent on the timely delivery of intermediate goods needed for production. Consequently, local disasters can have global

repercussions. Locally, disasters directly suppress economic activity such as commodity production. The associated losses,

however, can spread to other sectors via back- and forward-linkages of the supply chains causing indirect losses ( Acemoglu

et al., 2012; Rose et al., 2004 ). Further, recent studies suggest that in the last decades the vulnerability of the economy with

respect to climate extremes has increased ( OECD, 2015; Wenz and Levermann, 2016 ). Overall, indirect losses can represent

a significant – or even dominant – share of total losses ( Noy, 2009; Przyluski and Hallegatte, 2011 ). Unfortunately, state-of-

the-art integrated assessment models tend to underestimate costs of natural disasters ( Revesz et al., 2014 ), partially because

they cannot resolve economic losses resulting from climate extremes appropriately ( Stern, 2016 ). 

A profound understanding of the direct and indirect losses of climate-related disasters is also important with respect

to a comprehensive assessment of the costs that climate change will impose upon societies, the so-called social costs of

carbon. Especially in view of the international agreement to limit global warming “well below 2 °C above pre-industrial lev-

els”2 (see, for instance, the discussion in Clark et al., 2016 ), reliable estimates of the overall costs of climate change are

needed to enable policy makers to develop sound and farsighted plans for climate change mitigation ( Robiou du Pont et al.,

2016; Rogelj et al., 2015 ) and adaptation ( Cutter et al., 2015 ). As structural adaptation, supply chains are in need to be

rendered climate-proof ( Levermann, 2014 ). Unfortunately, state-of-the-art integrated assessment models tend to underesti-

mate climate impact costs ( Revesz et al., 2014 ), partially because they cannot resolve economic losses resulting from climate

extremes appropriately ( Stern, 2016 ). 

With the acclimate modeling framework, we adopt a global modeling perspective suitable to assess the global reper-

cussions of local disasters. By choosing an agent-based modeling approach, we can account for two aspects essential for

the assessment of indirect losses: the heterogeneity of firms ( Aoki and Yoshikawa, 2012; Kirman, 1992 ) as well as for the

complex structure of the production network ( Battiston et al., 2012; Weisbuch and Battiston, 2007 ). Together with a high

temporal resolution this enables us to resolve the cascading and the absorption of indirect losses along supply chains. For

a realistic description of loss mitigation mechanisms, we account for three flexibilities of the economic system that are key

for short-term adaptation ( Hallegatte, 2014 ). First, we explicitly model inventories acting as buffer stocks. Second, economic

agents in acclimate can shift their demand to non-affected suppliers. Third, firms can adjust their production according to

the demand they receive, reducing their production in times of low demand or activating idle capacities in order to increase

production in times of high demand. Responding to price signals, firms base the decisions on their optimal production level

on clear and simple optimization principles. Finally, non-equilibrium market situations are taken into account. This allows

us to describe scarcity situations that arise during the disaster or in the direct aftermath ( Hallegatte, 2008 ): since productive

capacities are limited and transportation of goods is time consuming, local supply shortages can not always be mitigated

immediately and supply-demand mismatches may occur. 

In this paper, we employ our model to analyze the economic response to stylized disasters. The global input-output (I-O)

data-set we use as baseline accounts for 27 different sectors (including final demand) on country level. Thus, in this study,

firms represent national sectors. By focusing on the outage of a single sector, exemplary the manufacturing sector in Japan,

we are able to study indirect effects in a controlled setting. For large outages, indirect losses are found to be in the same

order of magnitude as direct losses. By spreading from one sector to the next, they prevail for much longer within the

network than the direct ones. Due to non-linearities in the propagation dynamics they can, in fact, even peak long after the

direct losses have ceased. 

This paper is organized as follows. At first, we review the relevant literature and discuss in how far our model differs

from existing approaches in Section 2 . Next, we provide an overview of the acclimate model in Section 3 . We then analyze

local aspects of the economic response dynamics to stylized disasters in Section 4 , before discussing the response of the

global economy in dependence of disaster duration and disaster size in Section 5 . Finally, we discuss our main findings in

Section 6 , before concluding in Section 7 . A detailed and comprehensive description of the numerical model can be found

in Appendix A . 

2. Related literature 

For a long time, it was commonly assumed that micro-level idiosyncratic shocks would average out and that their effects

on the aggregate macro-level would therefore be negligible ( Lucas, 1977 ). However, only recently, Gabaix (2011) revealed in a

ground-breaking study that this is not the case if the distribution of firm-sizes is sufficiently fat-tailed. The author bolstered

this ‘granular’ hypothesis empirically by showing that idiosyncratic movements of US firms make a significant contribution

to the observed macroeconomic variations in output growth. Further important theoretical contributions in this direction

were made by Acemoglu et al. (2012) and Carvalho (2014) , who focused on the impact the topology of the economic network

has on shock propagation. They revealed that sizable aggregate fluctuations can result from idiosyncratic shocks if there are

‘hubs’ in the network, i.e., well connected firms supplying numerous firms of different sectors, which facilitate the cascading

of losses from one layer of the supply chains to the next. These theoretical findings were complemented by more empirical

ones. Gabaix (2009) revealed that power-laws, i.e., fat-tailed distributions, are ubiquitous in economics, and a study by
2 reached in the United Nations Framework Convention on Climate Change negotiations in Paris in December 2015 . 
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Arenas et al. (2002) on self-organized criticality in economic networks suggested that economic systems are often at the

boundary between chaos and organization – in a regime where fluctuations become important because they can trigger

regime transitions. Further, Foerster et al. (2011) and Carvalho (2014) showed that the importance of idiosyncratic shocks has

increased since the ‘great moderation’ in the mid-eighties, i.e., the reduction in the volatility of business cycle fluctuations.

Di Giovanni et al. (2014) studied the French firm network affirming the importance of a fat-tailed distribution of firm-sizes

and the inter-connectedness of the firm network for micro-shocks to contribute to aggregate fluctuations. Moreover, partially

triggered by the financial crises, network theory was applied to study shock propagation in economic networks ( Helbing,

2013; Schweitzer et al., 2009 ) with a focus on systemic risks at financial markets ( Acemoglu et al., 2015; Battiston et al.,

2012; Elliott et al., 2014 ). 

These static analyses have been complemented by dynamic modeling approaches ( Mandel et al., 2015 ). Two well es-

tablished – albeit rather different – modeling frameworks are I-O and computable general equilibrium (CGE) models (see

van der Veen, 2004 and Okuyama and Santos, 2014 for a comprehensive introduction and Section 6 for a detailed compar-

ison with our model acclimate ). Both approaches can reflect the economic dependencies in high detail ( Rose et al., 2004 ).

However, when it comes to describing and temporally resolving the indirect economic effects of disasters due to the cas-

cading of losses along supply chains – the main focus of this paper – both, I-O and CGE, approaches may not be able to

realistically describe the economic responses in the period of days to months following a disaster ( Farmer and Foley, 2009;

Farmer et al., 2015; Hallegatte, 2008 ). Whereas the production system in I-O models is fixed rendering short-term adapta-

tion impossible ( Albala-Bertrand, 2013 ), that of CGEs is highly adaptive and flexible due to price responsiveness and a high

degree of substitutability among commodities. CGEs are calibrated such that supply and demand elasticities as well as the

elasticities of substitution are suitable to describe an economy in long-term equilibrium. Consequently, in contrast to I-O

models that tend to overestimate losses, CGEs are prone to mitigate losses unrealistically well ( Hallegatte, 2008 ). 

Attempts to represent a system’s complex dynamics from the bottom up are undergone in agent-based models (ABMs),

e.g., Gallegati and Richiardi (2011) and Axtell (2007) . Here, the stylized facts of macroeconomic systems emerge from the

interplay of individual heterogeneous agents ( Caiani et al., 2016; Delli Gatti et al., 2005 ), which may lead to non-equilibrium

dynamics. Micro-economically founded agent-based growth models have, for instance, been proven to reproduce exponen- 

tial growth ( Delli Gatti et al., 2007; Mandel, 2012 ). In recent years, ABMs have been frequently applied to study the im-

plications of specific policies ( Dosi et al., 2010 ). Further, similar to static methods, a focus was put on systemic risk by

studying bankrupt avalanches and their dependence on network topology ( Chaney, 2016; Delli Gatti et al., 2010; Riccetti

et al., 2013; Weisbuch and Battiston, 2007; Wolski and van de Leur, 2016 ). However, ABMs still struggle to gain broader

recognition from the mainstream neoclassical economic community ( Leombruni and Richiardi, 2005 ). In particular, they are

criticized for providing the modeler with too much freedom in the implementation of the decision rules for the bounded ra-

tional agents – usually, ad-hoc behavioral rules are chosen that appear meaningful and allow to reproduce key stylized facts

( Salle, 2015 ). However, the unambiguousness of the representative, perfectly rational agents in neoclassical macroeconomics

is lost ( Fagiolo et al., 2007 ) since different sets of rules may reproduce the same stylized facts. Yet, the agents’ decision

rationale may be derived from behavioral studies investigating the individual decisions, the interaction of the individuals,

and the emerging macro behavior ( Assenza et al., 2015 ). 

Regarding the analysis of production loss cascades along supply-chains, ABM approaches appear promising because loss

propagation can be very naturally discussed in a setting where the economy is described by heterogeneous interacting

agents yielding a production system with well tuneable flexibilities ( Stiglitz and Gallegati, 2011 ). Only recently, Gualdi and

Mandel (2016) presented an ABM of an evolutionary network of monopolistically competitive firms, which is able to re-

produce important stylized facts of real-world firm networks. For instance, they can allocate the scale-free topology of firm

networks to the competition among the firms. Further, as in the static theory ( Acemoglu et al., 2012 ), their model permits

to ascribe aggregate volatility to the fat-tailed distribution of firm sizes. 

A foray in the description of disaster-induced losses in supply networks was undertaken by Hallegatte (2008) with

the introduction of an agent-based dynamic model, the ARIO model. A more recent version of the model accounts

for inventories acting as buffer-stock, which are essential for the assessment of indirect losses in the disaster after-

math ( Hallegatte, 2014 ). This model was successfully employed in several empirical disaster impact studies such as

Hallegatte (2009) , Ranger et al. (2011) , and Hallegatte et al. (2011) . Further, Henriet et al. (2012) extended the model to

study how the robustness of a firm network to micro-shocks depends on the structure of the network as well as the het-

erogeneity of direct losses. Moreover, the authors provided an algorithm to disaggregate sectoral I-O tables such that a firm

network with realistic size distribution is obtained. 

The first version of the acclimate modeling framework was introduced by Bierkandt et al. (2014) to study the downstream

propagation of production losses in a global supply network in the presence of inventories. The model was then extended

to account for adaptation of upstream demand – in terms of quantity and in terms of the redistribution of demand among

the supplier base in the disaster aftermath Wenz et al. (2015) . Wenz and Levermann (2016) employed the model to study

heat-stress induced production losses in the global supply network. They observed that in recent years the supply network

has become more susceptible to loss propagation due to an enhanced interconnectivity of the economy, well in line with

the findings of Henriet et al. (2012) . 

In ABMs designed to describe loss propagation in supply networks, firms most importantly have to make two kinds

of decisions: Firstly, rationing decisions with respect to their output if the demand they receive exceeds their productive

capacity and, secondly, decisions on the redistribution of their upstream demand among their supplier base to mitigate
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supply shortages in the disaster aftermath. In the ARIO model and the first two versions of the acclimate model, this is done

by reasonable ad-hoc behavioral rules. In both models, output is distributed according to a proportional rationing scheme.

In the ARIO-inventory model redistribution of demand is not possible, whereas Wenz et al. (2015) redistribute demand

according to a supply-reliability measure combined with a proportionality scheme. 

In this paper, we take a different approach with respect to the agents’ decision rationale. All relevant decisions are gov-

erned by local optimization principles, e.g., firms decide upon their production level by profit maximization. We believe

that this comprises several advantages. First, using prices as an organization mechanism, we can more easily bridge the gap

to the CGE literature. The model setup may be interpreted as a ‘natural’ extension of the CGE approach to the context of

‘myopic’ agents, which do not have enough information to reach a market clearing equilibrium in each timestep. Instead,

disequilibrium situations arise, where prices differ among agents. In the disaster aftermath, these price differences subse-

quently ease out over many timesteps. This way, the path of the economy back to market clearing equilibrium is temporally

resolved and made explicit. Further, in the disaster math, where disequilibrium conditions dominate ( Hallegatte, 2008 ), the

assumption of ‘myopic’ agents appears to be more realistic than implying market clearance immediately. Second, accounting

for price effects becomes important for large scale disasters ( Hallegatte, 2008 ), and, at the same time, opens up the possi-

bility to study welfare impacts of disasters. Third, offer prices provide a means to rank potential new suppliers and compare

them to the existing supplier base paving the way towards a flexible network that can restructure in the disaster aftermath.

Fourth, profit and cost calculations open up the possibility to include growth dynamics by introducing inter-temporal bud-

gets and investment decisions. These steps towards an agent-based growth model will be undertaken in follow-up papers. 

3. Model description 

In this section, we provide an overview of the dynamic agent-based network model acclimate . First, we discuss its math-

ematical structure in Section 3.1 . Next, we introduce its economic agents, firms and regional consumers in Sections 3.1.1 and

3.1.2 , respectively. We then discuss the baseline equilibrium of the economy in Section 3.2 , before eventually introducing its

response dynamics to local, unanticipated and idiosyncratic production shocks in Section 3.3 . Overall, we focus on giving an

overview of the model’s structure and motivate the underlying modeling assumptions. A detailed mathematical description

of the model can be found in Appendix A , and a list of all parameters, exogenous as well as endogenous variables to the

model, is provided in Tables B.1 , B.2 , and B.3 , respectively. 

3.1. Model structure 

We consider an economy consisting of firms under monopolistic competition and regional consumers. These economic

agents are interlinked by trade flows forming a complex network of supply chains as sketched in Fig. 1 . The nodes of this

trade network are the economic agents. Their trade relations are represented by weighted, directed links. In each region,

we consider two types of agents: firms , each representing one of the different economic sectors located in the region, as

well as a consumer representing the region’s final demand. The latter accounts for household consumption, governmental

spending, and private investments. We label each economic agent by an index-pair ir , where the first index i denotes a

sector in the set of all sectors I and the second index r specifies a region in the set of all regions R . As the model describes

anomalies induced by production shocks, its dynamics evolves around a dynamically stable baseline state of the economy.

In the remainder of this section, we first discuss, how we derive the latter from multi-regional input-output (MRIO) tables.

From there, we describe the model’s disequilibrium dynamics and discuss the additional underlying assumptions. 

Baseline state. The baseline trade flows connecting the economic agents are derived from MRIO-tables. The flows in these

tables are usually given in units of USD/year and thus have to be divided by the number of timesteps per year to obtain the

set of baseline flows { Z ∗
ir→ js 

} i,r, j,s in units of USD/timestep. Here, Z ∗
ir→ js 

denotes the monetary flow from firm ir to economic

agent js . The superscript ( ·) ∗ denotes variables in the baseline state. For a firm js , the sum of all outgoing flows determines

its baseline production level X ∗
js 

≡ ∑ 

ir Z 
∗
ir→ js 

, and for a regional consumer js the sum of all incoming flows determines its

baseline consumption level C ∗
i → js 

≡ ∑ 

r Z 
∗
ir→ js 

. 

Next, we introduce the notion of demand requests in order to define the demand side of the baseline state. Since we

focus on losses induced via supply shortages, we assume that the economy is demand-driven. Thus, in each timestep (t − 1) ,

each economic agent ku decides (i) on the demand { D 

(t−1) 
js ← ku 

} j,s (measured in USD/timestep) that it addresses to each of its

suppliers { js } and (ii) on the corresponding (dimensionless) reservation prices { n (t−1) 
js ← ku 

} j,s , i.e., the prices it is willing to

pay. Only afterwards, in the next timestep ( t ), its suppliers can decide to which extent they are willing to fulfill the received

demand. We define the tuple of quantity demanded and reservation price as demand request . As depicted in Fig. 1 , supplier js

responds, in timestep ( t ) to the demand request 
(
D 

(t−1) 
js ← ku 

, n (t−1) 
js ← ku 

)
it has received from purchaser ku in the previous timestep

(t − 1) by sending the flow-price tuple 
(
Z (t) 

js → ku 
, n (t−1) 

js ← ku 

)
via the transport chain. Since firms produce at most the demanded

quantities, no production-to-stock is possible, i.e., X (t) 
js 

≤ D 

(t−1) 
js ← 

∀ j, s holds true, where 

D 

(t−1) 
js ← 

≡
∑ 

ku 

D 

(t−1) 
js ← ku 

(1)



236 C. Otto et al. / Journal of Economic Dynamics & Control 83 (2017) 232–269 

Fig. 1. Sketch of the demand-driven economy from the local perspective of a firm. Examples for the sectors and flows under consideration are given above 

the figure. (For interpretation of the references to color in the text, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

denotes the incoming demand js receives in timestep ( t ). We then postulate that, in the baseline state of the economy, each

demand is fulfilled, i.e., D 

∗
js ← ku 

= Z ∗
js → ku 

∀ j, s, k, u holds true. This implies that markets clear in the baseline state, i.e., each

production sites fulfills its incoming demand D 

∗
js ← 

= X ∗
js 
∀ j, s and, thus, supply equals demand locally as well as globally.

Further, we may deduce from market clearance that (i) there is only one equilibrium (world market) price per commodity,

and that (ii) all of a firms purchasers offer the same reservation price. This permits us to choose the units, in which the

commodities are measured, such that the baseline prices for all products are equal. For simplicity, but without loss of

generality, we choose a baseline price of 1 USD. In the following, we only discuss prices, denoted by the letter n , which are

normalized with respect to this value. To allege notation, time indices will be dropped in the following when it is clear from

the context to which timestep a variable belongs. 

Timing and severity of a disaster are unpredictable for economic actors – at least to a certain extent. In acclimate this is

reflected by modeling ‘myopic’, bounded rational agents. They neither have temporal foresight, nor perfect network oversight

since they communicate only with their direct business partners. As already mentioned in the introduction, we aim to

resolve the cascading of disaster induced indirect losses along supply chains. For short-term loss absorption three flexibilities

of the production system appear to be most important: (i) warehousing, (ii) demand adaptation and redistribution, and (iii)

idle capacities. We discuss their implementation in acclimate in the following three paragraphs, before explaining in the last

two paragraphs of this section why we assume the economy to be demand-driven and the network topology to be static. 

Warehousing. For the short-term economic recovery in the disaster aftermath, inventories acting as buffer stocks are key

( Hallegatte, 2014 ). Therefore, in acclimate every agent has input-inventories for the commodities it needs for production

or consumption (blue boxes in Fig. 1 ). Further, since in the last decades lean- and just-in-time production schemes have

become established, the commodities ‘en route’ are nowadays – at least in some sectors – managed as rolling inventory

( Shah and Ward, 2007 ). In acclimate , commodities ‘en route’ are modeled as transport stock. The number of transport chain

links is given by the number of timesteps needed to transport a delivery from supplier to producer (cf. Fig. 1 ). In each

timestep, a delivery is shifted by one transport chain link until it arrives in the corresponding input-inventory of the supplier.

Demand adaptation and distribution. Firms can adapt their upstream demand for input commodities. On the one hand, they

can increase it if demand for their product is high or in order to restock their inventories. On the other hand, they can

decrease it if (i) their product is less demanded, if (ii) they have to reduce production due to supply shortages of other

input commodities that cannot be substituted, or if (iii) they can produce less because they are affected by a disaster.

Further, agents can shift their demand from affected to non-affected suppliers as discussed in Section 3.1.1 . 
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Idle capacities. Shifting of demand is most effective if non-affected suppliers have idle capacities that they can activate to

meet the increased demand. Empirical evidence for the importance of idle capacities is, for instance, provided by a World

Bank report on the Marmara earthquake ( World Bank, 1999 ). Whereas the caused destruction significantly reduced Turkey’s

Gross Domestic Product (GDP) by 1.5% to 3%, only relative low production losses were observed. This has been explained

with the strong recession that had reduced Turkish GDP by 7% in the year before the disaster generating idle capacities. 

Demand-driven economy. From a modeling perspective, assuming the economy to be demand-driven is consistent with the

assumption that economic agents are ‘myopic’. To decide if production-to-stock will increase their profit in the long-term,

firms would need to form more far-reaching expectations on the development of their incoming demand or the development

of the prices for input commodities. For instance, if the firms expected prices for input commodities to rise in the future

and demand to remain unchanged, production-to-stock would increase their future profit. Further, we think that neglecting

production-to-stock does not significantly reduce the model’s performance. Since firms have the possibility to activate idle

capacities, they can buffer outages of competitors in the same way as if they had stocks of unsold products. It appears more

important to consider stocks at all than to distinguish between input and output stocks. 

Static network topology. Moreover, we make the assumption that the supply network is static, i.e., demand can only be

shifted between existing connections and no new connections can be established. From a modeling point of view, this

aligns well with the assumption that firms have monopolistic markups as discussed in Section 3.2 . From an empirical point

of view, this is a strong simplification. However, at least in some sectors, high product specialization renders it more difficult

for firms to switch to new suppliers in the short-term. Empirical evidence for this hypothesis is, for instance, provided

by a study by Boehm et al. (2015) on firms in the US having strong import dependencies to the Japanese economy. The

authors found production losses after the 2011 T ̄ohoku earthquake to be similar to the drop in imports suggesting that

firms were not able to replace import commodities by switching to new suppliers in the short-term, i.e., in the months

following the disaster. Further anecdotal evidence was given by Carvalho (2014) with respect to the automobile industry in

the United States. Another recent example is the production interruption in Volkswagen production plants in 2016 due to

a supplier dispute. The firm stopped production in six sites taking important economic losses, because switching to new

suppliers was not possible in the short term ( Times, 2016 ). However, it is worthy to note that in the longer-term network

evolution provides an important adaptation mechanism, which will be addressed in upcoming versions of the acclimate

modeling framework. For the purposes of this paper focusing on modeling the direct disaster aftermath, where supply-chain

interruptions appear, accounting for inventories and transport times appears to be more important. Also, in the data used,

firms and consumers usually have several suppliers per commodity among which they can redistribute their demand to

replace affected suppliers in the disaster aftermath. 

3.1.1. Firms 

We model profit-maximizing firms under monopolistic competition. Thus, in each timestep ( t ), firms decide upon their

production level by maximizing profit while respecting constraints imposed by their limited productive capacity and by the

limited availability of input commodities. For computational simplicity, each timestep is divided into three subsequent deci-

sion points or sub-steps. Profit maximization is assured by applying local optimization principles in each of them. First, firms

decide upon their production level by maximizing profit. Second, firms determine the production level that they expect to

be profit-maximizing in the next timestep. Afterwards, they communicate this production level and the corresponding of-

fer price to their purchasers to permit them to take a sound decision on how to distribute their upstream demand. Third,

after having received these information from their suppliers, firms decide by minimizing purchasing costs (i) how to dis-

tribute their own upstream demand and (ii) what their reservation prices are. In the following, these decision points will be

referred to as production step, expectation step, and purchasing step, respectively. 

Production step. In the production step, each firm determines its profit maximizing production level by taking its limited

productive capacity into account. We consider idle capacities in the economy by assuming that each firm js has the possibil-

ity to extend its production above baseline level X ∗
js 

by a factor β j ≥ 1, which may vary among sectors. Further, js ’s production

level can be reduced by an exogenous factor λjs ∈ [0, 1] representing the disaster’s forcing. If no forcing is present, λ∗
js 

= 1

holds true. 

At the beginning of the production step, firms receive the demand request their suppliers have issued in the previous

timestep. In the following, we note that the monetary value of a demand request ( D js ← ku , n js ← ku ) that purchaser ku has

issued to supplier js is given by the product of the demanded quantity and corresponding reservation price, 

v (D js ← ku ) ≡ n js ← ku D js ← ku . 

From its incoming demand requests a firm js can derive its revenue curve by first ranking demand requests from high to

low reservation prices as depicted in the upper panel of Fig. 2 . The revenue curve R js ( ̆X js ) (cf. solid orange lines in the lower

panel of Fig. 2 ) then describes the functional relationship between the cumulative values of the demand requests and js ’s

production level X̆ js (we use the notation 

˘(·) to distinguish control variables from the actual values variable assume, i.e.,

to denote that js ’s revenue is a function of production level, we use the notation R js ( ̆X js ) whereas X js denotes the actual
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Fig. 2. Illustration of how a firm js determines its profit-maximizing production level X js (a) : in economic equilibrium and (b) : in disequilibrium situations 

arising in the disaster aftermath. Upper panel : Purchaser’s reservation prices as a function of cumulative demand. Lower panel : Revenue curves R js (orange 

lines) and cost curves C js (blue lines) as function of js ’s production level under consideration. Gray shadings denote the range of production extension. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

production level in the present timestep). Thus, if the incoming demand D js ← 

is satisfied, js cannot increase its revenue

further by extending production, and the revenue curve is constant for X̆ js ≥ D js ← 

. 

As in I-O models, we assume that the production function is linear with respect to commodity inputs. All commodity

inputs are perfect complements and therefore substitution is not possible among them – an assumption that is supported

by a recent study by Boehm et al. (2015) suggesting that elasticities of substitution are very low in the months following a

disaster. Thus, in the case of supply limitation, the input commodity with the lowest availability limits productive capacity.

Prices of input commodities do not depend on the production level, but vary with purchasing costs. Further, we neglect

fixed costs for simplicity, but we account for variable production costs of labor, capital depreciation, and variable overhead.

Since the latter are usually not contained in MRIO-tables, we do not consider these factors of production explicitly as inputs

into the production function, i.e., in our model these factors cannot limit productive capacity. 3 We assume marginal variable

costs to be constant up to the baseline production level and to increase linearly above this level to account for extra costs

arising for long-hours of workers, etc. In consequence, firm js ’s cost curve may be written as the sum of linear commodity

costs C l 
js 

and variable production costs C v 
js 
, 

C js ( ̆X js ) ≡ C l js ( ̆X js ) + C v js ( ̆X js ) . (2) 

Up to the baseline production level, the cost curve increases linearly with production. Above this level, it increases super-

linearly due to the nonlinear increase of variable production costs in production extension (see blue lines in the lower panel

of Fig. 2 ). 

Firm js determines its actual production level X js by maximizing its profit under the constraint that production may not

exceed productive capacity ˆ X js reading 

X js ≡ argmax 
X̆ js 

[
� js ( ̆X js ) 

]
subject to 0 ≤ X̆ js ≤ ˆ X js , (3) 

where profit is defined as the difference of revenue and costs, 

� js ( ̆X js ) ≡ R js ( ̆X js ) − C js ( ̆X js ) . (4) 

Note that, in times of crisis, productive capacity can either be reduced by a disaster limiting a firm’s ability to produce or

by shortages of input commodities. 

After production, js distributes its output among those purchasers with sufficiently high reservation prices. Each pur-

chaser has to pay its reservation price. The reservation prices determine js ’s average production price n̄ js ≡
R js (X js ) 

X js 
. In dis-

equilibrium, however, not necessarily all purchasers are served ( X js ≤ D js ← 

). Consequently, n̄ js does not always equal the

average reservation price of the purchasers n̄ 
p 
js 

≡ R js (D js ← 

) 

D js ← 

. Finally, firms put their output into the transport chains, and, at

the same time, receive the next deliveries from their suppliers. 
3 We are aware that especially not explicitly accounting for a labor market is a restriction of our model because, for instance, disaster impacts on the 

unemployment rate cannot be described. 
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Expectation step. After receiving their deliveries, firms know if supply shortages will limit their productive capacity in the

next timestep and what their production costs will be. Thus, they can form sound expectations on their upcoming pro-

duction level and the corresponding average offer price: by forming the ‘naive expectation’ that (i) the level of external

forcing and (ii) their incoming demand will remain unchanged with respect to the current timestep, firms can determine

both, expected optimal production level and average offer price by profit maximization as in the production step. They then

communicate these quantities together with their expected productive capacity for the next timestep as guidance values to

their purchasers. 

Purchasing step. At this third decision point, each firm js first decides upon its total demand for each input commodity i , 

D i ← js ≡ min 

[
E U i → js 

+ 

�S i → js 

τi → js 

, E js 
D max 

i ← js 

]
. (5)

Here, E U i → js 
denotes the amount of commodity i that js expects to use in the next timestep 

4 . This is derived from js ’s

expected profit-maximizing production level. Further, �S i → js denotes the deviation from the baseline filling level of js ’s

inventory for commodity i . In times of scarcity ( �S i → js > 0) or abundance ( �S i → js < 0), js increases or decreases its demand,

respectively. The timescale at which js aims to balance storage anomalies is given by the parameter τ i → js . Further, the

minimum condition in Eq. (5) expresses that demand can be limited by the maximal demand js expects to be able to source

from its suppliers E js 
D max 

i ← js 

in the next timestep 

5 . The latter is derived from the expected productive capacities communicated

by js ’ suppliers in the expectation step. 

The expected purchasing costs 

E C i → js 

({ ̆D ir← js } r 
)

≡
∑ 

r 

E js 
n̆ ir 

( ̆D ir← js ) ̆D ir← js ︸ ︷︷ ︸ 
expected costs for purchases 

+ E C pen 
i → js 

({ ̆D ir← js } r 
)
, ︸ ︷︷ ︸ 

expected additional costs 
for transport 

(6)

are a function of the demanded quantities { ̆D ir← js } r firm js addresses to its suppliers and depend on the expected supply

curves {E js 
n̆ ir 

} r of js ’s suppliers. Also, transport comes at costs. We assume that transport costs arising in the baseline state are

already included in commodity costs, and that extra costs, described by the term E 
C 

pen 
i → js 

({ ̆D ir← js } 
)

arise only if the demanded

quantities deviate from their baseline values. This can, for instance, occur when means of transportation are not used to

capacity. Further, we assume transport costs to increase with the relative deviation of the delivery from its baseline level. 

The expected production levels and offer prices communicated by its suppliers permit js to form expectations on its

suppliers’ supply curves for the next timestep {E js 
n̆ ir 

} r , i.e., it estimates what price it will have to pay to each of its suppliers

for a certain amount of a commodity. To this end, it makes the assumption that if the share it demands from the expected

production of a supplier remains unchanged (with respect to the share it has received from the supplier’s present produc-

tion), it has to bid the supplier’s offer price. Further, a firm does not expect to be able to crowd out its competitors. Thus,

it has to expect to drive the supplier into production extension if it increases its share. In this case, it expects that it must

compensate the supplier for the extra costs arising from the higher marginal variable costs in production extension. In the

opposite case, where the firm expects to reduce its share, it reduces also its reservation price linearly down to the suppliers

production costs for a zero-share. 

In line with the local profit maximization in production and expectation steps, firm js decides upon the optimal distri-

bution of its demand requests among its suppliers by minimizing expected purchasing costs, separately for each commodity

i , under the constraints that (i) cumulative demand D i ← js is met, and (ii) individual demand requests must not exceed the

amounts {E js 
D max 

ir← js 

} r its suppliers are expected to be able to deliver in the next timestep, 

{ D ir← js } r ≡ argmin 

{ ̆D ir← js } r 

[
E C i → js 

({ ̆D ir← js } r 
)]

(7)

subject to 

∑ 

r 

D̆ ir← js = D i → js and 0 ≤ D̆ ir← js ≤ E js 
D max 

ir← js 

∀ r. 

Here, E js 
D max 

ir← js 

denotes the maximum value js expects supplier ir to be able to deliver in the next timestep 

6 . The reservation

price corresponding to a demanded quantity D ir ← js is then given by n ir← js ≡ E js 
n̆ ir 

(D ir← js ) . 
4 We use the notation E (·) to describe the expectation an agent forms at time ( t ) on the value of its own property ( ·) in the next timestep (t + 1) . For 

instance, E X js denotes js ’s expectations at time ( t ) on its production level in timestep (t + 1) . 
5 Here, the notation E (·) 

(·) denotes the expectation that an agent – indicated by the upper index – makes in timestep ( t ) on the value of another agent’s 

property in timestep (t + 1) – indicated by the lower index. For instance, E js 
n̆ ir 

denotes the expectation that js has at time ( t ) on ir ’s supply curve in the 

next timestep (t + 1) . 
6 It is worthy to note that transport costs remain ‘virtual’; even if transport costs arise, the firm’s demand remains unchanged. Thus, transport costs play 

the role of a penalty function. They are merely a means to ensure the stability of the baseline equilibrium as discussed in A.2.3 . 
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3.1.2. Consumers 

The second type of economic agent considered in acclimate , the consumers, have, in each timestep, to decide (i) upon

their consumption level and (ii) upon their demand distribution and corresponding reservation prices. Whereas consumption

is done in parallel to the production step of firms, demand requests are distributed during the purchasing step. 

Since commodities are perfect complements, a consumer js 7 has a separate consumption for each input commodity i , 

C i → js ≡ min 

[ 

C ∗i → js ·
(

n̄ 

l 
i → js 

n̄ 

∗
i → js 

)ε c 
i → js 

, ˆ U i → js 

] 

. (8) 

The consumption for each commodity i varies isoelastically with the corresponding consumer price n̄ l 
i → js 

. This is the price at

which js can currently consume commodity i . Further, ε c 
i → js 

∈ [ −1 , 0[ , and n ∗
i → js 

denote consumption price elasticity, and the

normalized consumer price in the baseline state, respectively. Consumption price elasticities may differ among commodities,

which permits to distinguish consumption from investment goods. Consumption goods are needed for immediate consump-

tion and therefore have a lower consumption price elasticity than investment goods. The purchase of investment goods can

be delayed if prices are high in the disaster aftermath. Note that, in principle, more complex consumption behaviors could

be considered, e.g., in order to account for increased governmental spending subsidizing the sectors most affected by the

disaster. Further, the minimum condition in Eq. (8) reflects that consumption may be limited by a reduced availability ˆ U i → js 

of commodity i if supply shortages arise in the disaster aftermath. 

Having ‘naive expectations’, consumers assume that their consumer prices for input commodities remain unchanged in

the next timestep. For that, they calculate their demand for commodity i by assuming that they will consume (use) the

amount E U i → js 
≡ C ∗

i → js 
·
(

n̄ l 
i → js 

n̄ ∗
i → js 

)ε c 
i → js 

in the next timestep. For each commodity, they then calculate their demand as well as

the optimal demand distribution from Eqs. (5) and (7) , respectively. 

3.2. Baseline equilibrium 

The MRIO-tables provide data of an economy that is not in a (long-term) perfectly competitive equilibrium, in which

firms’ marginal production costs equal their marginal revenue. Instead, they describe imperfectly competitive markets. In

these markets, firms of the same sector differentiate each other not only in price but also by other factors such as existing

trade relations 8 , product differentiation, regional tax differences, and other trade barriers. Accordingly, we assume that, in

the baseline state, the economy is in a dynamical monopolistically competitive equilibrium, in which firms have monopolis-

tic markups – as in standard models of monopolistic competition ( Ethier, 1982; Romer, 1989 ). 

Whereas monopolistic markups and variable production costs are usually not available, the value added – given in accli-

mate by the sum of commodity costs, variable production costs, and profit – as well as commodity costs can, for the baseline

state, be calculated from the MRIO-tables. Thus, we may obtain variable production costs by exogenously specifying firms’

monopolistic markups. The latter may vary among firms. Further, data on inventories are usually not provided by MRIO-

tables. Therefore, we set inventory levels in the baseline state exogenously. These may vary among firms. Note that due to

market clearance, firms do not refer to their inventories in the baseline state. Thus, market clearance implies that the inven-

tory levels in this state constitute the optimal trade-off between preparedness for production disruptions and efficiency in

normal times. If this were not the case, firms would empty or replenish their inventory until reaching the profit-maximizing

inventory level. 

The baseline equilibrium is locally stable which can be understood as follows. First, the baseline production level X ∗
js 

maximizes profit. Below X ∗
js 
, marginal production costs are by the markup smaller than the marginal revenue given by the

purchasers’ reservation price of unity (see discussion of revenue and cost curves in Appendix A.2.1 ). Above X ∗
js 
, the marginal

revenue is zero if the firm receives only the baseline level of incoming demand D 

∗
js ← 

= X ∗
js 

(see flat part of revenue curve

(solid orange line) in Fig. 2 (a)). In consequence, marginal revenue is smaller than marginal production costs. 

Second, the distribution of the demand request in the baseline state { D ir ← js } r is cost minimizing. That is because, when

deviating from the baseline demand distribution while keeping outgoing demand fixed, a firm has to drive at least one of

its suppliers into production extension and demand less from others. Whereas the expected marginal purchasing costs for

buying from the former are zero (see details on suppliers’ expected supply curves in Appendix A.2.3 ), the marginal costs for

purchasing from the latter decrease with the markup. If the transport penalties are chosen as discussed in Appendix A.2.3 ,

it is guaranteed that the extra costs arising from the marginal penalties overcompensate the decrease in marginal costs, and,

in consequence, the baseline equilibrium is locally stable. 
7 Note that in Fig. 1 the regional consumer is denoted by ku because it represents at the same time the purchaser of the firm js . 
8 Note that this assumption aligns well with the assumption of a static network. 
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3.3. Dynamics 

In this paper, we discuss the response dynamics of the economic system under local production shocks. Adverse events

are modeled as exogenous disturbances temporally reducing the ability of firms to produce. In addition, the economic link-

ages between agents can be altered to describe impacts on the infrastructure. As discussed above, we want shocks to be

not foreseeable for the economic agents. Therefore, the model is solved recursive dynamically and economic agents do not

know when they will be forced externally and how long the forcing will subsist. 

When a disaster strikes, a disequilibrium state of the economy arises, and, in consequence, production and consumption

of the economic agents, and therefore the economic flows may change in time. On the one hand, these perturbations cause

supply shortages propagating downstream along the supply chains. On the other hand, they evoke demand anomalies that

propagate upstream. If the ability of firms to produce is limited by direct forcing or due to supply shortages in the disaster

aftermath, they also reduce their demand for input commodities to avoid an overfilling of their input inventories. This

propagation of losses in the opposite direction of the economic flow is also known as backward-ripple effect of the economy

( Hallegatte, 2008;2014 ). Both supply and demand anomalies constitute cascading deviations from the baseline state of the

network. We aim to study the indirect production and consumption losses they induce. 

As already mentioned in the introduction, general equilibrium models, which are widely employed to assess the eco-

nomic impacts of disasters ( Kousky, 2014; Lazzaroni and van Bergeijk, 2014 ), assume a global equilibrium in each timestep,

i.e., they adjust prices to obtain immediate market clearance. In the direct disaster aftermath, these immediately ad-

justed prices should not be interpreted as real observable prices, but should rather be understood as scarcity indicators

( Hallegatte, 2014 ). In acclimate , we explicitly allow for (local) price anomalies in the disaster aftermath and temporally re-

solve their decay back to the market clearing equilibrium. If a firm affected by a local disaster has to reduce or stop produc-

tion, it cannot fulfill all the demand it receives, i.e., a local scarcity situation for its product arises. In general, each purchaser

perceives a different scarcity of the affected good and is thus offering different reservation prices for it (see Fig. 2 (b)). A well-

connected agent may be able to easily replace the affected firm by re-directing its demand to its other suppliers of the same

good. Thus, its reservation prices are lower than those of a less connected agent. In consequence, reservation prices of dif-

ferent purchasers of the same supplier may differ while supply and demand are unbalanced. Three main drivers determine

the timescale of the decay back to market clearing equilibrium: (i) the topology of the economic network, (ii) the ability of

the remaining suppliers to mitigate scarcity situations by activating idle capacities, and (iii) the time for storage recovery. If

the recovery time is large compared to the timestep, agents refill their inventories slowly, driving their suppliers less into

production extension than for smaller values of the recovery time. 

4. Model performance 

In this section, we analyze the response of the model to production interruptions triggered by unexpected adverse events.

To this end, we focus on the direct and indirect economic effects of stylized disasters. We study scenarios that are not meant

to be realistic but are chosen to illustrate the model performance. The economic network used is based on the Eora-MRIO

database ( Lenzen et al., 2012 ) with 2009 as the base year. This permits to account for 27 different sectors including final de-

mand (see Table B.5 ), and a regional resolution on the country level (see Table B.4 ). Thus, in this study firms and consumers

are represented by national sectors 9 and country level final demand, respectively. These economic agents correspond to the

nodes in the network, which are connected by input and output flows (measured in USD/year). Flows below a threshold

value of 1 million USD/ year are neglected to avoid numeric instabilities. If this results in agents without in-going connections,

then these are removed from the network; likewise firms with negative value added (cf. Eq. (A.23) ) are excluded 

10 . After

this cleanup, the network consists of 4,836 firms and 186 consumers (one for each country) interlinked by about 50 0,0 0 0

connections. The transport times are derived from distances between centroids of the regions. For short distances less than

3,0 0 0 kilometers, road transport with an average speed of 35 km / h is considered, whereas for longer distances a transport

by vessel at 20 km / h is assumed 

11 . All variables whose baseline values are derived from MRIO-data are listed in Table B.2 .

Other parameter values used in the numerical simulations are given in Table B.1 . Please note that the model is well suited

to operate on more refined data depending on the kind of scenario that is to be analyzed 

12 . Our model implementation is

openly available ( Willner and Otto, 2017 ). 

In this paper, we focus on scenarios in which the Japanese manufacturing sector ( manu:jpn ) is hit by an unexpected

disaster reducing its productive capacity. For our simulation, we choose a daily resolution to model the economic response at

the same timescale as the disaster. Note that with the timescale under consideration, also the observed price effects change.
9 In the following, we will use the notation of firms and national sectors, interchangeably. 
10 In our modeling setup, this situation may arise if the input commodities of a national sector are in the baseline state more expensive than its produce 

rendering cost-effective production impossible. Since our model does not consider subsidies, we exclude these national sectors. However, this affects only 

11 out of 4,847 national sectors. Hence, the effect of this exclusion on the observed dynamics is expected to be negligible. 
11 The average transport velocities of the different means of transportation have been taken from the Sea Rates project ( searates.com ). 
12 For future studies, we plan to incorporate spatially refined data using a newly developed refinement algorithm ( Wenz et al., 2015 ), which handles 

non-homogeneous regional and sectoral resolutions. For instance, the region directly hit by the disaster can be modeled with a high regional resolution to 

account for small scale disasters and with a high sectoral resolution to account for the heterogeneity of sectors. 

http://searates.com
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The coarser the temporal resolution, the smaller is the observed price volatility. There are three parameters that govern the

model’s response dynamics with regard to price changes: idle capacities (parameters { β i → js } i , j , s , cf. Eq. (A.15) ), the increase

of the firms’ marginal variable production costs in production extension (parameters { �n in , v ,> 
i 

} i , cf. Eq. (A.28) ), and the

timescales at which agents aim to balance storage anomalies with respect to the chosen timestep (parameters { τ i → js } i , j , s ,

cf. Eq. (5) ). The interplay of all three parameters determines the magnitude of price effects. First, with the amount of idle

capacities that can be activated in the economy, the scarcity perceived in the disaster aftermath decreases, and price effects,

such as demand surge, become less pronounced. Second, the magnitude of these price effects is determined by the increase

of the firms’ marginal variable production costs in production extension. If a short timestep is chosen, we expect this price

increase to be larger – in relative terms – than for a longer timestep. This is because, in a short time-frame, it is more

expensive for firms to activate idle capacities; the production system is stiffer. Third, the timescale at which agents aim to

balance inventory anomalies determines to which extent idle capacities are activated because shorter balancing times imply

higher demand (cf. Eq. (5) ). If agents aim to balance their inventory anomalies slowly with respect to the chosen timestep,

price effects are less pronounced than for the case of rapid balancing of inventories. However, in the former case economic

recovery takes many timesteps, whereas it takes only a few in the latter case. 

We model the impact of the disaster in a stylized way, which permits us to sketch a clear picture of the underlying

dynamics and economic principles. For the duration of the disaster, the productive capacity of manu:jpn is evenly reduced,

and, after the disaster, the full productive capacity is restored immediately. That is, no gradual increase of the productive

capacity during the reconstruction phase is considered. Further, we assume that no other national sectors are directly af-

fected. The manufacturing sector in Japan was chosen because it is a major sector in the Japanese economy. Therefore, a

complete shutdown of this national sector constitutes a non-marginal shock for the Japanese economy with potential global

repercussions. The highly industrialized Japanese economy is strongly interlinked with other national economies rendering

it a good paradigm to study the indirect effects of disasters on the global supply network. Furthermore, Japan is highly ex-

posed to natural disasters as, for example, the East Japanese earthquake and the subsequent Tsunami in 2011 ( Kajitani and

Tatano, 2014 ) or the Kobe earthquake in 1995 ( Okuyama, 2014 ). This renders supply interruptions caused by natural disasters

more probable than in other developed economies. 

4.1. Local production and price dynamics 

In this section, we first concentrate on the local recovery dynamics of Japan’s manufacturing sector ( manu:jpn ) in the

disaster aftermath in Section 4.1.1 . Then, we discuss how an economic agent that had strongly depended on manu:jpn ’s

deliveries before the disaster redistributes its demand for manufacturing among its remaining suppliers in Section 4.1.2 . 

4.1.1. Local recovery dynamics of the national sector directly hit by the disaster 

We consider a scenario, where initially the economy is in the monopolistically competitive, locally stable baseline equi-

librium, before an unpremeditated production shock reduces manu:jpn ’s productive capacity close to zero for three days.

The recovery dynamics of key local variables in response to this outage is shown in Fig. 3 . Pre-disaster baseline values are

marked by horizontal gray dashed lines, and the beginnings of timesteps are denoted by vertical black dashed lines. Fig. 3 (a)

depicts the recovery dynamics of incoming demand, production, and expected production, whereas Fig. 3 (b) depicts rela-

tive deviations of the corresponding prices from their common baseline value of unity. The timeseries have been shifted

to emphasize the timing of events within each timestep. At first (light shading), the national sector receives its incoming

demand D manu:jpn ← 

(see Eq. (A.20) ) from its purchasers, which have an average reservation price of n̄ 
p 
manu:jpn 

(see Eq. (A.39) ).

Incoming demand and the corresponding average purchasers’ reservation price are denoted by gray dashed lines in Fig. 3 (a)

and (b). Then (medium dark shading), the national sector determines its production level by profit maximization accord-

ing to Eq. (A.35) . Production and average per unit selling price n̄ manu:jpn (see Eq. (A.38) ) are depicted by blue solid lines

in Fig. 3 (a) and (b)). Eventually (dark shading), the national sector determines its expected production level E X manu:jpn 
(see

Eq. (A.43) ) and its offer price E n̄ manu:jpn 
(see Eq. (A.40) ), which are denoted by red dash-dotted lines in Fig. 3 (a) and (b), and

communicates them to its purchasers. 

In the baseline equilibrium state, for t < 0, markets clear and manu:jpn ’s production equals its incoming demand. Since

the equilibrium is stable, manu:jpn expects to have the same production in the next as in the current timestep, and its

present production equals the one it expects to have in the next timestep. The disaster strikes at day 0 reducing manu:jpn ’s

productive capacity close to zero 13 until day 2 (blue shaded areas in Fig. 3 ), i.e., λ(t) 
manu:jpn 

= 0 . 001 for t ∈ [0, 2] (cf. Eq. (A.15) ).

Since manu:jpn ’s purchasers cannot predict the arrival of the disaster, manu:jpn ’s incoming demand and the purchasers’

reservation prices remain at their baseline levels for this timestep. However, being affected by the disaster manu:jpn can

fulfill only a small share of the incoming demand since its productive capacity ˆ X manu:jpn – and with it its actual production

level X manu:jpn – is strongly reduced by the external forcing. To calculate its expected production level E X manu:jpn 
and offer

price E n̄ manu:jpn 
, manu:jpn assumes that the incoming demand will remain unchanged in the next timestep (cf. assumption (ii)

in Appendix A.2.2 ). By taking its reduced productive capacity into account, manu:jpn determines expected production level
13 Note that we do not consider a complete shutdown because it constitutes a special case, in which the purchasers do not send any demand requests 

and the national sector directly hit communicates neither an average selling price nor an offer price. 
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Fig. 3. Local recovery dynamics of the manufacturing sector in Japan ( manu:jpn ). Parameters: λ(t) 
manu:jpn 

= 0 . 001 for t ∈ [0, 2], others as in Table B.1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and offer price by maximizing its expected profit (see Eq. (A.41) ). manu:jpn ’s purchasers in turn perceive a stock deficit in

the transport chains connecting them with manu:jpn as the deliveries of manu:jpn are much smaller than in the baseline

state (see Eq. (A.46) ). Consequently, they try to compensate the shortfall of manu:jpn by shifting their demand to other

business partners. However, they are confronted with transport penalties because manu:jpn ’s deliveries are smaller than in

the baseline state (cf. Eq. (A.55) ). In order to reduce this penalty they offer a higher reservation price to manu:jpn than in

the baseline state aiming to increase their expected shares on manu:jpn ’s upcoming production (see Eq. (A.48) ). This causes

an increase of the average purchasers’ reservation price from day 1 to day 3. 

When manu:jpn determines its offer price at day 2, it expects the external forcing to remain unchanged and to still limit

its production in the next timestep. However, at day 3, its productive capacity is restored instantly. In response, manu:jpn ’s

purchasers react to this change by redirecting more demand back to manu:jpn . Aiming to refill their inventories, they even

address more demand to manu:jpn than in the baseline state. However, they remain with their expected demand shares,

in average, below the shares expected to lead to production extension of manu:jpn (see Eq. (A.51) ). In consequence, they

offer a reservation price that is smaller than the offer price manu:jpn has communicated (cf. Eq. (A.53) ). Accordingly, at

day 4, manu:jpn receives an above-baseline demand, but the average purchaser’s price drops below its baseline level of

unity. manu:jpn responds to the incoming demand by producing more than in the baseline state and by diminishing its

monopolistic markup below its baseline value. This causes manu:jpn ’s average selling price to drop below its baseline value

of unity, too. However, since in the calculation of expected production and offer price manu:jpn respects its baseline mo-

nopolistic markup, manu:jpn ’s offer price at day 4 only reduces down to its baseline value of unity. In the direct disaster

aftermath, from day 4 onward, economic agents that were indirectly affected by the disaster, e.g., by the resulting supply

shortages, aim to restock their inventories. Thus, also manu:jpn perceives a higher incoming demand and is able to sell its

production – in average – to higher prices than in the baseline state (see also discussion in Section 4.2 ). 

4.1.2. Demand redistribution of a national sector indirectly affected by the disaster 

In this section, we consider the same scenario as in the previous section. However, here we discuss how a purchaser

of the forced national sector manu:jpn shifts its demand to unaffected suppliers in order to mitigate manu:jpn ’s outage.

Fig. 4 (a) depicts the demand requests that the machinery sector in Hong Kong ( mach:hkg ) addresses to its suppliers for

manufacturing: Japan ( jpn , green shading), the United States of America ( usa , orange shading), and others ( row , blue

shading) 14 . In the baseline state, before day 0, manu:jpn is mach:hkg ’s second most dominant supplier for manufacturing.

However, in the presence of the disaster, mach:hkg compensates the (close-to-)outage of manu:jpn by demanding larger

quantities from its remaining suppliers. Additionally, mach:hkg withdraws from its input inventory (dark gray shading in

Fig. 4 (b)) at day 2. It determines the optimal distribution of demand requests by minimizing its expected purchasing costs
14 It is worthy to note that the outgoing demand requests depicted in Fig. 4 (a) are received by the respective suppliers only one timestep later. For 

instance, the large demand addressed by mach:hkg to manu:jpn at day 3 enhances manu:jpn ’s incoming demand only at day 4 (see gray dashed line in 

Fig. 3 (a)). 
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Fig. 4. Demand and delivery dynamics in the disaster aftermath. Shown are the demand requests for manufacturing of the machinery producing sector in 

Hong Kong ( mach:hkg ) (a) , the corresponding deliveries (b) , and the anomaly of mach:hkg ’s input storage level for manufacturing goods (c) . Parameters 

as in Fig. 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

according to Eq. (6) . We see from Fig. 4 (a) that, from day 2 onward, manu:jpn needs to source from its inventory but

demands larger quantities from its remaining suppliers than in the baseline state. The success of manu:jpn ’s purchasing

strategy can be deduced from Fig. 4 (b) depicting the deliveries of manu:jpn ’s suppliers as well as the change in mach:hkg ’s

storage content; plotted are the contents of the first sections of the transport chains connecting mach:hkg with its suppli-

ers. The anomaly of that inventory content is shown in Fig. 4 (c). For instance, at day 0, mach:hkg tries to compensate for

the lack of delivery from manu:jpn by increasing its demand to its largest supplier, manu:usa . It even increases its overall

demand to compensate for the losses already perceived in the transport chain. However, since the transport time from usa

to hkg is 26 days, mach:hkg has to wait for the additional delivery and starts to resort to its storage at day 2. Accordingly, it

keeps its demand to its suppliers (especially to those not directly affected) high to refill its inventory. The distribution slowly

returns back to the baseline state after the inventory can successfully be replenished after day 26. Overall, mach:hkg can

keep up its production level (not shown). This indicates that mach:hkg ’s strategy for demand redistribution can effectively

buffer the close-to-outage of its second largest supplier. 

At day 3, directly after the disaster, manu:jpn communicates to its purchasers that it has recovered from the disaster and

regained its full productive capacity. Together with a comparatively low offer price (not shown) this ‘persuades’ mach:hkg

to request even more from manu:jpn than in the baseline state (green shaded areas in Fig. 4 (a) at day 3 compared to

days before day 0). However, since all of manu:jpn ’s purchasers respond in this way, manu:jpn cannot fulfill all demand re-

quests. For instance, mach:hkg receives less than requested at day 4, because it was outbid by other purchasers of manu:jpn

beforehand. This supply-demand mismatch gradually relaxes until the deficit in the transport chain connecting manu:jpn

and mach:hkg vanishes and eventually manu:jpn fulfills the demand request by mach:hkg like in the baseline state. In

consequence, mach:hkg returns to its baseline demand distribution. 
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Fig. 5. Response dynamics of the manufacturing sector in Japan manu:jpn , the manufacturing sector aggregated over the rest of the world manu:row 

(global except manu:jpn ) and the overall global economy without the global manufacturing sector. Parameters as in Fig. 3 . 

 

 

 

 

 

 

 

4.2. Global response dynamics 

In this section, we study the impact that a local production reduction of Japan’s manufacturing sector has on the global

economy. Fig. 5 (a)–(c) depict production anomaly, the anomaly of incoming demand, and storage anomaly for the forced na-

tional sector ( manu:jpn , blue solid line), the manufacturing sector manu:row aggregated over the rest of the world (without

manu:jpn ; gray dashed line), and the global economy without the manufacturing sector (red dash-dotted line), respectively.

For simplicity, we refer to the latter as the global economy in the following. Anomalies are measured as absolute devia-

tions from their respective baseline values (horizontal gray dashed lines). The storage anomaly is given by the sum of the

anomalies of all input storage levels. Fig. 5 (d) depicts the corresponding relative deviations of manu:jpn ’s, manu:row ’s, and
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the global economy’s average selling prices. Again, the disaster strongly reduces manu:jpn ’s ability to produce from day 0 to

day 2 (blue shaded areas). Detail enlargements are depicted in Fig. 5 (e)–(h) focusing on the timesteps, at which the disaster

directly impacts on manu:jpn , as well as the first few days in the disaster aftermath. Here, subsequent timesteps are marked

by alternating light and dark gray shadings. 

From Fig. 5 (a) and (d), we see that, already during the disaster, manu:row extends its production above the baseline

level, revealing that purchasers of manu:jpn shift demand away from the affected producer towards their remaining manu-

facturing suppliers driving them into production extension (see enhanced incoming demand of manu:row in Fig. 5 (b) and

(f)). While the demand is immediately communicated to upstream suppliers, it takes some time until the supplies arrive at

their destination. Thus, manu:row and the rest of the global economy source from their input inventories to extend produc-

tion, which reduces their storage levels below their baseline values as depicted in Fig. 5 (c) and (g). In contrast, the storage

level of the affected national sector manu:jpn increases as it cannot cancel ordered commodities. In the disaster aftermath,

manu:row as well as the rest of the global economy remain in production extension to replenish their inventories, and

manu:jpn is now driven into production extension, too. The timescale of this storage replenishment is either determined by

the timescale at which agents aim to replenish their inventories (cf. Eq. (A.44) ) or the availability of idle capacities in the

economy, depending on which of these constraints is binding. 

From the price timeseries depicted in Fig. 5 (d) and (h), we gather that price effects decrease in magnitude from the

forced national sector manu:jpn , via manu:row , to the global economy. This can be understood by analyzing the time-

series of the average selling prices in Fig. 5 (d) and the corresponding detail enlargement in Fig. 5 (h). Locally, the outage of

manu:jpn is a strong perturbation for manu:jpn ’s direct purchasers; they have to readdress their demand to their remaining

manufacturing suppliers. The commodity manufacturing becomes scarcer, which results in an inflation of its price – demand

surge occurs. However, for the global manufacturing sector, and especially for the global economy, the outage of manu:jpn

is a rather small perturbation. This is why global price increases are smaller than local ones. 

Concerning production anomalies it is worthy to note from the detail enlargement in Fig. 5 (e) that, during the disaster,

the production anomaly of the global economy is larger than that of the forced national sector. This implies that the produc-

tion interruption of manu:jpn causes further disturbances along the supply chains. Since the input inventories permit firms

to sustain the production level of the baseline state for 15 days, these additional production reductions cannot arise from

shortages in input commodities, i.e., supply shortages. In contrast, they are induced by a reduction of the demand manu:jpn

addresses to its suppliers. It can be seen from Fig. 5 (c) and (g) that the input inventories of manu:jpn fill up during the

disaster. Though it cannot operate, the input quantities it has already ordered before the disaster are delivered successively.

As a consequence, manu:jpn reduces its demand requests to avoid an overfilling of its input inventories. Thus, its suppliers

produce less and, in consequence, also have a reduced demand. This results in demand reductions propagating upstream

along the supply chains from purchaser to supplier. As mentioned above, this propagation of disturbances in the opposite

direction of the economic flows is known as backward-ripple effect ( Hallegatte, 2008; 2014 ). 

5. Importance of indirect losses 

In this section, we focus on the global repercussions of a local, disaster-induced production reduction by discussing direct

and indirect production losses as well as loss cascades. Losses are measured in units of USD/day. The direct daily losses are

given by the production reductions of the directly affected firms, { js } j , s , for the time span of the disaster impact, from

day t = t b to day t = t e , 

l D, (t) ≡
∑ 

ml∈{ js } j,s 

[
X 

∗
ml − X 

(t) 
ml 

]
. (9) 

Total daily losses are given by the deviation of global production X (t) ≡ ∑ 

ml X 
(t) 
ml 

from its baseline level X ∗ ≡ ∑ 

ml X 
∗
ml 

and

therefore read 

l T, (t) ≡ X 

∗ − X 

(t) . (10) 

Indirect daily losses are then calculated from the difference of total and direct losses, 

l I, (t) ≡ l T, (t) − l D, (t) . (11) 

Finally, cumulative losses are obtained by subsequently summing daily losses over time, i.e., cumulative direct L D , ( t ) , total

L T , ( t ) , and indirect L I , ( t ) losses read 

L D,T,I, (t) ≡ �t 

(t) ∑ 

t ′ = t b 
l D,T,I, (t ′ ) . (12) 

Loss cascades occur when direct production losses cannot be buffered by inventories. 1st-order cascades of indirect losses

arise when the direct purchasers of the forced national sector have to interrupt production because their input inventories

are depleted, and they consequently cannot buffer its outage any longer. More generally, loss cascades of n th-order arise

when the forcing is long enough to deplete the input inventories of firms linked to the forced national sector by n − 1

business partners. These loss cascades were discussed in detail in Bierkandt et al. (2014) describing the first version of
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the acclimate model, which did not take the demand side of the economy into account. For several reasons, the situation

becomes more complex if the demand side is considered as discussed in detail in Wenz et al. (2014) . First, in addition

to supply shortages, demand shortages may occur leading to backward ripple effects as discussed in Section 4.2 . Second,

economic agents can readdress their demand to non-affected suppliers. Since, here, the unaffected suppliers have the ability

to extend production – the economy has idle capacities – indirect losses can be mitigated effectively. This reduces the risk

of supply chain interruptions and therefore increases the economy’s resilience. Third, in this model version, firms can reduce

or stop production when the average purchasers’ price is too low thereby enhancing indirect losses. 

At first, we discuss loss propagation in the global supply network in Section 5.1 , before studying the dependence of

indirect losses upon disaster duration and size in Section 5.2 . 

5.1. Propagation of direct and indirect losses 

As in Section 4 , we choose a very stylized disaster affecting only one node in the economic network to illustrate the

model performance. Again, the production level of manu:jpn is forced close to zero, but, here, a considerably longer disaster

duration of 20 days is chosen ( λ(t) 
manu:jpn 

= 0 . 001 for t ∈ [0, 19]). It is now long enough to potentially deplete input inventories

of some of manu:jpn ’s direct purchasers since these last only for 15 days at baseline production level. As a consequence,

loss cascades occur from day 15 onward. 

Fig. 6 (a) shows the temporal evolution of daily total losses (gray solid line and circles), and direct and indirect losses are

indicated by blue and red shadings, respectively. Alternating light and dark shadings highlight subsequent timesteps (days),

and the onset of 1st-order loss cascades is denoted by a vertical black dashed line. Indirect daily losses increase during

the first four days of the disaster, then they slightly decrease and almost saturate. Due to the appearance of 1st-order loss

cascades at day 15, indirect losses increase significantly until the direct forcing ceases. In the disaster aftermath, indirect

losses, and total losses accordingly, become negative indicating that idle capacities are activated to restock inventories. At

day 40 losses peak again revealing that supply shortages cannot be buffered completely by the direct purchasers of the

forced national sector. Instead, they continue to propagate along the supply chains and peak at bottlenecks. In consequence,

the shape of the loss peaks strongly depends on the topology of the underlying trade network and the corresponding trans-

port delays. In summary, it is important to note from Fig. 6 (a) that the temporal evolution of indirect and therefore of total

losses is strongly nonlinear. Thus, we may conclude that, for a precise loss assessment, it is advantageous to use a model

describing the economic impacts on the disaster’s timescale. 

For a better understanding of the relation between direct and indirect losses, Fig. 6 (b) shows indirect cumulative losses in

terms of direct cumulative losses. Each data-point depicts direct versus indirect losses up to a certain disaster duration (see

upper x -axis). From day 15 onward (gray shaded area), the first loss cascades occur increasing the slopes of the curves for

cumulative losses. We can derive two main messages from Fig. 6 (b). First, it reveals that, for non-marginal perturbations of

the economy, indirect losses can be of the same order of magnitude as cumulative direct disaster losses, and should therefore

be comprised in a comprehensive disaster assessment. Second, inventory holding has a mitigating effect on indirect losses.

This is why in the gray shaded area, where inventories are depleted, indirect losses are strongly enhanced. 

These two main messages are also underlined by Fig. 6 (c) depicting the ratio of total to direct losses, which is plotted

as a function of direct cumulative losses and disaster duration. This ratio, known as economic amplification ratio (EAR), was

introduced by Hallegatte et al. (2007) representing the factor by which total losses outstrip direct ones. Thus, the EAR is a

measure for the importance of indirect losses with respect to direct ones. An EAR significantly larger than unity indicates

that direct losses are insufficient to estimate the overall consequences of a disaster ( Hallegatte, 2008 ). It increases rapidly

within the first four days of the disaster and then saturates at a value of about 1.6, before increasing again from day 15

onward – in the time-frame where loss cascades occur. This confirms the conclusion of Hallegatte et al. (2007) that indirect

losses are important to assess the overall losses of large scale disasters. 

5.2. Dependence of indirect losses upon disaster duration and disaster size 

In this section, the dependence of cascading losses on disaster duration and disaster size is discussed. To ensure compa-

rability with the previous sections, we again consider disasters affecting only the Japanese manufacturing sector ( manu:jpn ).

Fig. 6 (a) depicts the timeseries of total losses for close-to-outages ( λ(t) 
manu:jpn 

= 0 . 001 like in the previous sections) of

manu:jpn for different durations. In Fig. 6 (b) the disaster duration is fixed to 20 days and the disaster size is varied instead,

ranging from small to large reductions of productive capacity. To permit better comparability of the system’s responses, time

is normalized to disaster duration and total losses are normalized to direct ones. This normalization permits us to depict

direct losses by gray shaded rectangles in Fig. 7 (a) and (b). 

By comparing, losses arising from short disasters with those arising from longer ones in Fig. 6 (a), we note that with in-

creasing disaster duration the economy is driven further in production extension. Also, the regime of production extension

is entered sooner relative to disaster duration. This is because storage deficits increase with disaster duration and agents are

therefore willing to increase their reservation prices to replenish their inventories, driving their suppliers further into pro-

duction extension. Moreover, as already discussed in Section 5.1 , we see that large indirect losses occur if inventories of the

direct purchaser of manu:jpn are depleted (disaster duration larger than 15 days) and 1st-order loss cascades are triggered.

Further, for longer disasters higher-order effects occur well after the disasters have ceased, indicating that supply shortages
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Fig. 6. Losses evoked by a strong production reduction of the Japanese manufacturing sector from days 0 to 19. Dark shaded areas highlight disaster 

durations for which loss cascades occur. (a) : Timeseries of daily production losses. (b) : Indirect versus direct cumulative production losses. (c) : Ratio of 

total to direct production loss (economic amplification ratio (EAR)). Parameters: λ(t) 
manu:jpn 

= 0 . 001 for t ∈ [0, 19]; others as in Table B.1 . 

 

 

 

 

 

 

 

 

 

 

 

 

propagate further downstream in the supply network. This is very pronounced in the timeseries for disaster durations equal

to and larger than 10 days. It is worthy to note that these higher-order effects arise already for disasters not long enough to

trigger 1st-order loss cascades as seen from the disaster of 10 days duration. Thus, we conclude that already relatively small

supply disturbance can accumulate at bottlenecks further downstream in the supply network and cause supply disruptions. 

Eventually, from Fig. 6 (b) depicting the dependence of total losses on the size of direct losses, we note that for small

disasters, which are not large enough to trigger 1st-order cascades, towards the end of the direct forcing, total losses can

even become somewhat smaller than direct losses (see loss timeseries for remaining capacities ranging between 80% to 30%).

This reveals that even relatively large capacity reductions can be mitigated efficiently. The local cost minimization enables

agents to efficiently activate idle capacities of their suppliers. For larger disasters, however, this loss mitigation mechanism

reaches its limit, and loss cascades occur. Overall, Fig. 7 highlights the strongly nonlinear relationship between the size

and the duration of direct losses on the one hand, and the size as well as the temporal evolution of total losses on the

other. To keep the analysis concise, we here concentrate on a very aggregate view of the whole economy. With the setup

of the acclimate model, however, we can also analyze regional differences in loss distribution to be addressed in subsequent

studies. 
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Fig. 7. Timeseries of total loss evoked by production reductions of the Japanese manufacturing sector. Time and total losses are normalized with respect 

to disaster length and direct losses, respectively. The gray rectangle denotes the direct losses. (a) : Total losses for close-to-outages of the Japanese man- 

ufacturing sector ( λ(t) 
manu:jpn 

= 0 . 001 for t ∈ [0, 19]) for different durations. (b) : Total losses for disasters of different sizes, i.e., different values of λ(t) 
manu:jpn 

; 

disaster duration is fixed to 20 days. Parameters as in Table B.1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Discussion 

With the acclimate modeling framework, we aimed to tackle some important limitations of other modeling approaches

prevalently used for the assessment of indirect disaster effects. In particular we tried to find middle ground between I-O

and CGE modeling frameworks with their often opposing assumptions and foci. In the following, we discuss our findings

highlighting differences and similarities to these two model types as well as to other ABM approaches. 

Spatial and sectoral resolution. Being based on I-O tables, acclimate has been designed to account for a large number of het-

erogeneous economic agents in order to reflect the economic inter-dependencies in high detail. As in I-O and CGE models,

its spatial and sectoral resolution is, in principle, only limited by data availability. Modeling the interplay of multiple het-

erogeneous agents and considering the network structure of their interlinkages allows to describe complex effects such as

cascading losses and lock-in situations ( Acemoglu et al., 2012; 2015 ). Yet, considering national sectors, this study still lacks

a realistic representation of the firm size distribution. For a local economy, this was done by Henriet et al. (2012) revealing

that indirect losses strongly depend on the topology of the firm network, and an aggregate perspective – as assumed in

this study – still tends to underestimate losses. However, often in disaster impact studies only the local economy of the

affected region is modeled in detail. Since the supply chain network is globally integrated ( Lenzen et al., 2013 ), and value

added chains span the globe ( Boehm et al., 2015 ), this limits the potential of these studies to describe the impacts that local

disasters have on the global economy. 

Flexibility of the economic system. The amount of indirect losses observed in an economic model is governed by the flexibility

of its production system. This is why acclimate aims to find a reasonable balance between the fixed production system in

I-O models and the highly flexible one in CGE approaches. We decided to incorporate microfoundations for the agents’

behavior. In that, agents have the possibility to respond to their current situation, up-stream by demand re-distribution

(cf. Fig. 4 ), and down-stream by adaptation of their production levels (cf. Fig. 5 (a) and (e)). The practical importance of

these adaptation mechanisms has been highlighted in a study by van der Veen and Logtmeijer (2005) revealing that an

economy’s vulnerability with respect to supply interruptions is strongly reduced when demand re-addressing is possible and

idle capacities are present. Further, in acclimate , supply disruptions are mitigated by the economic agents’ input inventories

acting as buffer stocks. At the same time, substitution among different input commodities as in CGE models is not possible.

As discussed in Section 4.2 , price inflation in the disaster aftermath activates prior idle production capacities in the eco-

nomic system enabling the agents to restock their inventories. The extent to which warehousing can enhance the resilience

of the global economy to local production disruptions was revealed by our analysis of the economic amplification ratio in

Section 5.1 . We found that the baseline inventory level determines the disaster size that can be absorbed by the economic

system. If this threshold is exceeded, indirect losses attain the same order of magnitude as direct losses. These findings are

in line with earlier studies by Hallegatte (2014) and MacKenzie et al. (2012) indicating that the interplay of both, inventories

and idle capacities, constitutes a powerful strategy for disaster impact mitigation. However, since stock-holding is costly, the

chosen inventory level is always a trade-off between economic robustness against production interruptions and efficiency in

normal times ( Henriet et al., 2012 ). 

Summing up, the production system in acclimate is less rigid than the one of I-O models, but it remains, at the same

time, less flexible than the one of CGE models. Our modeling approach is therefore suited best for the timescale of months

following a disaster – too short for the economic system to restructure and to substitute scarce commodities, but long

enough to adjust its productive capacities. On longer timescales of years, accounting for the restructuring of the economic
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network in the aftermath of a disaster appears to be important in order to realistically describe the evolution of firm size

distributions ( Gualdi and Mandel, 2016 ) or disaster impacts on long-term growth ( Mandel, 2012 ). 

Temporal resolution. I-O and CGE modeling frameworks either statically compare pre- and post-disaster states of the econ-

omy, or, in the case of dynamic CGEs, have a coarse temporal resolution of 5 to 10 years ( Okuyama, 2007 ). In consequence,

scarcity situations arising from supply chain disruptions in the immediate disaster aftermath cannot be temporally resolved,

rendering a comprehensive loss assessment difficult. This is why, in acclimate , we opted for a high temporal resolution to

study the disaster impacts on the same timescale as the shock occurs, which is in the order of days to months. This per-

mitted us to resolve the cascading of indirect losses and to dynamically detect bottlenecks of the supply network that are

responsible for large indirect losses (cf. Fig. 6 ). Further, acclimate enabled us to systematically study the dependence of

cascading losses upon disaster duration and disaster size (cf. Figs. 7 ). 

Since real world economic actors have to cope with uncertainties on future events ( Babiker et al., 2009 ), the myopic

agents in acclimate provide a more realistic setting for disaster impact analyses than dynamic CGEs with inter-temporal

optimization assuming perfect foresight of all economic actors. However, the latter are more favorable to determine optimal

policies in the long-run ( Chen et al., 2016 ). 

Disequilibrium dynamics. In comparison to I-O models, CGE models have the advantage that they can account for price

effects. The representation of prices opens up the possibility to base the agents’ decision rationale on clear and simple

optimization principles. 

There is one further major difference between acclimate and CGE models worthy to discuss. Since the agents in accli-

mate optimize independently, there is no need to imply a market clearing equilibrium in each timestep as it is done in CGE

approaches; in the short-term, disequilibrium situations with local supply-demand mismatches may arise (cf. Fig. 4 ). In dis-

equilibrium, reservation prices of different purchasers sourcing from the same supplier may differ according to the scarcity

each of the purchasers perceives. We find that these differences decrease over time, when the system decays back to the

market clearing equilibrium. 

7. Conclusions 

In this paper, we presented the model acclimate , which has been designed to assess the economic impacts of unantic-

ipated production disruptions, caused, for instance, by extreme weather events. Since a comprehensive disaster analysis is

beyond the scope of this model description paper, we studied the impact of stylized disasters of different sizes affecting the

Japanese manufacturing sector. In our analysis we adopted a global perspective and showed that, in the supply network, dis-

ruptions can spread from one national sector to the next causing cascading indirect losses. Over the last decades, firms have

increasingly eliminated cost inefficiencies by reducing their warehousing and by striving for a smaller supplier base. Our

analyses suggest that these trends may have to be reversed in the future if meteorological extreme events are to intensify

as projected in a warming world. We find warehousing to be a central adaptation option to reduce indirect losses; a higher

redundancy in the supplier base may help to avoid supply shortages. However, more research is needed to provide a sound

understanding of the global supply chain vulnerability in order to enable individual firms to estimate their supply chain

risk, and to provide guidelines for risk reduction. Our preliminary analysis suggests that it is crucial to not only focus on

first-tier suppliers, but to analyze the supply chain as a whole. Enhancing the resilience of the global supply network can-

not be achieved by single countries, but requires an international effort to facilitate the development and implementation

of international standards, programs and guidelines to render supply chains climate-proof. 
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Appendix A. Detailed model description 

This Appendix provides a detailed technical description of the acclimate modeling framework. It is written as a compre-

hensive stand-alone description. First, we introduce the basic model setup in A.1 . Then, we discuss firms and consumers in

A.2 and A.3 , respectively, before explaining the first-order condition for a locally stable baseline equilibrium in A.4 . 
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A1. Basic model setup 

We consider an economy consisting of monopolistic competitive firms and regional consumers. These economic agents

are interlinked by trade flows forming a complex network of supply chains as sketched in Fig. 1 . The nodes of this trade

network are the economic agents and their trade relations are represented by weighted, directed links. In each region we

consider two types of agents: firms , each representing one of the different economic sectors located in the region, as well as

a consumer representing the region’s final demand. The latter accounts for household consumption, governmental spending,

and private investments. We label each economic agent by an index-pair ir , where the first index i denotes a sector in the

set of all sectors I and the second index r specifies a region in the set of all regions R . 

In the absence of external perturbations, the economy is in a stable monopolistically competitive equilibrium state, the

baseline state . Quantities in this state are time constant and are denoted by a superscript ( ·) ∗. This baseline state can be

disturbed by exogenous local disasters, which we define as idiosyncratic production shocks. They cannot be anticipated

by the agents. When a disaster strikes, a disequilibrium state of the economy arises, and, in consequence, production and

consumption of the economic agents, and therefore the economic flows, may change in time. In general, time-dependent

quantities are denoted by a superscript ( ·) ( t ) marking the timestep t ∈ N 0 to which they belong. 

The baseline trade flows connecting these agents are derived from multi-regional input-output (MRIO) tables. These are

usually given in units of USD/year and have, thus, to be divided by the number of timesteps per year to obtain the set of

baseline flows 

{ Z ∗i ′ r ′ → j ′ s ′ } i ′ ,r ′ , j ′ ,s ′ , (A.1)

where Z ∗
ir→ js 

denotes the monetary flow from firm ir to economic agent js . In principle, the level of regional and sectoral

detail of the modeled economy is limited by data availability only. We aggregate these to derive the baseline production

level of firm ir , 

X 

∗
i ′ r ′ ≡

∑ 

i ′ r ′ 
Z ∗i ′ r ′ → js (A.2)

and the baseline consumption level of consumer js , 

C ∗i → js ≡
∑ 

r ′ 
Z ∗ir ′ → js . (A.3)

We assume a demand-driven economy, which implies that economic agents first decide what demand they address to

each of their suppliers and what their reservation prices are. Only afterwards, in the next timestep, their suppliers can decide

to which extent they are willing to fulfill the received demand. More precisely, a demand request a purchaser js addresses

to a supplier ir is a tuple 
(
D 

(t−1) 
ir← js 

, n (t−1) 
ir← js 

)
of demanded quantity D 

(t−1) 
ir← js 

and corresponding dimensionless reservation price 

n 

(t−1) 
ir← js 

≡
P (t−1) 

ir← js 

P ∗
, (A.4)

which is obtained by normalizing the offered price P (t−1) 
ir← js 

with respect to the baseline price P ∗. The monetary value of such

a tuple is given by the product of the demanded quantity and its dimensionless price 15 , 

v (D 

(t−1) 
ir← js 

) ≡ n 

(t−1) 
ir← js 

D 

(t−1) 
ir← js 

. 

Note that, in the following, we denote values of flows and values of stocks by v (·) and V ( ·), respectively. Supplier ir responds

to js ’s demand requests by sending a flow Z (t) 
ir→ js 

at price n (t−1) 
ir← js 

in the next timestep ( t ) (see Fig. 1 ). It cannot negotiate the

price, but only decides to which extent it is willing to fulfill the demand request at that price. Since we postulate a demand-

driven economy, supply flows must not exceed demand flows. The model is constructed such that the baseline state of the

economy is a monopolistically competitive market clearing equilibrium, where supply flows equal demand flows, 

Z ∗ir→ js = D 

∗
ir← js ∀ r, i. (A.5)

Besides flows, the model accounts for two types of commodity stocks acting as buffers under supply shocks: the rolling

inventory (see ‘transport chain’ in Fig. 1 ) and inventories for the agents’ input commodities (blue boxes in Fig. 1 ) to be

discussed in the following. 

A1.1. Rolling inventories 

Transport of commodities from producers to purchasers can be time consuming; the commodities ‘en route’ form the

rolling inventory. Let d ir→ js ∈ N denote the number of timesteps needed for the shipping of commodity i form producer ir

to purchaser js . Then d ir→ js �t is the time needed for that transport. We conceptualize the commodities on the way as a
15 In the baseline state, the value of each demand request equals the demanded quantity, i.e., v (D ∗
ir← js 

) = D ∗
ir← js 

, since price normalization in Eq. (A.4) im- 

plies n ∗
ir← js 

= 1 ∀ i, r, j, s . 
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transport chain with d ir → js transport sections 16 (see Fig. 1 ). Then, for d ∈ { 0 , . . . , d ir→ js − 1 } the amount of commodity i that

is, at time ( t ), contained in section d of the transport chain from ir to js is given by �tZ (t−d) 
ir→ js 

. Summing the commodities in

the transport boxes along the transport chain then yields the rolling inventory for this business connection, which may be

written as 

T (t) 
ir→ js 

≡ �t 

d ir→ js −1 ∑ 

d ′ =0 

Z (t−d ′ ) 
ir→ js 

. (A.6) 

Further, the total rolling inventory of js for commodity i is obtained by adding up the rolling inventories of js ’s suppliers for

commodity i , yielding 

T (t) 
i → js 

≡
∑ 

r ′ 
T (t) 

ir ′ → js 
. (A.7) 

A1.2. Input inventories 

Besides the rolling inventory, the economic agents employ input inventories for the commodities that they need for

production or consumption to buffer supply failures. Let S (t) 
i → js 

denote the content of agent js ’s inventory (or ‘storage’) for

input commodity i . It varies with the difference of the input flow I (t−1) 
i → js 

and the use U 

(t−1) 
i → js 

of commodity i in the previous

timestep. 

The input flow I (t) 
i → js 

is calculated by summing up the flows that arrive in the current timestep, 

I (t) 
i → js 

≡
∑ 

r ′ 
Z 

(t−(d ir ′ → js −1)) 

ir ′ → js 
, (A.8) 

and the value of I (t) 
i → js 

is given by 

v (I (t) 
i → js 

) ≡
∑ 

r ′ 
v 
(

Z 
(t−(d ir ′ → js −1)) 

ir ′ → js 

)
= 

∑ 

r ′ 
n 

(t−d ir ′ → js ) 

ir ′ ← js 
Z 

(t−(d ir ′ → js −1)) 

ir ′ → js 
. 

In the baseline state, the input flow I ∗
i → js 

of each commodity i equals its use in the production process U 

∗
i → js 

, i.e., we have 

I ∗i → js ≡ U 

∗
i → js ≡

∑ 

r ′ 
Z ∗ir ′ → js . (A.9) 

The storage content in the baseline state is assumed to be a multiple of the baseline input flow I ∗
i → js 

, 

S ∗i → js ≡ �i I 
∗
i → js . (A.10) 

From Eq. (A.12) , we note that, since I ∗
i → js 

= U 

∗
i → js 

holds true in the baseline state, the agents only have to refer to their input

inventories if supply shortages occur in the aftermath of a disaster. The factor � i describes the number of days that js can

keep up its baseline production level if the supply with input commodity i is interrupted. 

Further, baseline storage content may be exceeded at most by a factor ω i . This implies that the maximum storage content

may be written as 

S max 
i → js ≡ ω i S 

∗
i → js . (A.11) 

Additionally, we employ the factor μ(t) 
i → js 

∈ [0 , 1] describing the impact of a perturbation reducing the maximum storage

capacity. In absence of any forcing, we have μ(t) 
i → js 

= μ∗
i → js 

= 1 . The total inventory is then capped by the maximum capacity

μ(t) 
i → js 

S max 
i → js 

and its content at time ( t ) is given as 

S (t) 
i → js 

≡ min 

[ 
�t 

(
I (t−1) 
i → js 

− U 

(t−1) 
i → js 

)
+ S (t−1) 

i → js 
, μ(t) 

i → js 
S max 

i → js 

] 
. (A.12) 

We can rewrite this equation as 

S (t) 
i → js 

≡ �t 
[
r (t) 

i → js 
I (t−1) 
i → js 

− U 

(t−1) 
i → js 

]
+ S (t−1) 

i → js 
, 

where r (t) 
i → js 

∈ [0 , 1] describes the share of the last input flow I (t−1) 
i → js 

that could be stored given storage limitations, i.e., 

r (t) 
i → js 

≡

⎧ ⎨ 

⎩ 

1 

I (t−1) 
i → js 

min 

[ 
μ(t) 

i → js 
S max 

i → js − S (t−1) 
i → js 

+ U 

(t−1) 
i → js 

, I (t−1) 
i → js 

] 
if I (t) 

i → js 
� = 0 , 

0 else. 
16 This description also permits us to study transport disturbances by damaged or destroyed infrastructure in later model versions. 
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Then, the value V (S (t) 
i → js 

) of the storage content S (t) 
i → js 

at time ( t ) can be calculated as 

V (S (t) 
i → js 

) ≡ �t 
[
r (t) 

i → js 
v (I (t−1) 

i → js 
) − v (U 

(t−1) 
i → js 

) 
]

+ V (S (t−1) 
i → js 

) 

= �t 

t−1 ∑ 

t ′ =1 

[ 
r (t) 

i → js 
v (I (t ′ −1) 

i → js 
) − v (U 

(t ′ −1) 
i → js 

) 
] 

+ S ∗i → js , 

where we have employed that in the baseline state V (S ∗
i → js 

) = S ∗
i → js 

∀ i, j, s holds true. 

This permits us to calculate the costs to which js can use input good i . These are given by the weighted average of the

unit costs of products arriving in the current timestep v (I (t) 
i → js 

) /I (t) 
i → js 

and the unit costs of commodities stored in the input

inventory at the beginning of the timestep V (S (t−1) 
i → js 

) /S (t−1) 
i → js 

. Thus, we may calculate these unit costs as 

n̄ 

l, (t) 
i → js 

≡
r (t) 

i → js 
v (I (t) 

i → js 
)�t + V (S (t−1) 

i → js 
) 

r (t) 
i → js 

I (t) 
i → js 

�t + S (t−1) 
i → js 

, (A.13)

This equation has two important implications. First, since v (I (t) 
i → js 

) as well as V (S (t−1) 
i → js 

) depend on the purchasing price of

commodity i in the last timestep, the input inventory acts also as a buffer for the unit costs n̄ l, (t) 
i → js 

. Even if js has to pay a

high price for the purchase of commodity i in one timestep, unit costs n̄ l, (t) 
i → js 

will, in general, not increase abruptly. Second,

unit costs n̄ l, (t) 
i → js 

are calculated only on the basis of commodities that are actually available for firm js , and commodities that

are still in the transport chain are not considered. It is worthy to note that, in the baseline state, n̄ l, ∗
i → js 

= 1 ∀ i, j, s holds true.

Further, the value of the use U 

(t) 
i → js 

is then given by 

v (U 

(t) 
i → js 

) ≡ n̄ 

l, (t) 
i → js 

U 

(t) 
i → js 

. 

Finally, the possible use of commodity i , i.e., the maximum amount of i that the agent can use for production or con-

sumption, in the current timestep is obtained from I (t) 
i → js 

and S (t) 
i → js 

as 

ˆ U 

(t) 
i → js 

≡ I (t) 
i → js 

+ 

S (t) 
i → js 

�t 
. (A.14)

A2. Firms 

We model profit maximizing firms under monopolistic competition. Thus, in each timestep, firms decide upon their

production level by maximizing profit while respecting constraints imposed by the limited availability of input commodities

and their limited productive capacity. For computational simplicity, each timestep is divided into three subsequent decision

points or sub-steps. Profit optimization is assured by applying local optimization principles in each of them. In each sub-step,

firms exchange information with their business partners, which they need for making decisions in the following sub-step.

Fig. A.8 depicts the mutual dependencies of variables within one timestep. The three sub-steps are marked by different

shadings. 

First, in the production step (blue shading in Fig. A.8 ), firms decide on their production level by maximizing profit.

Second, in the expectation step (green shading in Fig. A.8 ), firms determine the production level that they expect to be

profit-maximizing in the next timestep by maximizing expected profit, and third, in the purchasing step (red shading in

Fig. A.8 ), firms decide how to distribute their own upstream demand and what their reservation prices are by minimizing

purchasing costs. Production, expectation, and purchasing steps will be discussed in A .2.1, A .2.2 , and A .2.3 , respectively. To

allege notation, in the following, time indices ( t )belonging to quantities of the current timestep ( t ) are suppressed along

with time indices (t − 1) belonging to demand requests of the previous timestep. 

A2.1. Production step 

This section provides details of the production step. At first, we discuss how a firm js determines its productive capacity.

Then we describe the firm’s revenue curve R js and its cost curve C js , before deriving an analytic formula for js ’s profit-

maximizing production level X js (cf. Eq. (3) ). 

Productive capacity. Similar to I-O models, we assume that the production function is linear with respect to commodity

inputs. All commodity inputs are perfect complements and therefore no substitution is possible among them. Thus, in the

case of supply limitation, the input commodity i with the lowest quantity available for production, ˆ U i → js (see Eq. (A.14) for

its definition), determines the production of firm js . Reducing this quantity by a certain factor then reduces the productive

capacity ˆ X js by the same factor (constant returns to scale). Further, we assume that a firm js has the possibility to extend its

production above the baseline level X ∗
js 

by a factor β j ≥ 1, which may vary among sectors. Moreover, js ’s production level can
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Fig. A.8. Flow diagram for a firm depicting the mutual dependencies of variables within one timestep. Black arrows mark dependencies between variables 

of the same agents. Orange ones depict dependencies on other agent’s variables or those of the connection between them. Variables and dependencies that 

are repeated for other agents or timesteps are grayed out. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

 

 

 

 

 

 

 

 

 

be reduced by an exogenous factor λjs ∈ [0, 1] representing the disaster’s forcing; in the baseline state, no forcing is present,

i.e., λ∗
js 

= 1 . In consequence, productive capacity 

ˆ X js ≡ min 

[
min 

i ′ 

[
ˆ U i ′ → js 

U 

∗
i ′ → js 

]
, λ js β j 

]
X 

∗
js (A.15) 

is constrained by js ’s maximum production ratio λjs β j and by the minimum relative availability of its input commodities i .

The latter is the lowest ratio of the available quantity ˆ U i → js and the quantity used in the baseline state U 

∗
i → js 

(see Eq. (A.9) ).

Prices of input commodities do not depend on production level, but vary with purchasing costs. 

The technology of a firm is given by the technology coefficients. These describe how many units of input commodity i a

firm js needs to produce one unit of output, 

a i → js ≡
U i → js 

X js 

. (A.16) 

Thus, the technology coefficients are a measure for the efficiency of a firm. Since we are interested in the short-term eco-

nomic development in the first months following a disaster, no technological development is taken into account, and we

assume the technology coefficients to be constant, i.e., we have a (t) 
i → js 

= a ∗
i → js 

∀ t . 

Revenue curve. The revenue curve of a firm js is constructed from the demand requests { (D js ← k ′ u ′ , n js ← k ′ u ′ ) } k ′ u ′ it has re-

ceived from its purchasers { k ′ u ′ } k ′ u ′ at the beginning of the production sub-step (cf. Fig. A.8 and Section 3.1.1 ). Away from

equilibrium, different purchasers of js have, in general, sent different reservation prices. For bookkeeping purposes, it is thus

useful to arrange the demand requests in an ordered set 

J js ≡ ({ k ′ u 

′ } k ′ u ′ , > ) , (A.17) 
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where the relation > orders the demand requests {( D js ← k ′ u ′ , n js ← k ′ u ′ )} k ′ u ′ with respect to their reservation prices, i.e.,

( ku ) 1 > ( ku ) 2 means that n js ← (ku ) 1 
> n js ← (ku ) 2 

. Then, js ’s revenue curve may be expressed as 

R js ( ̆X js ) ≡

⎧ ⎨ 

⎩ 

∑ 

b ′ ≤l max 
js 

v (D js ← (ku ) b ′ ) + n js ← (ku ) l max 
js 

+1 

(
X̆ js −

∑ 

b ′ ≤l max 
js 

D js ← (ku ) b ′ 

)
for X̆ js ≤ D js ← 

, 

R js (D js ← 

) for X̆ js > D js ← 

, 

(A.18)

where the index 

l max 
js ≡ max 

l ′ ∈ J js 

{ ∑ 

b ′ ≤l ′ 
D js ← (ku ) b ′ ≤ X̆ js 

} 

(A.19)

denotes the largest element of the ordered set J js for which the accumulated demand of the elements b ≤ l max is smaller

than or equal to a given production level X̆ js , and 

D js ← 

≡
∑ 

k ′ u ′ 
D js ← k ′ u ′ (A.20)

denotes total incoming demand. 

Cost curve. The production costs of a firm js consists of (i) linear commodity costs C l 
js 

and (ii) (other) variable production

costs C v 
js 

. Fixed costs are neglected for simplicity, which permits us to write the cost curve as 

C js ( ̆X js ) ≡ C l js ( ̆X js ) + C v js ( ̆X js ) . 

These contributions are discussed separately in the following. 

Commodity costs. Since we assume the production function to be linear with respect to commodity inputs, commodity

costs are given by the sum of the values { v ( ̆U i → js ) } i of the commodity inputs { ̆U i → js } i needed for the production of X̆ js and

therefore read 

C l js ( ̆X js ) ≡
∑ 

i ′ 
v ( ̆U i ′ → js ) = 

∑ 

i ′ 
v (a ∗i ′ → js X̆ js ) = n̄ 

l 
js X̆ js . (A.21)

Here, we have introduced the unit commodity costs for js , which are given by sum of the average unit costs of the input

commodities weighted by the technology coefficients reading 

n̄ 

l 
js ≡

∑ 

i ′ 
n̄ 

l 
i ′ → js a 

∗
i ′ → js , 

where n̄ l 
i → js 

denote the average unit costs for input commodity i (see Eq. (A.13) ). Since, in the baseline state, we have

n̄ l, ∗
i → js 

= 1 ∀ i, the baseline commodity costs equal the sum of the technology coefficients 

n̄ 

l, ∗
js 

≡
∑ 

i ′ 
a ∗i ′ → js ≤ 1 . 

Variable production costs. Variable production costs comprise costs for labor, capital depreciation, and variable overhead. We

assume marginal variable production costs to be constant up to the baseline production level and to increase linearly above.

Further, we assume that the increase of marginal costs in production extension does not depend on the firm’s size, but

only on the ratio X̆ js /λ js X 
∗
js 

of its current production level X̆ js with respect to the (forced) baseline production level λ js X 
∗
js 

.

This assumption is important for demand redistribution, because it guarantees that suppliers are driven uniformly into

production extension. Assuming variable production costs to be at least one time continuously differentiable then permits

to write them as 

C v js ( ̆X js ) ≡

⎧ ⎪ ⎨ 

⎪ ⎩ 

n 

v 
js 

X̆ js for X̆ js ∈ [0 , λ js X 

∗
js 

] , 

n 

v 
js 

X̆ js + 

�n 

in , v ,> 
j 

λ js X 

∗
js 

(
X̆ js − λ js X 

∗
js 

)2 
for X̆ js ∈ ] λ js X 

∗
js 
, λ js β j X 

∗
js 

] , 
(A.22)

where n v 
js 

denotes the unit variable production costs below production extension, and �n in , v ,> 
j 

is the coefficient for the cost

increase in production extension. While the former may vary from firm to firm the later is assumed to vary among sectors

only. 

Whereas commodity costs in the baseline state can be directly derived from the flows comprised in the MRIO-tables,

variable production costs usually cannot. This is the reason why we calculate these costs from the value added in the
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baseline state. The latter may be written as the difference of revenue and commodity costs, on the one hand, and as the

sum of variable production costs and profit, on the other hand, 

VA js ( ̆X js ) ≡ R js ( ̆X js ) − C l js ( ̆X js ) = C v js ( ̆X js ) + � js ( ̆X js ) . (A.23)

By inserting Eqs. (A .18) , (A .21) , and (A .22) in the above equation and dividing by the production level X̆ js , we obtain an

expression for the value added per unit produced 

VA js ( ̆X js ) 

X̆ js 

= n̄ js − n̄ 

l 
js = n 

v 
js + π js , (A.24) 

where π js denotes the firm’s monopolistic markup. In the baseline state, the average unit price equals unity n̄ ∗
js 

= 1 , and,

thus, Eq. (A.24) simplifies to 

VA 

∗
js 

X 

∗
js 

= 1 − n̄ 

l, ∗
js 

= n 

v , ∗
js 

+ π ∗
js , (A.25) 

where VA 

∗
js ≡ VA js (X ∗

js 
) , n v , ∗

js 
≥ 0 , and π ∗

js 
≥ 0 denote the baseline values of value added, variable production costs per unit

produced, and monopolistic markup, respectively. Note, that since n v , ∗
js 

and π ∗
js 

are both non-negative, the right-hand-side

of the last equality in Eq. (A.25) is always positive. This implies that only firms with positive baseline value added are

considered, and, for instance, heavily subsidized sectors with negative value added are removed from the network. However,

in practice this constraint affects only very few firms. 

Next, we discuss how to determine the variable production costs n v 
js 

. For that, we first employ Eq. (A.25) to calculate

the value added per unit produced in the baseline state VA 

∗
js /X ∗

js 
from the MRIO-tables, which determines the value of

n v , ∗
js 

+ π ∗
js 

. Setting π ∗
js 

exogenously as detailed below and additionally assuming that n v 
js 

does not change in disequilibrium

permits to write the latter as 

n 

v 
js = n 

v , ∗
js 

≡ VA 

∗
js 

X 

∗
js 

− π ∗
js . (A.26) 

To calculate π ∗
js 
, we introduce the monopolistic markup in the baseline state π ∗

j 
as an exogenous parameter that may differ

among sectors. Depending on the value of π ∗
j 
, this monopolistic markup may not be achievable for all firms of sector j ,

because for the less efficient ones the difference of baseline product price, n̄ ∗
j 
= 1 , and unit commodity costs n̄ l, ∗

js 
may be

smaller than π ∗
j 
. Therefore, we see from Eq. (A.25) that 

π ∗
js ≡ min 

[
π ∗

j , 1 − n̄ 

l, ∗
js 

]
(A.27) 

is a meaningful definition of the baseline monopolistic markup that guarantees π ∗
js 

to be positive. Note that away from the

baseline state, the profit realized, and, thus, the monopolistic markup depend on prices. In consequence, π js can differ from

its baseline value π ∗
js 

. 

With the above assumption for commodity and variable production costs, we obtain the following cost curve 

C js ( ̆X js ) ≡

⎧ ⎪ ⎨ 

⎪ ⎩ 

n 

c 
js 

X̆ js for X̆ js ∈ [0 , λ js X 

∗
js 

] , 

n 

c 
js 

X̆ js + 

�n 

in , v ,> 
j 

λ js X 

∗
js 

(
X̆ js − λ js X 

∗
js 

)2 
for X̆ js ∈ ] λ js X 

∗
js 
, λ js β j X 

∗
js 

] , 
(A.28) 

which is depicted by blue solid lines in the lower panels of Fig. 2 . Below production extension, it increases linearly with

production level X̆ js , and its slope is given by the unit production costs 

n 

c 
js ≡ n̄ 

l 
js + n 

v 
js . (A.29) 

However, in production extension, the slope of the cost curve increases smoothly due to a linear increase in marginal vari-

able production costs. More precisely, by taking the derivative of Eq. (A.28) with respect to X̆ js , denoted by ( ·) ′ , we obtain

the marginal cost curve as 

C ′ js ( ̆X js ) ≡

⎧ ⎪ ⎨ 

⎪ ⎩ 

n 

c 
js 

for X̆ js ∈ [0 , λ js X 

∗
js 

] , 

n 

c 
js 

+ 

2�n 

in , v ,> 
j 

λ js X 

∗
js 

(
X̆ js − λ js X 

∗
js 

)
for X̆ js ∈ ] λ js X 

∗
js 
, λ js β j X 

∗
js 

] . 
(A.30) 

For subsequent calculations, we eventually define the extra variable production costs arising in production extensions as 

�C v ,> ( ̆X js ) ≡

⎧ ⎪ ⎨ 

⎪ ⎩ 

0 for X̆ js ∈ [0 , λ js X 

∗
js 

] , 

�n 

in , v ,> 
j 

∗
(
X̆ js − λ js X 

∗
js 

)2 
for X̆ js ∈ ] λ js X 

∗
js 
, λ js β j X 

∗
js 

] . 
(A.31) 
λ js X 

js 
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Profit maximizing production level. In the production step, each firm js determines its actual production X js by maximizing

its profit 

� js ( ̆X js ) ≡ R js ( ̆X js ) − C js ( ̆X js ) (A.32)

under the constraint that production must not exceed productive capacity ˆ X js , which reads 

X js ≡ argmax 
X̆ js 

[
� js ( ̆X js ) 

]
subject to 0 ≤ X̆ js ≤ ˆ X js . (A.33)

The simple forms of revenue and costs curves permit to determine X js analytically. For this, js first determines its profit

maximizing production level X 
opt 
js 

without taking its productive capacity into account. It follows from Eq. (A.32) that the first-

order condition for a production level to be profit maximizing is that marginal revenue equals marginal costs. Further, we

see from the definitions of revenue curve R js in Eq. (A.18) and marginal cost curve C ′ 
js 

in Eq. (A.30) that, below production

extension ( ̆X js ≤ λ js X 
∗
js 

), the profit maximizing production level is reached, when all purchasers are served that have bid

reservation prices at least equal to js ’s unit production costs n c 
js 

(see Eq. (A.29) ). In the following, this subset of the order

set of purchasers J js (see Eq. (A.17) ) is denoted by 

J opt 
js 

≡ { l ′ ∈ J js | n js ← (ku ) l ′ ≤ n 

c 
js } ⊆ J js . 

In production extension, i.e., X̆ js ∈ ] λ js X 
∗
js 
, λ js β js X 

∗
js 

] , the super-linear increase of variable production costs (cf. Eq. (A.22) )

renders the shape of the cost curve C js more complex. However, since C js remains concave ( C ′′ 
js 
(X js ) ≥ 0 ), and R js is convex

( R ′′ 
js 
(X js ) ≤ 0 ), we may still obtain X 

opt 
js 

by equating marginal revenue and marginal costs yielding 

R 

′ 
js (X 

opt 
js 

) = C ′ js (X 

opt 
js 

) 

⇔ n 

opt 
js ← 

= n 

c 
js + 

2�n 

in , v ,> 
j 

λ js X 

∗
js 

(
X 

opt 
js 

− λ js X 

∗
js 

)
⇔ X 

opt 
js 

= λ j X 

∗
js 

[ 

1 + 

n 

opt 
js ← 

− n 

c 
js 

2�n 

in , v ,> 
j 

] 

, 

where n 
opt 
js ← 

denotes the price of the lowest priced purchaser that would obtain a non-zero share of X 
opt 
js 

. Concluding, the

optimal production level is given by 

X 

opt 
js 

≡

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

∑ 

l ′ ∈ J opt 
js 

D js ← (ku ) l ′ for X 

opt 
js 

≤ λ js X 

∗
js 
, 

λ j X 

∗
js 

[ 

1 + 

n 

opt 
js ← 

− n 

c 
js 

2�n 

in , v ,> 
j 

] 

for X 

opt 
js 

> λ js X 

∗
js 
. 

(A.34)

To determine its actual production level 

X js ≡ min 

[
X 

opt 
js 

, ˆ X js 

]
, (A.35)

js caps X 
opt 
js 

with its productive capacity ˆ X js (see Eq. (A.15) ). For the production js uses, as determined by its technology, an

amount of input commodity i of 

U i → js = a ∗i → js X js . (A.36)

After production, firms distribute their output among those purchasers with sufficiently high reservation prices, starting

with the highest-bidding purchaser, 

Z ir→ js = 

⎧ ⎨ 

⎩ 

0 for n ir← js < n ir← (ku ) l max 
ir 

(see Eq. A.19) , 

D ir← js for n ir← js > n ir← (ku ) l max 
ir 

(see Eq. A.19) , 

X ir −
∑ 

b ′ ≤l max 
ir 

D ir← (ku ) b ′ otherwise (see Eq. A.18). 

(A.37)

Note that the reservation prices of its purchasers determine firm’s js average production price, i.e., its selling price 

n̄ js ≡
R js (X js ) 

X js 

. (A.38)

Since in disequilibrium it can happen that not all purchasers are served, n̄ js does not necessarily equal the average reserva-

tion price of the purchasers 

n̄ 

p 
js 

≡ R js (D js ← 

) 
. (A.39)
D js ← 
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A2.2. Expectation step 

In the expectation step, each firm js determines the production level E X js it expects to be profit-maximizing in the next

timestep as well as the corresponding offer price E n̄ js , i.e., the average price to which it expects to be able to sell its product

in the next timestep. Note that we use the notation E (·) to describe the expectation an agent forms at time ( t ) on the value

of its own property ( ·) in the next timestep (t + 1) . First, js has to form expectations on its revenue and cost curves in the

next timestep. Then, js can determine the production level that it expects to be profit-maximizing. 

Expected revenue curve. To derive its expected revenue curve, js has to make assumptions on exogenous forcing and incom-

ing demand in the next timestep. For that, it assumes that 

(i) the exogenous forcing λjs remains at its current level, and that, 

ii) the structure of incoming demand requests, with respect to demanded quantities and reservation prices, remains un-

changed. 

Assumption (i) expresses that arrival and exact duration of extreme events are considered to be unpredictable. 

Assumption (ii) accounts for the very limited network overview of the agents. 

Firm’s js offer price E n̄ js is calculated analogously to the average selling price n̄ js defined in Eq. (A.38) and, therefore,

reads 

E n̄ js ≡
E R js (E X js ) 

E X js 
. (A.40) 

Further, it is worthy to note that, according to assumption (ii), E R js is simply identical to R js (cf. Eq. (A.18) ). 

Expected cost curve. To obtain the cost curve E C js firm js expects to have in the next timestep, it firstly has to determine

the unit costs E n c 
js 

it expects to have. This is done analogously to the calculation of n c 
js 

in Eq. (A.29) . Note that, nevertheless,

E n c 
js 

can differ from n c 
js 

due to the input flows js received in the current timestep as well as changes in js ’s input inventory

levels. Eventually, E C js is obtained from Eq. (A.28) by substituting n c 
js 

with E n c 
js 

. 

Maximization of expected profit. Analogously to profit �js (see Eq. (A.32) ), the expected profit of a firm js is defined as the

difference of expected revenue and cost curves reading 

E � js 
(E X̆ js ) ≡ E R js (E X̆ js ) − E C js (E X̆ js ) . (A.41) 

Before js can determine the production level E X js it expects to be profit-maximizing in the next timestep, js first has to

estimate its productive capacity E ˆ X js 
for the next timestep. For this, we first note that, at the end of the production step, js

has received the input commodities it can use for production in the next timestep. Knowing input flow and storage content,

js can then calculate the quantity E ˆ U i → js 
of each input commodity i that it expects to use. This is done analogously to the

calculation of ˆ U i → js in Eq. (A.14) . Next, js determines its expected productive capacity E ˆ X js 
by evaluating whether E ˆ X js 

is

limited by the input commodity with the lowest possible use or by the expected external forcing on the productive capacity

(cf. Eq. (A.15) ) reading 

E ˆ X js 
≡ min 

[ 

min 

i ′ 

[ 

E ˆ U i ′ → js 

ˆ U 

∗
i ′ → js 

] 

, λ js β j 

] 

X 

∗
js . (A.42) 

The expected production level E X js may be determined, analogously to the current production level X js (see Eq. (A.33) ), by a

constrained maximization of expected profit, which reads 

E X js ≡ argmax 
E X̆ js 

[ 
E � js 

(E X̆ js ) 
] 

subject to 0 ≤ E X̆ js ≤ E ˆ X js 
and π ∗

js −
E � js 

E X js 
≤ 0 . (A.43) 

Comparing Eq. (A.43) to the constrained profit maximization of Eq. (A.33) , we note one structural difference: in the opti-

mization problem of Eq. (A.43) it is implied that js ’s expected monopolistic markup E � js 
/ E X js has to be at least equal to its

markup in the baseline state π ∗
js 

(2nd constraint in Eq. (A.43) ), which is assumed to be the target markup. This additional

constraint prevents js from communicating low offer prices, which would entail demand requests with reservation prices

too low to permit js keeping up a margin of π ∗
js 

. 

The offer price E n̄ js may then be calculated according to Eq. (A.40) . Eventually, each firm js communicates E X js and E n̄ js 
to its purchasers { ir } i , r . These parameters will enable js ’s purchasers to form expectations on the shape of js ’s supply curve

in the next timestep as discussed in A.2.3 . 

A special case arises, when js has not received any demand, i.e., D js ← 

= 0 . Then js cannot estimate an expected revenue

curve. In consequence, js is not able to employ Eqs. (A.40) and (A.43) to determine E n̄ js and E X js , respectively. In this case,

we assume that js communicates its expected production costs as offer price E n̄ js = E n c 
js 
, and the minimum of possible and

forced baseline production level as expected production level E X js = min [ λ js X 
∗
js 

, ˆ X js ] . 
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A2.3. Purchasing step 

In the purchasing step, firms decide on their distribution of demand requests (with respect to quantities and reservation

prices) among their purchasers by minimizing their expected purchasing costs. First, we discuss the firms’ outgoing demand.

Next, we detail how firms form expectations on their suppliers’ supply curves. Then, we consider the additional costs for

transportation arising in non-equilibrium situations, before eventually discussing the cost minimization. 

Outgoing demand. The cumulative outgoing demand of firm js for commodity i reads 

D i ← js ≡ min 

[
E U i → js 

+ 

�S i → js 

τi → js 

, E js 
D max 

i ← js 

]
. (A.44)

Here, E U i → js 
denotes the amount of commodity i that js expects to use in the next timestep. It is derived from js ’s expected

profit-maximizing production level (see Eq. (A.42) ). The demand changes if the inventory level for commodity i deviates

from its baseline value S ∗
i → js 

. This is described by the storage deviation 

�S i → js ≡ S ∗i → js − S i → js + T def 
i → js , (A.45)

which also accounts for a deviation 

T def 
i → js ≡ T i → js − T ∗i → js . (A.46)

of the rolling inventory T i → js (see. Eq. (A.7) ) from its baseline value T ∗
i → js 

. In times of scarcity ( �S i → js > 0) or abundance

( �S i → js < 0), js increases or decreases its demand, respectively. The timescale at which js aims to balance storage anomalies

is given by τ i → js . Further, the minimum condition in Eq. (A.44) expresses that demand is limited by the maximal demand

js expects to be able to source from its suppliers E js 
D max 

i ← js 

≡ ∑ 

r ′ E 
js 

D max 
ir ′ ← js 

in the next timestep 

17 . The latter is the sum of the

productive capacities {E js 
D max 

ir ′ ← js 

} r ′ that js expects its suppliers to have in the next timestep (see next section). 

Estimates on suppliers’ supply curves. To estimate its purchasing costs, each firm js has to form expectations on its suppliers’

supply curves {E js 
n̆ 

i ′ r ′ 
} r ′ in the next timestep. To obtain E js 

n̆ ir 
of a supplier ir , js may refer to ir ’s delivery in the production step

as well as the expected upcoming production level E X ir and the offer price E n̄ ir that ir has communicated in the expecta-

tion step (cf. A.2.2 ). However, js is lacking information on the demand requests of its purchasing competitors. For a sound

estimation of those, js would need, for instance, information on the importance of the common supplier ir for each of js ’s

competitors. This would require, on the one hand, that js has information on the rest of their business connections, i.e., on

the network topology. On the other hand, js would need information on its competitors’ current market situations, e.g., if

they suffer from other supply shortages. Unfortunately, due to its limited network oversight, js has too little information for

such kinds of assessment. In consequence, js has to make educated guesses on its competitors’ demand requests regarding

quantities and prices. With respect to the quantities, js assumes that 

(i) its purchasing competitors keep their demand distributions fixed, i.e., from the common supplier ir they demand the

same share of its expected production in the next timestep E X ir as they expect to have received from its current produc-

tion X ir . 

Furthermore, js forms expectations on ir ’s production level in the current timestep X ir , ir ’s production level in the baseline

state X ∗
ir 
, ir ’s forcing level in the next timestep λ(t+1) 

ir 
, and sector i ’s production extension factor β i . These expectations are

denoted by E js 
X 

(t) 
ir 

, E js 
X ∗

ir 
, E js 

λir 
, and E js 

βi 
, respectively. As shown below, they permit js to form an expectation E js 

X̆ ir 
= E js 

X̆ ir 
( ̆D ir← js ) on

ir ’s production in the next timestep in terms of the demand D̆ ir← js that js addresses to ir . In addition, they enable js to obtain

the minimum demand that would drive ir into production extension as well as the maximum demand it can expect to be

fulfilled by ir . To keep the model simple, we assume that js ’s expectation on the above quantities are as straightforward as

possible, i.e., we assume that js knows X (t) 
ir 

, X ∗
ir 
, and β i exactly: 

E js 
X (t) 

ir 

= X 

(t) 
ir 

, E js 
X ∗

ir 

= X 

∗
ir , and E js 

βi 
= βi . 

Further, we assume that js has the same expectation on the forcing λ(t+1) 
ir 

its supplier ir will perceive in the next timestep

as ir has itself. This can be written as 

E js 
λir 

= E λir 
= λir , 

where we have employed the assumption that ir expects the forcing to remain at its current level (see A.2.2 ). 
17 Here, the notation E (·) 
(·) denotes the expectation that an agent – indicated by the upper index – makes in timestep ( t ) on the value of another agent’s 

property in timestep (t + 1) – indicated by the lower index. For instance, E js 
n̆ ir 

denotes the expectation that js has at time ( t ) on ir ’s supply curve in the 

next timestep (t + 1) . 
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Next, we may conclude from assumption (i) that E js 
X̆ ir 

can be written as 

E js 
X̆ ir 

( ̆D ir← js ) = D̆ ir← js + E X ir 
X ir − Z ir→ js 

X ir 

(A.47a) 

= 

(
1 + E js 

s̆ ir← js 
( ̆D ir← js ) − s ir← js 

)
E X ir . (A.47b) 

This can be seen as follows: the second term on the right-hand-side of Eq. (A.47a) describes the share js ’s competitors

have received from ir ’s current production. According to assumption (ii), this is also the share js expects those to obtain

from E X ir . In Eq. (A.47b) , E js 
X̆ ir 

has been rewritten as a function of the share 

E js 
s̆ ir← js 

( ̆D ir← js ) ≡
D̆ ir← js 

E X ir 
(A.48) 

that js expects to obtain from ir ’s next production if it demands the quantity D̆ ir← js ; s ir ← js ≡ Z ir ← js / X ir denotes js ’s share of

ir ’s current production. 

From Eq. (A.47b) , we may note two important findings. First, E js 
X̆ ir 

= E js 
X̆ ir 

(E js 
s̆ ir← js 

) may be expressed as a function of js ’s

expected share E js 
s̆ ir← js 

. This is helpful to argue that also js ’s expectation on ir ’s upcoming demand curve E js 
n̆ ir 

= E js 
n̆ ir 

(E js 
s̆ ir← js 

)

depends only upon E js 
s̆ ir← js 

. Second, if js ’s share remains unchanged ( E js 
s̆ ir← js 

= s ir← js ), the expectation js has on ir ’s upcoming

production level equals ir ’s own expectation, i.e., we have 

E js 
X̆ ir 

(s ir← js ) = E X ir . (A.49) 

By inserting E js 
X̆ ir 

= λir βi X 
∗
ir 

into Eq. (A.47a) , the maximum demand request E js 
D max 

ir← js 

that js expects to be fulfilled by ir reads

E js 
D max 

ir← js 

≡ λir βi X 

∗
ir − E X ir 

X ir − Z ir→ js 

X ir 

. (A.50) 

From Eq. (A.47b) then follows that E js 
D max 

ir← js 

corresponds to a maximum share of 

E js 
s max 

ir← js 

≡ s ir← js − 1 + 

λir βi X 

∗
ir 

E X ir 
. 

Similarly, by inserting E js 
X̆ ir 

= λir X 
∗
ir 

into Eq. (A.47b) , it follows directly that the minimum share that js expects to drive sup-

plier ir into production extension, is given by 

E js s < 
ir← js 

≡ max 

[
0 , s ir← js − 1 + 

λir X 

∗
ir 

E X ir 

]
. (A.51) 

Next, we derive the supply curve E js 
n̆ ir 

that js expects ir to have in the next timestep. Since js has no information on the

reservation prices of its purchasing competitors it has to make two additional assumptions. Firstly, js assumes that 

ii) by bidding the offer price E n̄ ir communicated by supplier ir , it will receive the same share of ir ’s production as in the

current timestep. 

Note that this is a meaningful strategy, since according to assumption (i) its purchasing competitors keep their shares

fixed. If additionally they have the same strategy as js to determine their reservation price, they offer E n̄ ir , too, and js ’s

demand request will be successfully fulfilled. Secondly, js assumes that 

ii) ir ’s supply curve for the next timestep is based on its production costs, which is a reasonable assumption if the market

is competitive. This implies that if js aims to increase its share beyond s ir ← js , supplier ir would have to extend its pro-

duction. In consequence, js would have to compensate ir for potential additional expenses such as long hours of workers.

In reverse, for E js 
s̆ ir← js 

< E js 
s < 
ir← js 

, it expects that supplier ir will be willing to fulfill its demand D̆ ir← js to a price lower than

E n̄ ir . 
Here, we assume that E js 

n̆ ir 
increases linearly starting from the unit production costs E js 

n c 
ir 

that js expects supplier ir to have

in the next timestep, i.e., E js 
n̆ ir 

(0) = E js 
n c 

ir 

, up to the unit costs E js 
n < 

ir 
≡ E js 

n̆ ir 
(E js 

s < 
ir← js 

) that js expects ir to have if it demands the

share E js 
s < 
ir← js 

. 

The resulting curve E js 
n̆ ir 

= E js 
n̆ ir 

(E js 
s̆ ir← js 

) is depicted in Fig. A.9 . In production extension ( E js 
s̆ ir← js 

> E js 
s < 
ir← js 

), it has the same

shape as supplier ir ’s cost curve (cf. Eq. (A.28) ) with E js 
n < 

ir 
taking the role of n c 

ir 
. From Eq. (A.28) for the cost curve, we see

that, to estimate the shape of ir ’s cost curve, js needs to form expectations on sector i ’s price increase in production ex-

tension �n in , v ,> 
i 

, and ir ’s unit production costs below production extension in the next timestep n c, (t+1) 
ir 

. These expectations
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Fig. A.9. Sketch of the supply curve E js 
n̆ ir 

that economic agent js expects its supplier ir to have in the next timestep. 

 

 

 

 

 

 

 

 

 

 

 

 

 

are denoted by E js 
�n in , v ,> 

i 

, and E js 
n c 

ir 

, respectively. For simplicity, we assume that js expectations on �n in , v ,> 
i 

are perfect, i.e.,

E js 
�n in , v ,> 

i 

= �n in , v ,> 
i 

, and that js has the same expectations on n c, (t+1) 
ir 

as ir itself, i.e., E js 
n c 

ir 

= E n c 
ir 

. 

Next, we derive an expression for E js 
n < 

ir 
. For that, we first note from the expression for ir ’s cost curve (see Eq. (A.28) ) that

assumption (iii) permits us to write js ’s expectation on ir ’s revenue in the next timestep as 

E js 
n̆ ir 

(E js 
X̆ ir 

) E js 
X̆ ir 

= E js n < 
ir 
E js 

X ir 
+ �C v ,> 

ir 

(
E js 

X̆ ir 

)
, 

(A.52a)

⇔ E js 
n̆ ir 

(E js 
X̆ ir 

) = E js n < 
ir 

+ 

�C v ,> 
ir 

(
E js 

X̆ ir 

)
E js 

X̆ ir 

, 

where �C v ,> 
ir 

denotes the cost increase in production extension introduced in Eq. (A.31) . If js ’s share remains unchanged

( E js 
s̆ ir← js 

= s ir← js ), then E js 
X̆ ir 

= E X ir (cf. Eq. (A.49) ), and, according to assumption (ii), also E js 
n̆ ir 

= E n̄ ir holds true. Inserting these

into Eq. A.52a permits to derive E js 
n < 

ir 
as 

E js n < 
ir 

= E n̄ ir −
�C v ,> 

ir 
(E X ir ) 

E X ir 
. 

Concluding, agent js ’s estimate on ir ’s supply curve in the next timestep reads 

E js 
n̆ ir 

(E js 
s̆ ir← js 

) ≡

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

E n c 
ir 

+ 

E js n < 
ir 

− E js 
n c 

ir 

E js s < 
ir← js 

E js 
s̆ ir← js 

for E js 
s̆ ir← js 

∈ [0 , E js s < 
ir← js 

] , 

E js n < 
ir 

+ 

�C v ,> 
ir 

(
E js 

X̆ ir 

(
E js 

s̆ ir← js 

))
E js 

X̆ ir 

(
E js 

s̆ ir← js 

) for E js 
s̆ ir← js 

∈ ] E js s < 
ir← js 

, E js 
s max 

ir← js 

] . 

(A.53)

For the optimization procedure of the purchasing step (see Section 3.1.1 ), it is convenient to write E js 
n̆ ir 

= E js 
n̆ ir 

( ̆D ir← js ) in terms

of D̆ ir← js by concatenating Eq. (A.53) with the function defined in Eq. (A.47b) , which yields 

E js 
n̆ ir 

( ̆D ir← js ) ≡
(
E js 

n̆ ir 
◦ E js 

s̆ ir← js 

)
( ̆D ir← js ) . 

Transport penalty. To render the baseline state of the economy stable with respect to idiosyncratic shocks, penalties in form

of extra costs have to be assumed if one or more demands deviate from their baseline values. The corresponding penalty

function for firm js and input commodity i may be written as 

E C pen 
i → js 

({ ̆D ir ′ ← js } r ′ 
)

≡
∑ 

r ′ 
� TP ir ′ → js ( ̆D ir ′ ← js ) , (A.54)

where E 
C 

pen 
i → js 

is a function of the demand requests { ̆D ir ′ ← js } r ′ that js addresses to its suppliers { ir ′ } r ′ and � TP ir→ js denotes

the transport penalty to be discussed in the following. 

We assume that the transportation costs in the baseline state are negligible compared to the value of the transported

commodities. Extra costs only arise in non-equilibrium situations if agent js ’s demand requests fluctuate, and means of
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transportation, e.g., vessels or trucks, cannot be used to their capacity. We assume that the transport penalties for each

input commodity i assume the form 

� TP ir→ js ( ̆D ir← js ) ≡ �n 

tp 
j 

( 

Z ∗
ir→ js 

− D̆ ir← js 

Z ∗
ir→ js 

) 2 

+ �n 

tp , min 
j 

| Z ∗ir→ js − D̆ ir← js | (A.55) 

where the coefficients �n 
tp 
j 

and �n 
tp , min 
j 

are allowed to vary among sectors. For large relative deviations, the quadratic

term in Eq. (A.55) dominates and ensures the system to be stable, whereas the linear term in this equation guarantees the

baseline equilibrium to be stable with respect to small deviations. For that, �n 
tp , min 
i 

has to be chosen sufficiently large as

discussed in A.4 . 

Cost minimization. The expected purchasing costs of a firm js read 

E C i → js 

({ ̆D ir ′ ← js } r ′ 
)

≡
∑ 

r ′ 
E js 

n̆ ir ′ 
( ̆D ir ′ ← js ) ̆D ir ′ ← js ︸ ︷︷ ︸ 

expected costs for purchases 

+ E C pen 
i → js 

({ ̆D ir ′ ← js } r ′ 
)
. ︸ ︷︷ ︸ 

expected additional costs 
for transport 

(A.56) 

They are a function of the demand requests { ̆D ir ′ ← js } r ′ firm js addresses to its suppliers and depend upon the expected

supply curves {E js 
n̆ 

ir ′ 
} r ′ of js ’s suppliers as well as upon transport costs E 

C 
pen 
i → js 

. 

A firm js decides on the optimal distribution of its demand requests among its suppliers by minimizing expected pur-

chasing costs, separately for each commodity i , under the constraints that (i) its cumulative demand D i ← js is met, and (ii)

individual demand requests must not exceed the amounts {E js 
D max 

ir ′ ← js 

} r ′ (see Eq. (A.50) ) that js expects its suppliers to be able

to deliver in the next timestep, 

{ D ir ′ ← js } r ′ = argmin 

{ ̆D ir ′ ← js } r ′ 

[
E C i → js 

({ ̆D ir ′ ← js } r ′ 
)]

(A.57) 

subject to 

∑ 

r ′ 
D̆ ir ′ ← js = D i → js and 0 ≤ D̆ ir← js ≤ E js 

D max 
ir← js 

∀ r. 

The reservation price corresponding to a demanded quantity D ir ← js is then given by 

n ir← js ≡ E js 
n̆ ir 

(D ir← js ) . (A.58) 

The purchase is done by sending each demand request ( D ir ← js , n ir ← js ) to each supplier ir . 

A3. Consumers 

Since commodities are perfect complements, consumer js has a separate consumption for each input commodity i , which

may be written as 

C i → js ≡ min 

[ 

C ∗i → js ·
(

n̄ 

l 
i → js 

n̄ 

∗
i → js 

)ε c 
i → js 

, ˆ U i → js 

] 

. (A.59) 

It varies isoelastically with the corresponding consumer price n̄ l 
i → js 

(see Eq. (A.13) ) for commodity i . Further, in the above

equation, C ∗
i → js 

, ε c 
i → js 

∈ [ −1 , 0[ , and n ∗
i → js 

denote baseline consumption, consumption price elasticity, and the normalized

consumer price in the baseline state, respectively. Consumption price elasticities may differ among input commodities,

which permits to distinguish consumption from investment commodities, and due to price normalization, we have n ∗
i → js 

= 1

according to Eq. (A.13) . The minimum condition in Eq. (A.59) reflects that consumption may be limited by a reduced avail-

ability ˆ U i → js of commodity i (see Eq. (A.14) ) if supply shortages arise in the disaster aftermath. 

For consumers, besides consumption, which is done in parallel with the production step of firms only the purchasing

step, is relevant, where they decide upon their demand and its distribution. Having ‘naive expectations’, regional consumers’

assume that their consumer prices for input commodities remain unchanged in the next timestep. For that, they calculate

their demand for input commodity i by assuming that they will consume (use) the amount E U i → js 
≡ C ∗

i → js 
·
(

n̄ l 
i → js 

n̄ ∗
i → js 

)ε c 
i → js 

in the

next timestep. For each input commodity, they may then calculate their demand as well as the optimal demand distribution

from Eqs. (A.44) and (A.57) , respectively. 

A4. First-order condition for locally stable baseline equilibrium 

Since the economy is demand-driven, the baseline equilibrium is locally stable if for each agent js and each input com-

modity i , the baseline demand distribution { D 

∗
ir ′ ← js 

} r ′ minimizes expected purchasing costs with respect to all perturbations
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of this baseline state keeping cumulative demand D 

∗
i ← js 

= 

∑ 

r ′ D 

∗
ir ′ ← js 

unchanged. In the following, we restrict ourselves to a

firm js that has only two suppliers of commodity i to which it addresses the demands D 1 and D 2 . We then have to ensure

that D 

∗
1 

and D 

∗
2 

are the solutions of the following constraint optimization problem 

argmin [ E C i → js 
( ̆D 1 , D̆ 2 )] subject to D̆ 1 + D̆ 2 = D 

∗
i ← js . 

Taking into account that the constraint in the above equations permits to write D 2 in terms of D 1 , the first-order condition

may be written as 

0 ≤ ∂ + E C i → js 

∂D 1 

∣∣∣∣
∗

(A.60)

(A. 55) , (A. 56) ⇔ 0 ≤
∂ + E js 

n̆ i 1 

∂D 1 

∣∣∣∣∣
∗

D 

∗
1 + E js 

n̆ i 1 

∣∣
∗ + 

∂ + E C pen 
i → js 

∂D 1 

∣∣∣∣∣
∗

+ 

∂D 2 

∂D 1 

∣∣∣∣
∗

[ 

∂ −E js 
n̆ i 2 

∂D 2 

∣∣∣∣∣
∗

D 

∗
2 + E js 

n̆ i 2 

∣∣
∗ + 

∂ −E C pen 
i → js 

∂D 2 

∣∣∣∣∣
∗

] 

(A. 25) , (A. 29) , (A. 54) , (A. 53) ⇔ 0 ≤ 0 + 1 + �n 

tp , min 
js 

−
[
π ∗

i 2 + 1 − �n 

tp , min 
js 

]
⇔ �n 

tp , min 
js 

≥ πi 2 

2 

. 

Here, ∂ + (·) /∂ D and ∂ −(·) /∂ D denote right-hand side and left-hand side partial derivatives, respectively. And | ∗ denotes that

variables are evaluated and derivatives are taken at the baseline state. We see from Eq. (A.60) that the first-order condi-

tion can be fulfilled by choosing �n 
tp , min 
js 

≥ π ∗
i 
/ 2 ≥ π ∗

ir 
/ 2 ∀ r, where, in the last equality, we have taken into account that,

according to Eq. (A.27) , the exogenously set sectoral monopolistic markup π ∗
i 

may be larger than the one of the individual

supplier π ∗
ir 

. 

Appendix B. Tables 

Table B.1 
Parameters of acclimate ; values used in the numerical simulations unless stated otherwise. 

Variable Description Unit Scope Eq. Value 

�t Timestep time Global 1 day 

ω i Upper storage limit – Sector (A.11) 3 

� i Storage fill factor time Sector (A.10) 15 days 

β i Prod. extension factor – Sector (A.15) 1.1 

π ∗
i 

Baseline monopolistic markup price Sector (A.27) 0.05 

�n in , v ,> 
i 

Unit extra variable prod. costs in prod. extension price Sector (A.22) 5 

�n tp 
i 

Coefficient of quadratic transport penalty value Sector (A.55) 0.08 USD 

�n tp , min 
i 

Coefficient of linear transport penalty price 
quant it y 

Sector (A.55) 0.025 USD −1 

τ i → js Storage balance time scale time Storage (A.44) , (5) 2 days 

ε c 
i → js 

Consumption price elasticity – Storage (consumer) (A.59) , (8) −0 . 5 

λ(t) 
js 

Production forcing – Firm (A.15) 0.001 

Table B.2 

Exogenous variables of acclimate ; values derived from MRIO-tables. 

Variable Description Unit Scope Eq. 

Z ∗
ir→ js 

Baseline flow 

quant it y 
time 

Connection (A.1) 

D ∗
ir← js 

Baseline demand request quant it y 
time 

Connection (A.5) 

I ∗
i → js 

Baseline input flow 

quant it y 
time 

Storage (A.9) 

U ∗
i → js 

Baseline use quant it y 
time 

Storage (A.9) 

S ∗
i → js 

Baseline storage content quantity Storage (A.10) 

S max 
i → js 

Maximum storage content quantity Storage (A.11) 

X ∗
js 

Baseline production level quant it y 
time 

Firm (A.2) 

a i → js Technology coefficient – Firm (A.16) 

n v , ∗
js 

Baseline unit variable production costs price Firm (A.26) 

π ∗
js 

Baseline monopolistic markup price Firm (A.27) 

VA ∗js Baseline value added v alue 
time 

Firm (A.25) 

C ∗
i → js 

Baseline consumption quant it y 
time 

Consumer (A.3) 
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Table B.3 

Endogenous variables of acclimate . 

Variable Description Unit Scope Eq. 

l D , T , I , ( t ) Direct/total/indirect daily losses quant it y 
time 

Global (9) , (10) , (11) 

L D , T , I , ( t ) Direct/total/indirect cumul. losses quantity Global (12) 

D (t) 
ir← js 

Demand request quant it y 
time 

Connection (A.57), (7) 

n (t) 
ir← js 

Reservation price price Connection (A.58) 

Z (t) 
ir→ js 

Supply flow 

quant it y 
time 

Connection (A.37) 

T (t) 
ir→ js 

Transport stock quantity Connection (A.6) 

I (t) 
i → js 

Input flow 

quant it y 
time 

Storage (A.8) 

S (t) 
i → js 

Storage content quantity Storage (A.12) 

ˆ U (t) 
i → js 

Possible use from storage quant it y 
time 

Storage (A.14) 

U (t) 
i → js 

Use from storage quant it y 
time 

Storage (A.36) 

n̄ l, (t) 
i → js 

Unit commodity costs price Agent (A.13) 

T def , (t) 
i → js 

Transport deficit quant it y 
time 

Agent (A.46) 

� TP (t) 
ir→ js 

Transport penalties v alue 
time 

Agent (A.55) 

�n tp , min 
j 

Linear coeff. of trans. penalty v alue 
time 

Agent (A.55) 

�S (t) 
i → js 

Storage shortage v alue 
time 

Agent (A.45) 

E (t) 

C 
pen 
i → js 

Transport penalties v alue 
time 

Agent (A.54) 

E js, (t) 
n̆ ir 

Expected supply curve price Agent (A.53) 

D (t) 
i ← js 

Total demand quant it y 
time 

Agent (A.44) , (5) 

E C i → js Expected purchasing costs v alue 
time 

Agent (A.56) , (6) 

n̄ p, (t) 
js 

Average reservation price price Firm (A.39) 

D (t) 
js ← 

Incoming demand quant it y 
time 

Firm (A.20) , (1) 

n̄ (t) 
js 

Selling price price Firm (A.38) 

R (t) 
js 

Revenue v alue 
time 

Firm (A.18) 

n c, (t) 
js 

Unit production costs price Firm (A.29) 

C l, (t) 
js 

Costs for commodity inputs v alue 
time 

Firm (A.21) 

n v , (t) 
js 

Unit variable production costs price Firm (A.26) 

C v , (t) 
js 

Variable production costs v alue 
time 

Firm (A.22) 

C (t) 
js 

Total costs v alue 
time 

Firm (A.28) , (2) 

�C v ,>, (t) 
js 

Extra variable production costs in prod. extension v alue 
time 

Firm (A.31) 

�(t) 
js 

Profit v alue 
time 

Firm (A.32) , (4) 

VA (t) 
js 

Value added v alue 
time 

Firm (A.23) 

X opt , (t) 
js 

Optimal production level quant it y 
time 

Firm (A.34) 

ˆ X (t) 
js 

Productive capacity quant it y 
time 

Firm (A.15) 

X (t) 
js 

Production level quant it y 
time 

Firm (A.35) , (3) 

E (t) 
n̄ js 

Offer price price Firm (A.40) 

E (t) 
R js 

Expected revenue price Firm (A.41) 

E (t) 
� js 

Expected profit v alue 
time 

Firm (A.41) 

E (t) 
ˆ X js 

Expected productive capacity quant it y 
time 

Firm (A.42) 

E (t) 
X js 

Expected optimal production level quant it y 
time 

Firm (A.43) 

C (t) 
i → js 

Consumption quant it y 
time 

Consumer (A.59) , (8) 

Table B.4 

Countries used in the numerical simulations. 

ISO3-Code Country name 

AGO Angola 

BEN Benin 

BWA Botswana 

BFA Burkina Faso 

BDI Burundi 

CMR Cameroon 

CPV Cap Verde 

CAF Central African Republic 

TCD Chad 

CIV Côte d’Ivoire 

ERI Eritrea 

GAB Gabon 

GMB Gambia 

( continued on next page ) 
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Table B.4 ( continued ) 

ISO3-Code Country name 

GHA Ghana 

GIN Guinea 

KEN Kenya 

LSO Lesotho 

LBR Liberia 

MDG Madagascar 

MWI Malawi 

MLI Mali 

MRT Mauritania 

MUS Mauritius 

MOZ Mozambique 

NAM Namibia 

NER Niger 

NGA Nigeria 

COG Republic of the Congo 

RWA Rwanda 

SEN Senegal 

SYC Seychelles 

SLE Sierra Leone 

SOM Somalia 

ZAF South Africa 

LKA Sri Lanka 

SUR Suriname 

SWZ Swaziland 

TGO Togo 

UGA Uganda 

ZMB Zambia 

ZWE Zimbabwe 

CHN China 

MNG Mongolia 

VNM Vietnam 

AUT Austria 

BEL Belgium 

BGR Bulgaria 

HRV Croatia 

CYP Cyprus 

CZE Czech Republic 

DNK Denmark 

EST Estonia 

FIN Finland 

FRA France 

DEU Germany 

GRC Greece 

HUN Hungary 

IRL Ireland 

ITA Italy 

LVA Latvia 

LTU Lithuania 

LUX Luxembourg 

MLT Malta 

NLD Netherlands 

POL Poland 

PRT Portugal 

ROU Romania 

SVK Slovakia 

SVN Slovenia 

ESP Spain 

SWE Sweden 

GBR United Kingdom 

ARM Armenia 

AZE Azerbaijan 

BLR Belarus 

EST Estonia 

GEO Georgia 

KAZ Kazakhstan 

KGZ Kyrgyzstan 

LVA Latvia 

LTU Lithuania 

( continued on next page ) 
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Table B.4 ( continued ) 

ISO3-Code Country name 

RUS Russia 

TJK Tajikistan 

TKM Turkmenistan 

UKR Ukraine 

UZB Uzbekistan 

ARG Argentina 

BOL Bolivia 

BRA Brazil 

CHL Chile 

COL Colombia 

ECU Ecuador 

GUY Guyana 

PRY Paraguay 

PER Peru 

SUR Suriname 

URY Uruguay 

VEN Venezuela 

DZA Algeria 

BHR Bahrain 

CYP Cyprus 

DJI Djibouti 

EGY Egypt 

IRN Iran 

IRQ Iraq 

ISR Israel 

JOR Jordan 

KWT Kuwait 

LBN Lebanon 

LBY Libya 

MRT Mauritania 

MAR Morocco 

OMN Oman 

PSE Palestine 

QAT Qatar 

WSM Samoa 

SAU Saudi Arabia 

SYR Syria 

TUN Tunisia 

TUR Turkey 

ARE United Arab Emirates 

YEM Yemen 

ATG Antigua and Barbuda 

ABW Aruba 

BHS Bahamas 

BRB Barbados 

BLZ Belize 

BMU Bermuda 

VGB British Virgin Islands 

CAN Canada 

CYM Cayman Islands 

CRI Costa Rica 

CUB Cuba 

DOM Dominican Republic 

SLV El Salvador 

GRL Greenland 

GTM Guatemala 

HTI Haiti 

HND Honduras 

JAM Jamaica 

MEX Mexico 

ANT Netherlands Antilles 

NIC Nicaragua 

PAN Panama 

TTO Trinidad and Tobago 

USA United States of America 

AUS Australia 

JPN Japan 

NZL New Zealand 

( continued on next page ) 
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Table B.4 ( continued ) 

ISO3-Code Country name 

KOR South Korea 

BRN Brunei 

KHM Cambodia 

IDN Indonesia 

LAO Laos 

MYS Malaysia 

MDV Maldives 

NPL Nepal 

PNG Papua New Guinea 

PHL Philippines 

LKA Sri Lanka 

THA Thailand 

AFG Afghanistan 

BGD Bangladesh 

BTN Bhutan 

IND India 

Table B.5 

Sectors used in the numerical simulations. 

Code Name 

AGRI Agriculture 

FISH Fishing 

MINQ Mining and quarrying 

FOOD Food & beverages 

TEXL Textiles and wearing apparel 

WOOD Wood and paper 

OILC Petroleum, chemical and non-metallic mineral products 

METL Metal products 

MACH Electrical and machinery 

TREQ Transport equipment 

MANU Other manufacturing 

RECY Recycling 

ELWA Electricity, gas and water 

CONS Construction 

REPA Maintenance and repair 

WHOT Wholesale trade 

RETT Retail trade 

GAST Hotels and restaurants 

TRAN Transport 

COMM Post and telecommunications 

FINC Financial intermediation and business activities 

ADMI Public administration 

EDHE Education, health and other services 

HOUS Private households 

OTHE Others 

REXI Re-export & re-import 

FCON Final consumption 

 

 

 

 

 

 

 

 

References 

Acemoglu, D., Carvalho, V.M., Ozdaglar, A., Tahbaz-Selehi, A., 2012. The network origins of aggregate fluctuations. Econometrica 80 (5), 1977–2016. doi: 10.

3982/ECTA9623 . 
Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A., 2015. Systemic risk and stability in financial networks. Am. Econ. Rev. 105 (2), 564–608. doi: 10.1257/aer.

20130456 . 

Albala-Bertrand, J.M. , 2013. Disasters and the networked economy. Routledge . 
Aoki, M., Yoshikawa, H., 2012. Non-self-averaging in macroeconomic models: a criticism of modern micro-founded macroeconomics. J. Econ. Interact. Coord.

7 (1), 1–22. doi: 10.1007/s11403- 012- 0088- 3 . 
Arenas, A., Díaz-Guilera, A., Pérez, C.J., Vega-Redondo, F., 2002. Self-organized criticality in evolutionary systems with local interaction. J. Econ. Dyn. Control

26 (12), 2115–2142. doi: 10.1016/S0165-1889(01)0 0 025-2 . 
Assenza, T., Grazzini, J., Hommes, C., Massaro, D., 2015. PQ strategies in monopolistic competition: Some insights from the lab. J. Econ. Dyn. Control 50,

62–77. doi: 10.1016/j.jedc.2014.08.017 . 

Axtell, R.L., 2007. What economic agents do: How cognition and interaction lead to emergence and complexity. Rev. Austrian Econ. 20 (2-3), 105–122.
doi: 10.1007/s11138- 007- 0021- 5 . 

Babiker, M., Gurgel, A., Paltsev, S., Reilly, J., 2009. Forward-looking versus recursive-dynamic modeling in climate policy analysis: A comparison. Econ. Model.
26 (6), 1341–1354. doi: 10.1016/j.econmod.20 09.06.0 09 . 

Battiston, S., Delli Gatti, D., Gallegati, M., Greenwald, B., Stiglitz, J.E., 2012. Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk. J.
Econ. Dyn. Control 36 (8), 1121–1141. doi: 10.1016/j.jedc.2012.04.001 . 

http://dx.doi.org/10.3982/ECTA9623
http://dx.doi.org/10.1257/aer.20130456
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0003
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0003
http://dx.doi.org/10.1007/s11403-012-0088-3
http://dx.doi.org/10.1016/S0165-1889(01)00025-2
http://dx.doi.org/10.1016/j.jedc.2014.08.017
http://dx.doi.org/10.1007/s11138-007-0021-5
http://dx.doi.org/10.1016/j.econmod.2009.06.009
http://dx.doi.org/10.1016/j.jedc.2012.04.001


268 C. Otto et al. / Journal of Economic Dynamics & Control 83 (2017) 232–269 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bierkandt, R., Wenz, L., Willner, S.N., Levermann, A., 2014. Acclimatea model for economic damage propagation. part 1: basic formulation of damage transfer
within a global supply network and damage conserving dynamics. Environ. Syst. Deci. 34 (4), 507–524. doi: 10.1007/s10669- 014- 9523- 4 . 

Boehm, C.E., Flaaen, A.B., Pandalai-Nayar, N., 2015. Input linkages and the transmission of shocks: Firm-level evidence from the 2011 tohoku earthquake.
Finance Econ. Discuss. Ser. 2015 (94), 1–73. doi: 10.17016/FEDS.2015.094 . 

Caiani, A., Godin, A., Caverzasi, E., Gallegati, M., Kinsella, S., Stiglitz, J.E., 2016. Agent based-stock flow consistent macroeconomics: Towards a benchmark
model. J. Econ. Dyn. Control 69, 375–408. doi: 10.1016/j.jedc.2016.06.001 . 

Carvalho, V.M., 2014. From micro to macro via production networks. J. Econ. Perspect. 28 (4), 23–48. doi: 10.1257/jep.28.4.23 . 

Chaney, T., 2016. Liquidity constrained exporters. J. Econ. Dyn. Control 72, 141–154. doi: 10.1016/j.jedc.2016.03.010 . 
Chen, Y.-H. H., Paltsev, S., Reilly, J.M., Morris, J.F., Babiker, M.H., 2016. Long-term economic modeling for climate change assessment. Econ. Model 52, 867–

883. doi: 10.1016/j.econmod.2015.10.023 . 
Clark, P.U., Shakun, J.D., Marcott, S.A., Mix, A.C., Eby, M., Kulp, S., Levermann, A., Milne, G.A., Pfister, P.L., Santer, B.D., Schrag, D.P., Solomon, S., Stocker, T.F.,

Strauss, B.H., Weaver, A.J., Winkelmann, R., Archer, D., Bard, E., Goldner, A., Lambeck, K., Pierrehumbert, R.T., Plattner, G.-K., 2016. Consequences of
twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6 (4), 360–369. doi: 10.1038/nclimate2923 . 

Cutter, S.L., Ismail-Zadeh, A., Alcántara-Ayala, I., Altan, O., Baker, D.N., Briceño, S., Gupta, H., Holloway, A., Johnston, D., McBean, G.A., Ogawa, Y., Paton, D.,
Porio, E., Silbereisen, R.K., Takeuchi, K., Valsecchi, G.B., Vogel, C., Wu, G., 2015. Pool knowledge to stem losses from disasters. Nature 522 (7556), 277–

279. doi: 10.1038/522277a . 

Delli Gatti, D., Di Guilmi, C., Gaffeo, E., Giulioni, G., Gallegati, M., Palestrini, A., 2005. A new approach to business fluctuations: heterogeneous interacting
agents, scaling laws and financial fragility. J. Econ. Behav. Organ. 56 (4), 489–512. doi: 10.1016/j.jebo.2003.10.012 . 

Delli Gatti, D., Gaffeo, E., Gallegati, M., Giulioni, G., Kirman, A ., Palestrini, A ., Russo, A ., 2007. Complex dynamics and empirical evidence. Inf. Sci. 177 (5),
1204–1221. doi: 10.1016/j.ins.20 06.08.0 03 . 

Delli Gatti, D., Gallegati, M., Greenwald, B., Russo, A., Stiglitz, J.E., 2010. The financial accelerator in an evolving credit network. J. Econ. Dyn. Control 34 (9),
1627–1650. doi: 10.1016/j.jedc.2010.06.019 . 

Di Giovanni, J., Levchenko, A .A ., Mejean, I., 2014. Firms, destinations, and aggregate fluctuations. Econometrica 82 (4), 1303–1340. doi: 10.3982/ECTA11041 . 

Dosi, G., Fagiolo, G., Roventini, A., 2010. Schumpeter meeting keynes: A policy-friendly model of endogenous growth and business cycles. J. Econ. Dyn.
Control 34 (9), 1748–1767. doi: 10.1016/j.jedc.2010.06.018 . 

Elliott, M., Golub, B., Jackson, M.O., 2014. Financial networks and contagion. Am. Econ. Rev. 104 (10), 3115–3153. doi: 10.1257/aer.104.10.3115 . 
Ethier, W.J. , 1982. National and international returns to scale in the modern theory of international trade. Am. Econ. Rev. 72 (3), 389–405 . 

Fagiolo, G., Moneta, A., Windrum, P., 2007. A critical guide to empirical validation of agent-based models in economics: Methodologies, procedures, and
open problems. Comput. Econ. 30 (3), 195–226. doi: 10.1007/s10614- 007- 9104- 4 . 

Farmer, J.D., Foley, D., 2009. The economy needs agent-based modelling. Nature 460 (7256), 6 85–6 86. doi: 10.1038/460685a . 

Farmer, J.D., Hepburn, C., Mealy, P., Teytelboym, A., 2015. A third wave in the economics of climate change. Environ. Resour. Econ. 62 (2), 329–357. doi: 10.
1007/s10640-015-9965-2 . 

Field, C. , Barros, V. , Stocker, T. , Qin, D. , Dokken, D. , Ebi, K. , Mastrandrea, M. , Mach, K. , Plattner, G.-K. , Allen, S. , Midgley, P. , 2012. Managing the risks of
extreme events and disasters to advance climate change adaptation. a special report of working groups i and II of the intergovernmental panel on

climate change. In: Tech. rep.. IPCC . 
Financial Times, 2016. Volkswagen agrees deal to end supplier dispute. https://www.ft.com/content/ffd3ee62- 6934- 11e6- a0b1- d87a9fea034f . 

Foerster, A.T., Sarte, P.-D. G., Watson, M.W., 2011. Sectoral versus aggregate shocks: A structural factor analysis of industrial production. J. Polit. Econ. 119

(1), 1–38. doi: 10.1086/659311 . 
Gabaix, X., 2009. Power laws in economics and finance. Annu. Rev. Econ. 1 (1), 255–294. doi: 10.1146/annurev.economics.050708.142940 . 

Gabaix, X., 2011. The granular origins of aggregate fluctuations. Econometrica 79 (3), 733–772. doi: 10.3982/ECTA8769 . 
Gallegati, M. , Richiardi, M.G. , 2011. Agent based models in economics and complexity. In: Complex Systems in Finance and Econometrics. Springer,

pp. 30–53 . 
Gualdi, S., Mandel, A., 2016. On the emergence of scale-free production networks. J. Econ. Dyn. Control 73, 61–77. doi: 10.1016/j.jedc.2016.09.012 . 

Hallegatte, S., 2008. An adaptive regional input-output model and its application to the assessment of the economic cost of katrina. Risk Anal. 28 (3),

779–799. doi: 10.1111/j.1539-6924.2008.01046.x . 
Hallegatte, S., 2009. Strategies to adapt to an uncertain climate change. Global Environ. Change 19 (2), 240–247. doi: 10.1016/j.gloenvcha.20 08.12.0 03 . 

Hallegatte, S., 2014. Modeling the role of inventories and heterogeneity in the assessment of the economic costs of natural disasters.. Risk anal. 34 (1),
152–167. doi: 10.1111/risa.12090 . 

Hallegatte, S., Hourcade, J.-C., Dumas, P., 2007. Why economic dynamics matter in assessing climate change damages: Illustration on extreme events. Ecol.
Econ. 62 (2), 330–340. doi: 10.1016/j.ecolecon.2006.06.006 . 

Hallegatte, S., Ranger, N., Mestre, O., Dumas, P., Corfee-Morlot, J., Herweijer, C., Wood, R.M., 2011. Assessing climate change impacts, sea level rise and storm

surge risk in port cities: a case study on copenhagen. Clim. Change 104 (1), 113–137. doi: 10.1007/s10584- 010- 9978- 3 . 
Helbing, D., 2013. Globally networked risks and how to respond. Nature 497 (7447), 51–59. doi: 10.1038/nature12047 . 

Henriet, F., Hallegatte, S., Tabourier, L., 2012. Firm-network characteristics and economic robustness to natural disasters. J. Econ. Dyn. Control 36 (1), 150–
167. doi: 10.1016/j.jedc.2011.10.001 . 

Herring, S.C., Hoerling, M.P., Kossin, J.P., Peterson, T.C., Stott, P.A., 2015. Explaining extreme events of 2014 from a climate perspective. Bull. Am. Meteorol.
Soc. 96 (12), S1–S172. doi: 10.1175/BAMS-ExplainingExtremeEvents2014.1 . 

Kajitani, Y., Tatano, H., 2014. Estimation of roduction capacity loss rate after the great east japan earthquake and tsunami in 2011. Econ. Syst. Res. 26 (1),
13–38. doi: 10.1080/09535314.2013.872081 . 

Kirman, A.P., 1992. Whom or what does the representative individual represent? J. Econ. Perspect. 6 (2), 117–136. doi: 10.1257/jep.6.2.117 . 

Kousky, C., 2014. Informing climate adaptation: A review of the economic costs of natural disasters. Energy Econ. 46, 576–592. doi: 10.1016/j.eneco.2013.09.
029 . 

Lazzaroni, S., van Bergeijk, P.A., 2014. Natural disasters’ impact, factors of resilience and development: A meta-analysis of the macroeconomic literature.
Ecol. Econ. 107, 333–346. doi: 10.1016/j.ecolecon.2014.08.015 . 

Lenzen, M., Kanemoto, K., Moran, D., Geschke, A., 2012. Mapping the structure of the world economy. Environ. Sci. Technol. 46 (15), 8374–8381. doi: 10.
1021/es300171x . 

Lenzen, M., Moran, D., Kanemoto, K., Geschke, A., 2013. Building eora: a global multi-region input-output database at high country and sector resolution.

Econ. Syst. Res. 25 (1), 20–49. doi: 10.1080/09535314.2013.769938 . 
Leombruni, R., Richiardi, M., 2005. Why are economists sceptical about agent-based simulations? Physica A 355 (1), 103–109. doi: 10.1016/j.physa.2005.02.

072 . 
Levermann, A., 2014. Make supply chains climate-smart. Nature 506 (7486), 27–29. doi: 10.1038/506027a . 

Lucas, R.E., 1977. Understanding business cycles. Carnegie-Rochester Conf. Ser. Public Policy 5, 7–29. doi: 10.1016/0167-2231(77)90 0 02-1 . 
Mac Kenzie, C.A., Santos, J.R., Barker, K., 2012. Measuring changes in international production from a disruption: Case study of the japanese earthquake and

tsunami. Int. J. Prod. Econ. 138 (2), 293–302. doi: 10.1016/j.ijpe.2012.03.032 . 

Maluck, J., Donner, R.V., 2015. A network of networks perspective on global trade. PLOS ONE 10 (7), e0133310. doi: 10.1371/journal.pone.0133310 . 
Mandel, A., 2012. Agent-based dynamics in the general equilibrium model. Complex. Econ. 1 105–121. doi: 10.7564/12-COEC6 . 

Mandel, A., Landini, S., Gallegati, M., Gintis, H., 2015. Price dynamics, financial fragility and aggregate volatility. J. Econ. Dyn. Control 51, 257–277. doi: 10.
1016/j.jedc.2014.11.001 . 

Noy, I., 2009. The macroeconomic consequences of disasters. J. Dev. Econ. 88 (2), 221–231. doi: 10.1016/j.jdeveco.20 08.02.0 05 . 

http://dx.doi.org/10.1007/s10669-014-9523-4
http://dx.doi.org/10.17016/FEDS.2015.094
http://dx.doi.org/10.1016/j.jedc.2016.06.001
http://dx.doi.org/10.1257/jep.28.4.23
http://dx.doi.org/10.1016/j.jedc.2016.03.010
http://dx.doi.org/10.1016/j.econmod.2015.10.023
http://dx.doi.org/10.1038/nclimate2923
http://dx.doi.org/10.1038/522277a
http://dx.doi.org/10.1016/j.jebo.2003.10.012
http://dx.doi.org/10.1016/j.ins.2006.08.003
http://dx.doi.org/10.1016/j.jedc.2010.06.019
http://dx.doi.org/10.3982/ECTA11041
http://dx.doi.org/10.1016/j.jedc.2010.06.018
http://dx.doi.org/10.1257/aer.104.10.3115
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0024
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0024
http://dx.doi.org/10.1007/s10614-007-9104-4
http://dx.doi.org/10.1038/460685a
http://dx.doi.org/10.1007/s10640-015-9965-2
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0028
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0028
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0028
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0028
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0028
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0028
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0028
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0028
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0028
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0028
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0028
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0028
https://www.ft.com/content/ffd3ee62-6934-11e6-a0b1-d87a9fea034f
http://dx.doi.org/10.1086/659311
http://dx.doi.org/10.1146/annurev.economics.050708.142940
http://dx.doi.org/10.3982/ECTA8769
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0032
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0032
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0032
http://dx.doi.org/10.1016/j.jedc.2016.09.012
http://dx.doi.org/10.1111/j.1539-6924.2008.01046.x
http://dx.doi.org/10.1016/j.gloenvcha.2008.12.003
http://dx.doi.org/10.1111/risa.12090
http://dx.doi.org/10.1016/j.ecolecon.2006.06.006
http://dx.doi.org/10.1007/s10584-010-9978-3
http://dx.doi.org/10.1038/nature12047
http://dx.doi.org/10.1016/j.jedc.2011.10.001
http://dx.doi.org/10.1175/BAMS-ExplainingExtremeEvents2014.1
http://dx.doi.org/10.1080/09535314.2013.872081
http://dx.doi.org/10.1257/jep.6.2.117
http://dx.doi.org/10.1016/j.eneco.2013.09.029
http://dx.doi.org/10.1016/j.ecolecon.2014.08.015
http://dx.doi.org/10.1021/es300171x
http://dx.doi.org/10.1080/09535314.2013.769938
http://dx.doi.org/10.1016/j.physa.2005.02.072
http://dx.doi.org/10.1038/506027a
http://dx.doi.org/10.1016/0167-2231(77)90002-1
http://dx.doi.org/10.1016/j.ijpe.2012.03.032
http://dx.doi.org/10.1371/journal.pone.0133310
http://dx.doi.org/10.7564/12-COEC6
http://dx.doi.org/10.1016/j.jedc.2014.11.001
http://dx.doi.org/10.1016/j.jdeveco.2008.02.005


C. Otto et al. / Journal of Economic Dynamics & Control 83 (2017) 232–269 269 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OECD, 2015. Climate change risks and adaptation: Linking policy and economics. In: Tech. rep.. OECD doi: 10.1787/9789264234611-en . 
Okuyama, Y., 2007. Economic modeling for disaster impact analysis: Past, present, and future. Econ. Syst. Res. 19 (2), 115–124. doi: 10.1080/

09535310701328435 . 
Okuyama, Y., 2014. Disaster and economic structural change: Case study on the 1995 kobe earthquake. Econ. Syst. Res. 26 (1), 98–117. doi: 10.1080/09535314.

2013.871506 . 
Okuyama, Y., Santos, J.R., 2014. Disaster impact and input output analysis. Econ. Syst. Res. 26 (1), 1–12. doi: 10.1080/09535314.2013.871505 . 

Robiou du Pont, Y., Jeffery, M.L., Gütschow, J., Rogelj, J., Christoff, P., Meinshausen, M., 2016. Equitable mitigation to achieve the paris agreement goals. Nat.

Clim. Change 7 (1), 38–43. doi: 10.1038/nclimate3186 . 
Przyluski, V. , Hallegatte, S. , 2011. Indirect costs of natural hazards. In: Tech. rep.. SMASH-CIRED . 

Ranger, N., Hallegatte, S., Bhattacharya, S., Bachu, M., Priya, S., Dhore, K., Rafique, F., Mathur, P., Naville, N., Henriet, F., Herweijer, C., Pohit, S., Corfee-
Morlot, J., 2011. An assessment of the potential impact of climate change on flood risk in mumbai. Clim. Change 104 (1), 139–167. doi: 10.1007/

s10584-010-9979-2 . 
Revesz, R.L., Howard, P.H., Arrow, K., Goulder, L.H., Kopp, R.E., Livermore, M.A., Oppenheimer, M., Sterner, T., 2014. Global warming: Improve economic

models of climate change. Nature 508 (7495), 173–175. doi: 10.1038/508173a . 
Riccetti, L., Russo, A., Gallegati, M., 2013. Leveraged network-based financial accelerator. J. Econ. Dyn. Control 37 (8), 1626–1640. doi: 10.1016/j.jedc.2013.02.

008 . 

Rogelj, J., Luderer, G., Pietzcker, R.C., Kriegler, E., Schaeffer, M., Krey, V., Riahi, K., 2015. Energy system transformations for limiting end-of-century warming
to below 1.5 °C. Nat. Clim. Change 5 (6), 519–527. doi: 10.1038/nclimate2572 . 

Romer, P., 1989. Endogenous technological change. In: Tech. Rep. 5. National Bureau of Economic Research, Cambridge, MA. doi: 10.3386/w3210 . 
Rose, A., Okuyama, Y., Chang, S., 2004. Economic principles, issues, and research priorities in hazard loss estimation. In: Modeling Spatial and Economic

Impacts of Disasters. Advances in Spatial Science. Springer Berlin Heidelberg, pp. 13–36. doi: 10.1007/978- 3- 540- 24787- 6 _ 2 . 
Salle, I.L., 2015. Modeling expectations in agent-based models an application to central bank’s communication and monetary policy. Econ. Model. 46, 130–

141. doi: 10.1016/j.econmod.2014.12.040 . 

Schweitzer, F., Fagiolo, G., Sornette, D., Vega-Redondo, F., Vespignani, A., White, D.R., 2009. Economic networks: the new challenges.. Science 325, 422–425.
doi: 10.1126/science.1173644 . 

Shah, R., Ward, P.T., 2007. Defining and developing measures of lean production. J. Oper. Manage. 25 (4), 785–805. doi: 10.1016/j.jom.2007.01.019 . 
Stern, N., 2016. Current climate models are grossly misleading. Nature 530 (7591), 407–409. doi: 10.1038/530407a . 

Stiglitz, J.E., Gallegati, M., 2011. Heterogeneous interacting agent models for understanding monetary economies. East. Econ. J. 37 (1), 6–12. doi: 10.1057/eej.
2010.33 . 

van der Veen, A., 2004. Disasters and economic damage: macro, meso and micro approaches. Disaster Prev. Manag.: An Inter. J. 13 (4), 274–279. doi: 10.

1108/09653560410556483 . 
van der Veen, A., Logtmeijer, C., 2005. Economic hotspots: Visualizing vulnerability to flooding. Natural Hazards 36 (1-2), 65–80. doi: 10.1007/

s11069- 004- 4542- y . 
Weisbuch, G., Battiston, S., 2007. From production networks to geographical economics. J. Econ. Behav. Organ. 64 (3-4), 448–469. doi: 10.1016/j.jebo.2006.

06.018 . 
Wenz, L., Levermann, A., 2016. Enhanced economic connectivity to foster heat-stress-related losses. Sci. Adv. 2, e1501026. doi: 10.1126/sciadv.1501026 . 

Wenz, L., Willner, S.N., Bierkandt, R., Levermann, A., 2014. Acclimatea model for economic damage propagation. part II: a dynamic formulation of the back-

ward effects of disaster-induced production failures in the global supply network. Environ. Syst. Deci. 34 (4), 525–539. doi: 10.1007/s10669- 014- 9521- 6 .
Wenz, L., Willner, S.N., Radebach, A., Bierkandt, R., Steckel, J.C., Levermann, A., 2015. Regional and sectoral disaggregation of multi-regional input output

tables a flexible algorithm. Econ. Syst. Res. 27 (2), 194–212. doi: 10.1080/09535314.2014.987731 . 
Willner, S. N., Otto, C., 2017. Acclimate model. doi: 10.5281/zenodo.853346 . 

Wolski, M., van de Leur, M., 2016. Interbank loans, collateral and modern monetary policy. J. Econ. Dyn. Control 73, 388–416. doi: 10.1016/j.jedc.2016.10.002 .
World Bank , 1999. Turkey marmara earthquake assessment. In: Tech. rep. World Bank . 

http://dx.doi.org/10.1787/9789264234611-en
http://dx.doi.org/10.1080/09535310701328435
http://dx.doi.org/10.1080/09535314.2013.871506
http://dx.doi.org/10.1080/09535314.2013.871505
http://dx.doi.org/10.1038/nclimate3186
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0061
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0061
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0061
http://dx.doi.org/10.1007/s10584-010-9979-2
http://dx.doi.org/10.1038/508173a
http://dx.doi.org/10.1016/j.jedc.2013.02.008
http://dx.doi.org/10.1038/nclimate2572
http://dx.doi.org/10.3386/w3210
http://dx.doi.org/10.1007/978-3-540-24787-6_2
http://dx.doi.org/10.1016/j.econmod.2014.12.040
http://dx.doi.org/10.1126/science.1173644
http://dx.doi.org/10.1016/j.jom.2007.01.019
http://dx.doi.org/10.1038/530407a
http://dx.doi.org/10.1057/eej.2010.33
http://dx.doi.org/10.1108/09653560410556483
http://dx.doi.org/10.1007/s11069-004-4542-y
http://dx.doi.org/10.1016/j.jebo.2006.06.018
http://dx.doi.org/10.1126/sciadv.1501026
http://dx.doi.org/10.1007/s10669-014-9521-6
http://dx.doi.org/10.1080/09535314.2014.987731
http://dx.doi.org/10.5281/zenodo.853346
http://dx.doi.org/10.1016/j.jedc.2016.10.002
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0080
http://refhub.elsevier.com/S0165-1889(17)30174-4/sbref0080

	Modeling loss-propagation in the global supply network: The dynamic agent-based model acclimate
	1 Introduction
	2 Related literature
	3 Model description
	3.1 Model structure
	3.1.1 Firms
	3.1.2 Consumers

	3.2 Baseline equilibrium
	3.3 Dynamics

	4 Model performance
	4.1 Local production and price dynamics
	4.1.1 Local recovery dynamics of the national sector directly hit by the disaster
	4.1.2 Demand redistribution of a national sector indirectly affected by the disaster

	4.2 Global response dynamics

	5 Importance of indirect losses
	5.1 Propagation of direct and indirect losses
	5.2 Dependence of indirect losses upon disaster duration and disaster size

	6 Discussion
	7 Conclusions
	 Acknowledgments
	Appendix A Detailed model description
	A1 Basic model setup
	A1.1 Rolling inventories
	A1.2 Input inventories

	A2 Firms
	A2.1 Production step
	A2.2 Expectation step
	A2.3 Purchasing step

	A3 Consumers
	A4 First-order condition for locally stable baseline equilibrium

	Appendix B Tables
	 References


