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Quantum dot laser tolerance to optical feedback

Christian Otto, Kathy Lüdge, Evgeniy Viktorov and Thomas Erneux

6.1

Introduction

In optical fiber networks, the semiconductor laser source may be perturbed by un-
avoidable optical feedback from fiber pigtails or fiber connectors unless expensive
optical isolators are used. Analytical expressions for the stable operation of laser
diodes are highly desirable and have been a constant preoccupation of researchers in
the field [1]. Mork et al. [2] investigated the Lang and Kobayashi equations describing
a quantum well (QW) semiconductor laser subject to delayed optical feedback and
derived an approximation of the stability boundary in terms of the feedback parameter
k. k2 ≡ Pr/Pi is defined as the ratio of the reflected powerPr and emitted powerPi.
Mathematically, this stability boundary corresponds to the lowest possible value ofthe
first Hopf bifurcation of an external cavity mode. The external cavity modes (ECMs)
are the basic solutions of a laser subject to optical feedback from a distant mirror. In the
weak feedback limit, there exists only one mode which is determined by the feedback
phaseC = ω0τec, in first approximation (ω0 is the angular frequency of the solitary
laser andτec is the round-trip time). The stability condition derived by Mork et al. [2]
is given by

k < kc ≡ ΓQW

√
1 + α2

(6.1)

whereα is the linewidth enhancement factor andΓQW is defined as the damping rate
of the relaxation oscillations (ROs) multiplied by the photon lifetimeτp, so thatkc

is dimensionless. Because of a possible confusion with a different definition of the
damping rate used by Mork et al. [2], we derive the expressions of the ROs frequency
ωQW and damping rateΓQW from their rate equations in Appendix A. As noted by
Mork et al. [2], Eq. (6.1) was previously suggested by Helms and Petermann [3] as a
simple analytical criterion for tolerance with respect to optical feedback. Helms and
Petermann [3] evaluate the validity of Eq. (6.1) by analyzing numerically the stability
of the minimum linewidth ECM. They noted that this approximation gives a good
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description of the critical feedback level as long as the linewidth enhancement factorα
is significantly larger than unity. They then proposed an empirical law given by

kc = ΓQW

√
1 + α2

α2
. (6.2)

Both Eqs. (6.1) and (6.2) are used in current experimental studies of quantum dot
(QD) lasers subject to optical feedback. Specifically, Eq. (6.1) is used in Ref. [4] and
Eq. (6.2) is used in Refs. [5, 6, 7]. Note that the minimum linewidth mode appears
as the first ECM in the weak feedback limit for the feedback phaseC = − arctan(α).
For the minimum linewidth mode the minimum value of the feedback strength of the
first Hopf bifurcation, which marks the critical feedback strength below that the laser
is guaranteed to be stable, is given by [8]

kc = ΓQW

√
1 + α2

α2 − 1
. (6.3)

The approximation of the first Hopf bifurcation in terms of an arbitrary phases and
thus for arbitrary ECMs is derived in [9]. Substituting the expression for the frequency
of the minimum linewidth mode∆ ≃ C = − arctan(α) then leads to Eq. (6.3).
The denominator in (6.3) is different from the denominator of (6.2) which explains
the numerically observed singularity asα → 1+ [3]. The expression (6.1) follows
from analytic considerations of the first Hopf bifurcation at a feedback phaseC =

π + arctan(α), which provides the lowest possible value ofkc. The inequality (6.1) is
based on a series of approximations (k ≪ 1, ωQW τec/τp ≫ 1, α > 1) which may or
may not be appropriate. Asymptotic techniques were later used to determine systematic
approximations for a variety of cases (pump parameter close to threshold, short external
cavity) [9]. In this approach, all small or large dimensionless parameters appearing in
the rate equations are scaled with respect to a unique parameterγ defined as the ratio of
the photon and carrier lifetimes (γ ≡ τp/τs ∼ 10−2 − 10−3) [10]. Different scalings
lead to different limits. We shall use the same strategy for two different rate equation
models that are currently used in order to determine useful information on the dynamics
of QD lasers. As we shall demonstrate, the stability condition can still be formulated
by Eq. (6.1) but with different expressions for the damping rateΓ.

Both, models with one carrier type and electron-hole models have been successfully
used to describe turn-on experiments [11, 12, 13, 14], gain recovery dynamics [15, 16,
17], optical injection [18] and optical feedback [19, 20]. The rate equation models with
only one carrier type assume the same scattering rates for electrons and holes. They
allow the derivation of simple analytical expressions which are useful when examining
experimental data. Electron-hole rate equation models are taking into account the fact
that the thermal redistribution occurs on different time scales for electrons and holes.
These models aim to bridge the gap between a microscopic description and the simpler
rate equation models but are too complicated for direct analysis.

In QD semiconductor devices, the carriers are first injected into a two dimensional
carrier reservoir, i.e. a quantum well, before being captured by a dot. The minimal
way to describe this process is to formulate three rate equations for the electrical field
in the cavity, the carrier density in the reservoir, and the occupation probability of a
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dot [21, 22]. These equations were analyzed using the asymptotic limitγ → 0 in Ref.
[23] and we shall apply the same analysis for the laser subject to optical feedback. Our
main result is described in Section 6.2. The electron-hole rate equation model that we
consider next involves five independent variables for the charge carrier densities in the
QD, the charge carrier densities in the reservoir, and the photon density in the cavity
and it involves microscopically calculated scattering rates that are strongly nonlinear
functions of the carrier densities in the reservoir [24, 25, 11, 12] . (Please see Chapter 1
of this book for a review on the microscopic modeling). We recently showed that these
equations can be simplified by taking advantage of the limitγ → 0 [26]. Although
coefficients of the reduced equations need to be computed numerically, distinct scaling
laws can be extracted for the RO frequency and RO damping rate. We plan to use the
same analysis here for the case of a laser subject to optical feedback [19]. The main
results are summarized in Section 6.3. The asymptotic studies of the two problems are
long and tedious. For clarity, the detailed computations are relegated to Appendix B
and C, and in the following we only concentrate on the final results.

6.2

QD laser model with one carrier type

The rate equations for a QD laser subject to optical feedback formulated by O’Brien
et al. [27] consist of three equations for the amplitude of the normalized laser field in
the cavityE, the occupation probabilityρ of a QD in the laser, and the numbern of
carriers in the reservoir per QD. The dimensionless equations are derived in Appendix
B and are of the form

E′ =
1

2
[−1 + g(2ρ − 1)] (1 + iα)E + k e−iCE(t′ − τ), (6.4)

ρ′ = γ
ˆ
Bn(1 − ρ) − ρ − (2ρ − 1)|E|2

˜
, (6.5)

n′ = γ [J − n − 2Bn(1 − ρ)] (6.6)

where prime means differentiation with respect to the dimensionless timet′ = t/τp.
The factor2 in Eq. (6.6) accounts for the twofold spin degeneracy in the quantum dot
energy levels. A similar factor2 is included in the definition of the differential gain
factorg in Eq. (6.4) [28]. The parameterγ ≡ τp/τs is the ratio of the photon lifetime
and the carrier recombination time. The relaxation rates ofρ andn are assumed equal
for mathematical simplicity.J is the electrically injected pump current per dot, and it
is the control parameter. The nonlinear termBn(1− ρ) describes the carrier exchange
rate between the reservoir and the dots.B ≡ τs/τcap ∼ 102−103 is the dimensionless
capture rate and1 − ρ is the Pauli blocking factor. The three parametersB, γ, and
g − 1 control the time-dependent response of the solitary QD laser. The last term in
Eq. (6.4) represents the contribution of the delayed optical feedback.k andτ are the
dimensionless feedback rate and round-trip time laser-mirror-laser, respectively,andC

is the feedback phase.
As for the conventional laser, our objective is to determine the minimal value of the

feedback rate below which a stable operation can be guaranteed. We shall consider
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γ as our order parameter because it does not appear in the expressions of the steady
states and scaleB andg − 1 with respect toγ. Several cases are possible depending
on their respective scalings. The physically most interesting case considers the relation
B(1 − ρ) = O(γ−1/2) [23], which basically assumes the carrier capture process into
the QDs to be much faster than the radiative recombination time of the carriers inthe
QDs. The first Hopf bifurcation pointkH is determined by Eq. (6.69) (see Appendix
B for the asymptotic analysis), and its lowest possible value and thus the lower bound
for the critical feedback strength is given by the same expression as Eq. (6.1) but with
a different dimensionless damping rate namedΓQD

2 :

ΓQD
2 ≡ γ

2I∗ + B2
1

»
2I∗ 1 + I∗

1 − g−1
+

B2
1

2
(1 + 2I∗)

–
(6.7)

with B1 ≡ γ1/2B(1 − g−1), and the steady state intensity of the solitary laserI∗ (see
Appendix B). In the limitγ → 0, I∗ is given by

I∗ ≡ g

2
(J − Jth) (6.8)

whereJth ≡ 1+g−1 is the threshold current in the limitγ → 0. The expression for the
RO frequency in units ofτp is ωQD ≡ √

2γI∗ and is the same as the one for the QW
laser (ωQW is given by Eq. (6.37)). If the damping rate given in Eq. (6.7) is explored in
the limitsB2

1 → ∞ (fast capture) orI∗ → 0 (close to threshold), the value decreases
and approaches the much lower RO damping rate of QW lasers

ΓQW ≡ γ(1 + 2I∗)

2
(6.9)

(see Appendix A, Eq. (6.38)), thus in this limitsΓQD
2 → ΓQW .

However, ifB2
1 = O(1) and/org is close to1, ΓQD

2 is much larger thanΓQW . This
can be demonstrated by rewritingΓQD

2 as

ΓQD
2 = ΓQW +

γI∗

2I∗ + B2
1

g + 1 + 2I∗

g − 1
(6.10)

where the correction term clearly indicates the effect ofg − 1 if g is close to1.

6.3

Electron-hole model for QD laser

The microscopically-based rate-equation model for a solitary QD laser that separately
treats electron and hole dynamics has been formulated and further investigated in
[24, 12, 14] (see Chapter 1 of this book for a review). Supplemented by the optical
feedback term [19] and formulated with dimensionless quantities [20] it describes the
evolution of the occupation probability of the confined QD levels,Ne andNh, the
number of carriers in the reservoir per QD,We andWh, (e,h stand for electrons and
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holes, respectively), and the normalized slowly varying amplitude of the laser field
inside the cavityE =

√
I exp(−iφ) with the normalized intensityI and the phaseφ.

E′ =
1

2

h
− 1 + g(Ne + Nh − 1)

i
(1 − iα)E + k eiCE(t′ − τ), (6.11)

N ′
e = γ

h
sin

e (1 − Ne) + sout
e Ne − (Ne + Nh − 1)|E|2 − NeNh

i
, (6.12)

N ′
h = γ

h
sin

h (1 − Nh) + sout
h Nh − (Ne + Nh − 1)|E|2 − NeNh

i
, (6.13)

W ′
e = γ

h
J + (sin

e + sout
e )Ne − sin

e − cWeWh

i
, (6.14)

W ′
h = γ

h
J + (sin

h + sout
h )Nh − sin

h − cWeWh

i
. (6.15)

In the above equations prime means differentiation with respect to the dimensionless
timet′ = t/τp (with the photon lifetimeτp). As beforek, C andτ are the dimensionless
feedback rate, the feedback phase and the external round-trip time, respectively and g is
the linear gain parameter. The parameterc accounts for spontaneous and non-radiative
losses in the reservoir andJ is the dimensionless electrically injected pump current
per QD. Furthersin

e , sout
e , sin

h , sout
h represent dimensionless scattering rates that are

rescaled bysin,out
e,h = W−1Sin,out

e,h with W−1 being the carrier lifetime due to radiative
recombination inside a QD that corresponds toτs in the QW- and in the QD model
with one carrier type. They are computed numerically from a microscopic theory of
carrier-carrier scattering events between QD and reservoir [24, 12]. The scattering
timesτe ≡ (Sin

e + Sout
e )−1 andτh ≡

`
Sin

h + Sout
h

´−1
are our reference time scales.

By introducing a rescaled times = γ1/2t′, reformulating the above equations in
terms of deviations from the steady state and taking advantage of the small value of
γ = τp/τs → 0, we showed in Ref. [26] that the rate equations can be reduced to four
equations that are given in Appendix C. Note that this rescaling of time is suggested by
the fact that the RO frequency is proportional toγ1/2 asγ → 0.

As we shall demonstrate, valuable information can be extracted from these equations
on the basis of simple scaling assumptions. Three cases were explored in [26] which
we now review.

6.3.1

Similar scattering times τe and τh

At first, one case will be discussed that assumes the scattering times of both carrier
types to be on the same timescale. Further, this case assumessin

e + sout
e andsin

h + sout
h

to beO(1) quantities compared toγ1/2. We find that the expression for the critical
feedback strengthkc is the same as Eq. (6.1) but with a different damping rate given by

ΓS ≡ γ

2

»
sin

e + sout
e

2
+ 2I∗ + N∗

h + N∗
e +

sin
h + sout

h

2

–
(6.16)

where I∗, N∗
e , and N∗

h are the dimensionless steady state values for the solitary
laser of the light intensity, the electron, and the hole occupation probability in the
QDs, respectively, that need to be computed numerically. In [26], we noted that



146 6 QD laser tolerance to optical feedback

N∗
h + N∗

e = 1 + g−1 whereg = O(1) is the dimensionless gain coefficient. Eq. (6.16)
then simplifies as

ΓS =
γ

2

»
sin

e + sout
e

2
+ 2I∗ + 1 + g−1 +

sin
h + sout

h

2

–
. (6.17)

Eq. (6.17) can be reformulated as

ΓS = ΓQW +
1

2

»
sin

e + sout
e

2
+

sin
h + sout

h

2

–
(6.18)

where
ΓQW ≡ γ

2

ˆ
1 + g−1 + 2I∗˜ (6.19)

has the same format as Eq. (6.9) and can be considered as the contribution of the
conventional QW laser.

6.3.2

Different scattering times τe and τh

The microscopic calculations predict very large scattering rates for the holes [12] due
to their much larger effective mass. Consequently this section aims to discuss the effect
of holes if they are much faster than the electrons. For the asymptotic analysis we
introduce the dimensionless parametera as a measure for the hole scattering rates

a ≡
r

γ

2I∗ (sin
h + sout

h ) (6.20)

whereI∗ is assumed to be anO(1) quantity.

Small scattering lifetime of the holes a = O(1)

To this end, we assume thatsin
e +sout

e = O(1) whilesin
h +sout

h = O(γ−1/2) which then
implies from Eq. (6.20) thata = O(1). Note that this is different to Section 6.3.1 where
the scalinga = O(γ1/2) was discussed. The leading order equation for the growth rate
is the same as for the solitary laser [26] and does not contain any contribution of the
feedback. In other words, the amplitude of the feedbackk is too weak (k = O(γ)). We
would need to consider the casek = O(γ1/2) in order to find the feedback parameter
in the leading equation for the growth rate, but this problem has not been solved
analytically yet.

Very small scattering lifetime of the holes a = O(γ−1/2)

For the case were the hole scattering time is on the order of pico-seconds another
scaling has to be introduced. Thus, for this case we assume thata = O(γ−1/2) while
sin

e + sout
e = O(1). Compared to the case of similar scattering times the RO frequency

is slightly reduced by a factor of1/
p

1/2. The expression for the critical feedback
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Fig. 6.1 Solid line shows the first Hopf bifurcation point k = kH

as a function of α as obtained numerically from the original rate
equations using a continuation method [20] (C = π + arctan(α),
τ = 80).The broken line represents its analytical approximation
given by Eq. (6.1). As α decreases towards zero, kH increases
and the analytical approximation that assumes k ≪ 1 begins to
fail.

strength is the same as Eq. (6.1) but with a different dimensionless damping rate given
by

ΓDa ≡ γ

2

»
I∗

γ

1

sin
h + sout

h

+ sin
e + sout

e + I∗ + N∗
h

–
. (6.21)

In Fig. 6.1, we compare numerical and analytical predictions for a laser subject to a long
external cavity. The numerical determination of the Hopf bifurcation pointkH has been
obtained by using a continuation technique (DDE-Biftool [29]) applied to the original
electron-hole rate equation model [26, 19] and not from the reduced equations (6.87)-
(6.90). Details on the numerical simulations and parameter values are documented in
Ref. [20]. The broken line in Fig. 6.1 represents the analytical approximation given by
Eq. (6.1). Asα decreases towards zero,kH increases and the analytical approximation
that assumesk ≪ 1 begins to fail, while a very good agreement with the analytic results
is found for largerα.

6.4

Summary

The expression for the critical feedback strength from Eq. (6.1) provides a sufficient
condition for stable operation of a quantum well laser subject to optical feedback. The
critical feedback rate above which pulsating instabilities are observed is determined as
a function of the linewidth enhancement factorα and the damping rate of the ROs. Its
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simplicity has encouraged experimental studies of QD lasers subject to optical feedback.
It is shown that Eq. (6.1) is also a good approximation for QD lasers provided that their
much larger damping rate of the relaxation oscillations is considered. The damping
rate is generally obtained by fitting data. In this review we examine two different
rate equations models for QD lasers and derive the stability condition with analytical
expressions for the damping rate. These expressions allow us to anticipate the effect of
specific parameters, e.g. the carrier scattering rates and the differential gaincoefficient,
and design lasers with a larger tolerance to optical feedback.
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6.5

Appendix A: rate equations for quantum well lasers

The rate equations for a solitary quantum well laser used by Mork et al. [2] are given
by

dE
dt

=
1

2

»
GN (N − N0) − 1

τp

–
E , (6.22)

dN

dt
= J − N

τs
− GN (N − N0)E2. (6.23)

HereE is the amplitude of the electrical field andN is the carrier density. The linear
gain coefficient is denoted byGN , N0 is the transparency density of carriers,J is the
pumping current andτp andτs are the photon and carrier lifetimes, respectively. The
non-zero intensity steady state is

N∗ = N0 +
1

GNτp
, (6.24)

E∗2
=

1

GN (N − N0)
(J − N

τs
). (6.25)

From the linearized equations, we then determine the characteristic equation for the
growth rateλ

λ2 + (
1

τs
+ GNE∗2

)λ +
1

τp
GNE∗2

= 0. (6.26)

In order to properly define the relaxation oscillation frequency and its damping rate,
we take advantage of the fact thatτp << τs. The roots of the quadratic equation then
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take the form
λ = −ΓQW

R0 ± iωQW
RO (6.27)

where

ωQW
R0 ≡

s
GN

1

τp
E∗2 − 1

4
(

1

τs
+ GNE∗2)2 ≃

s
GN

1

τp
E∗2, (6.28)

ΓQW
R0 ≡ 1

2
(

1

τs
+ GNE∗2

) =
1

2
(

1

τs
+ τpω2

R0) (6.29)

are defined as the RO frequency and RO damping rate of the solitary laser, respectively.
They are the quantities that are measured experimentally. Mork et al. [2] introduced
the RO damping rate as”τ−1

R ” which equals2ΓQW
R0 but could wrongly be interpreted

asΓQW
R0 .

In order to determine asymptotic approximations, we need to reformulate the rate
equations in dimensionless form. The simplest way is to measure time in units of the
photon lifetime by introducing

t′ ≡ t/τp. (6.30)

Furthermore, introducing the new dimensionless dependent variablesE andZ defined
by

E ≡
r

GNτs

2
E andZ ≡ 1

2
[GN (N − N0)τp − 1] (6.31)

allows to reduce the number of parameters. Inserting Eqs. (6.30) and (6.31) into
Eqs. (6.22) and (6.23), we find

dE

dt′
= ZE, (6.32)

dZ

dt′
= γ

ˆ
P − Z − (1 + 2Z)E2˜ (6.33)

whereγ andP are defined by

γ ≡ τp

τs
, P ≡ GNτpτs

2
(J − Jth), with Jth ≡ N0

τs
+

1

GNτpτs
. (6.34)

The non-zero intensity steady state is

Z∗ = 0 andI∗ = E∗2
= P (6.35)

and the characteristic equation for the growth rateσ is given by

σ2 + γ(1 + 2I∗)σ + 2I∗γ = 0. (6.36)

Providedγ is sufficiently small, the roots of Eq. (6.36) are complex-conjugated. The
dimensionless RO frequency and RO damping rate (in units of timet′) are then defined
from the imaginary and real part of these roots. We obtain

ωQW ≡
r

2γI∗ − γ2

4
(1 + 2I∗)2 ≃

p
2γI∗ asγ → 0 and (6.37)

ΓQW ≡ γ(1 + 2I∗)

2
. (6.38)
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In our analysis of the QD rate equations, we use the same dimensionless timet′ ≡ t/τp

and reformulate the dynamic equations so that the sameγ multiply the right hand side
of the carrier equations.

6.6

Appendix B: asymptotic analysis for QD laser model with one carrier type

The equations examined by O’Brien et al. [27] are the following three equations for
the amplitude of the laser field in the cavity,E , the number of carriers in the reservoir
per dot,N and the occupation probability of the dots in the laserρ

dE
dt

=
1

2

»
− 1

τp
+ g0θ(2ρ − 1)

–
E +

iδω

2
E +

η

2
E(t − τec), (6.39)

dρ

dt
= − ρ

τs
− g0(2ρ − 1)|E|2 + F̃ (N, ρ), (6.40)

dN

dt
= −N

τs
+ J̃ − 2NQDF̃ (N, ρ). (6.41)

For the definition of the various parameters, see Ref. [27]. The capture rate is
described by the term̃F = C̃N2(1 − ρ) in [27] and is proportional to the number of
carriers present as well as the probability to find a dot. As in [23], we shall consider
F̃ = B̃N(1 − ρ) instead ofF̃ = C̃N2(1 − ρ). Here the carrier phonon and the Auger
carrier capture rates are denoted byB̃ and C̃, respectively. We defineδω = α/τp

whereα is the linewidth enhancement factor.NQD is the two dimensional density of
quantum dots. In our analysis, we introduce theα factor in the traditional way i.e.,
by the term(1 + iα) multiplying the full square bracket in (6.39). Moreover, we take
into account the feedback phaseC = ω0τec whereω0 is the angular frequency of the
solitary laser (C = 0 mod2π in [27]). Our starting equations are then given by

dE
dt

=
1

2

»
− 1

τp
+ g0θ(2ρ − 1)

–
(1 + iα)E +

η

2
e−iCE(t − τec), (6.42)

dρ

dt
= − ρ

τs
− g0(2ρ − 1)|E|2 + B̃N(1 − ρ), (6.43)

dN

dt
= −N

τs
+ J̃ − 2NQDB̃N(1 − ρ). (6.44)

By introducing a dimensionless timet′, the number of carriers in the reservoir per QD
n, and a normalized fieldE , according to

t′ ≡ t/τp, n ≡ N/NQD, E ≡ √
g0τsE , (6.45)

the Eqs. (6.42)-(6.44) simplify as

dE

dt′
=

1

2
[−1 + g(2ρ − 1)] (1 + iα)E + ke−iCE(t′ − τ), (6.46)

dρ

dt′
= γ

ˆ
−ρ − (2ρ − 1)|E|2 + Bn(1 − ρ)

˜
, (6.47)

dn

dt′
= γ [−n + J − 2Bn(1 − ρ)] (6.48)
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where

γ ≡ τp

τs
, g ≡ g0θτp, k ≡ η

2
τp, τ ≡ τec/τp, J ≡ J̃τs

NQD
, andB ≡ B̃NQDτs.

(6.49)
If we consider the rate equations (6.46)-(6.48), in terms of the normalized intensity

I and the phaseφ of the fieldE =
√

I exp(iφ), the equations can be rewritten as

I ′ = [−1 + g(2ρ − 1)] I + 2k
p

I(t′ − τ)I(t′) cos(−C + φ(t′ − τ) − φ), (6.50)

φ′ =
1

2
[−1 + g(2ρ − 1)] α + k

s
I(t′ − τ)

I(t′)
sin(−C + φ(t′ − τ) − φ), (6.51)

ρ′ = γ [Bn(1 − ρ) − ρ − (2ρ − 1)I] , (6.52)

n′ = γ [J − n − 2Bn(1 − ρ)] . (6.53)

6.6.1

External cavity modes

The basic solutions of the feedback problem are the external cavity modes (ECMs).
They are defined as solutions with constant field intensity and carrier numbers, i.e.
I = Is, ρ = ρs, n = ns, and a phase of the field that varies linearly in time given by
φ = φs = −C t′

τ
+ ∆ t′

τ
with the ECM frequency∆. For clarity the indexs is omitted

in the following equations.
From Eqs. (6.50)-(6.53), the basic solution satisfy the following conditions

1

2
[−1 + g(2ρ − 1)] = −k cos(∆),

∆ = C − kτ [α cos(∆) + sin(∆)] ,

n =
J

1 + 2B(1 − ρ)
,

I =
Bn(1 − ρ) − ρ

2ρ − 1
.

Solving forρ, we obtain

ρ =
1

2
(1 + g−1) − k

g
cos(∆), (6.54)

n =
J

1 + 2B(1 − ρ)
, (6.55)

I =
B(1 − ρ)

1 + 2B(1 − ρ)

J − Jth

2ρ − 1
(6.56)

where

Jth ≡ ρ(1 + 2B(1 − ρ))

B(1 − ρ)
. (6.57)
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We note the following relations which will be useful when we eliminaten from the
coefficients of the characteristic equation:

Bn + 1 + 2I =
1 + I

1 − ρ
,

"
(1 + 2B(1 − ρ)) (Bn + 1 + 2I)

−2B2n(1 − ρ)

#
=

1 + I

1 − ρ
+ 2B(1 − ρ)(1 + 2I).

6.6.2

Stability

From the linearized equations, we determine the following condition for the growth
rateσ:

2
6666666666666666664

 
k cos(∆)F

−σ

!
k
√

I sin(∆)F g
√

I 0

−k√
I
F sin(∆)

 
cos(∆)F

−σ

!
gα 0

−2γ(2ρ − 1)
√

I 0

0
B@
−γ

 
Bn + 1

+2I

!

−σ

1
CA γB(1 − ρ)

0 0 2γBn

0
B@
−γ

 
1

+2B(1 − ρ)

!

−σ

1
CA

3
7777777777777777775

= 0

(6.58)
where

F ≡ exp(−στ) − 1. (6.59)

Expanding the determinant (6.58), we find the following characteristic equation for the
growth rateσ

0 = σ4 + σ3

»
γ

„
1 + 2B(1 − ρ) +

1 + I

1 − ρ

«
− 2k cos(∆)F

–

+ σ2

2
4 2γ(2ρ − 1)gI + γ2

“
1+I
1−ρ

+ 2B(1 − ρ)(1 + 2I)
”

+ k2F 2

−γ2k cos(∆)F
“
2B(1 − ρ) + 2+I−ρ

1−ρ

”
3
5

+ σ

2
664

2γ(2ρ − 1)gI [γ (1 + 2B(1 − ρ)) + k(α sin(∆) − cos(∆))F ]

−γ22k cos(∆)F
“

1+I
1−ρ

+ 2B(1 − ρ)(1 + 2I)
”

+γk2F 2
“
2B(1 − ρ) + 2+I−ρ

1−ρ

”

3
775

+

"
γ2k2F 2

“
1+I
1−ρ

+ 2B(1 − ρ)(1 + 2I)
”

+γ2k2(2ρ − 1)gI (1 + 2B(1 − ρ)) (α sin(∆) − cos ∆))F

#
. (6.60)

We next investigate two cases that depend on the size of parameterB.
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6.6.3

B(1 − ρ) = O(1)

We solve Eq. (6.60) by seeking a solution of the form

σ = γ1/2σ0 + γσ1 + . . . ,

k = γk1 + . . . . (6.61)

From the Eqs. (6.54)-(6.56) we note the following scalings:

I = I∗ + O(γ), ρ = ρ∗ + O(γ), and∆ = ∆0 + O(γ) (6.62)

where

I∗ =
B(1 − ρ∗)

(1 + 2B(1 − ρ∗))

(J − Jth,0)

(2ρ∗ − 1)
=

g

2

B(1 − g−1)

1 + B(1 − g−1)
(J − Jth,0),

ρ∗ =
1

2
(1 + g−1), and ∆0 = C. (6.63)

HereI∗ andρ∗ denote intensity and occupation probability of the QDs for the solitary
laser, respectively and the threshold current of the solitary laser is given by [23]

Jth,0 ≡ ρ∗(1 + 2B(1 − ρ∗))

(1 − ρ∗)B
=

1 + B(1 − g−1)

B(1 − g−1)
(1 + g−1).

We find from Eq. (6.60) the following sequence of problems

O(γ2) : 0 = σ4
0 + σ2

02I∗, (6.64)

O(γ5/2) : 0 =
`
4σ2

0 + 4I∗´σ0σ1

+ σ3
0

»
1 + 2B(1 − ρ∗) +

1 + I∗

1 − ρ∗ − 2k1 cos(∆0)F0

–

+ 2I∗σ0 [k1(α sin(∆0) − cos(∆0))F0

+1 + 2B(1 − ρ∗)] (6.65)

where
F0 ≡ exp(−γ1/2σ0τ) − 1. (6.66)

From Eq. (6.64), we determineσ0 as

σ0 = i
√

2I∗

and from Eq. (6.65) with
ωQD ≡

p
2γI∗, (6.67)

we findσ1 as

σ1 = −Γ +
k1

2
(α sin(∆0) + cos(∆0))

h
(cos(ωQDτ) − 1) − i sin(ωQDτ)

i
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where

Γ ≡ 1 + I∗

1 − g−1
.

The real part ofσ1 then is

Re(σ1) = −Γ − k1(α sin(∆0) + cos(∆0)) sin2(
ωQDτ

2
) (6.68)

which implies stability for all values ofk1 if (α sin(∆0) + cos(∆0)) > 0 or provided
that

k1 < kH
1 ≡ −Γ

(α sin(∆0) + cos(∆0)) sin2(ωQDτ
2

)

=
−2

(1 − cos(ωQDτ)(cos(∆0 − arctan(α))

Γ√
1 + α2

(6.69)

if α sin(∆0) + cos(∆0) < 0. From Eq. (6.69) we see that the lowest possible value for
kH
1 is for

∆0 = C = π + arctan(α) andωQDτ = π(mod 2π).

It is given by

k1c ≡ Γ√
1 + α2

. (6.70)

In terms of the original parameters, the stability condition (6.70) implies that

k < kc ≡ ΓQD
1√

1 + α2
(6.71)

whereΓQD
1 ≡ γΓ, or equivalently,

ΓQD
1 = γ

1 + R2
0

1 − g−1
. (6.72)

6.6.4

B(1 − ρ) = O(γ−1/2)

Taking into account thatB(1 − ρ) = O(γ−1/2) we introduce aO(1) quantityB1 as
B1 ≡ γ1/22B(1 − ρ∗). With the scaling ofρ = ρ∗ + O(γ) (see Eq. (6.62)) we may
expandJth from Eq. (6.57) andI from Eq. (6.56) in powers ofγ1/2, which yields

Jth = 2ρ∗ +
1

B(1 − ρ∗)
ρ∗ + O(γ) = 2ρ∗ + γ1/22ρ∗B−1

1 + O(γ),

I = I∗ + γ1/2I1 + O(γ) (6.73)

where we have defined the steady state intensity of the solitary laserI∗ in the limit
γ → 0 and its first order correctionI1

I∗ =
1

2

1

2ρ∗ − 1
(J − 2ρ∗) =

g

2
(J − (1 + g−1)), (6.74)

I1 = −g

2
B−1

1 J. (6.75)
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Inserting Eq. (6.61) and Eq. (6.73) into the characteristic equation (6.60) we find the
following problems forσ0 andσ1

O(γ2) : σ4
0 + σ3

0B1 + σ2
02I∗ + σ02I∗B1 = 0, (6.76)

O(γ5/2) :
ˆ
4σ3

0 + 3σ2
0B1 + 2σ02I∗ + 2I∗B1

˜
σ1

= −(σ2
0 + σ0B1)2I1

− σ3
0

»
1 + 2

1 + I∗

1 − g−1
− 2k1 cos(∆0)F0

–

− σ2
0 [B1(1 + 2I∗) − 2k1 cos(∆0)F0B1]

− σ02I∗ [1 + k1(α sin(∆0) − cos(∆0))F0]

− [2I∗B1k1(α sin(∆0) − cos(∆0))F0] (6.77)

whereF0 is defined by (6.66). Equation (6.76) admits the solution

σ2
0 = −2I∗ (6.78)

and from (6.77) with (6.78) and (6.67), we find

σ1 =
2σ0I1

4I∗ +
k1(α sin(∆0) + cos(∆0))

ˆ
(cos(ωQDτ) − 1) − i sin(ωQDτ)

˜

2

− 1

4I∗ (σ0 + B1)

»
σ04I∗ 1 + I∗

1 − g−1
+ 2I∗B1(1 + 2I∗)

–
. (6.79)

Equation (6.79) implies that

Re(σ1) = −Γ +
k1(α sin(∆0) + cos(∆0))(cos(ωQDτ) − 1)

2
(6.80)

where

Γ ≡ 1

2I∗ + B2
1

»
2I∗ 1 + I∗

1 − g−1
+

B2
1

2
(1 + 2I∗)

–
(6.81)

is the damping rate of the solitary laser [9]. Our stability conditions are now similar to
those of Eqs. (6.71)-(6.72) withΓQD

2 replacingΓQD
1 where

ΓQD
2 ≡ γΓ =

γ

2I∗ + γB2(1 − g−1)

»
2I∗ 1 + I∗

1 − g−1
+

γB2(1 − g−1)

2
(1 + 2I∗)

–
.

(6.82)

6.7

Appendix C: asymptotic analysis for a QD laser model with electrons and

holes

The microscopically based electron-hole rate equation model describe the evolution of
the charge carrier densities in the QD (ne andnh), the carrier densities in the reservoir
(we andwh) (e,h stand for electrons and holes, respectively), and the photon density
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nph. Please see Chapter 1 of this book for the equations with dimensions while the
dimensionless form is given in Eqs. (6.11)-(6.15). To reformulate the equations we
introduced the new dimensionless variables

I ≡ nphA, Ne/h ≡ ne/h/NQD, We/h ≡ we/h/Nsumand t′ ≡ t/τp, (6.83)

and the dimensionless parameters:

g ≡ ΓWANQD

2κ
, γ ≡ W

2κ
, k ≡ 1

2κ

K

τin
, τ ≡ 2κτec, (6.84)

s
in/out

e/h ≡ 1

W
S

in/out

e/h , c ≡ BNsum

W
, J ≡ j

e0NsumW
. (6.85)

By formulating dimensionless equations in terms of deviations from the steady state
and by taking advantage of the small value ofγ → 0, we showed in Ref. [26] that the
five rate equations without feedback can be reduced to three equations. Supplemented
by the optical feedback term [19], they consist of four equations for the deviation of the
intensity from its steady state,y, the phase of the electrical fieldφ, and the deviations
ue/h of the QD occupation probabilities from their steady state values. Specifically the
new dynamic variablesy, ue anduh are defined via

I = I∗(1 + y) and Ne/h = N∗
e/h +

√
γωg−1ue/h (6.86)

where the superscript∗ denotes the steady state values of the solitary laser.
The new set of rate equations is given by

y′ =(ue + uh)(1 + y)

+ 2εζ
p

(1 + y)(1 + y(s − sc)) cos(C − φ(s − sc) + φ), (6.87)

φ′ =α
1

2
(ue + uh)

− εζ

s
1 + y(s − sc)

1 + y
sin(C − φ(s − sc) + φ), (6.88)

u′
e = − 1

2
y − ε(sin

e + sout
e )ue

− ε(ue + uh)I∗ − ε(ueN
∗
h + N∗

e uh) + O(γ), (6.89)

u′
h = − 1

2
y − auh

− ε(ue + uh)I∗ − ε(ueN
∗
h + N∗

e uh) + O(γ) (6.90)

where prime means differentiation with respect to the dimensionless times ≡ ωt′ =

ωt/τp and
ω ≡

p
2γI∗ (6.91)

is the RO frequency of the solitary laser. Equation (6.91) is identical toωQW given by
(6.37) andωQD given by (6.67).I∗, N∗

e , N∗
h are dimensionless steady state values of
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the solitary laser that need to be computed numerically. The new feedback amplitude
ζ = O(1), the delaysc the small parameterε, anda are defined by

ζ ≡ k

γ
, sc ≡ ωτ, ε ≡

r
γ

2I∗ , and (6.92)

a ≡ ε(sin
h + sout

h ). (6.93)

The dimensionless scattering rates that also need to be computed numerically are
denoted bysin

e , sout
e , sin

h , sout
h . As we shall now demonstrate, valuable information

can be extracted from these equations on the basis of simple scaling assumptions.

6.7.1

External cavity modes

The basic solutions are the external cavity modes (ECMs). Analog to Sec. 6.6.1 they
are defined as the steady state solutions fory, ue, uh, and a phase that changes linearly
in time

φ = −C
s

sc
+ ∆

s

sc
(6.94)

with ECM frequency∆ ≡ σsc. From (6.87) and (6.88), we find that∆ satisfies the
following transcendental equation

∆ = C − εζsc (α cos(∆) + sin(∆)) (6.95)

which implies that∆ ≃ C asε → 0, i.e. ∆ is independent of the feedback amplitude
ζ, in first approximation. For the subsequent asymptotics we write

∆ = ∆0 + O(ǫ) (6.96)

with ∆0 = C. From (6.87), we also note that

ue + uh = −2εζ cos(∆) (6.97)

which indicates that bothue anduh areO(ε) small. From Eq. (6.89), we then find that
y is O(ε2) small. These scaling laws forue, uh, andy are useful when we reorganize
the coefficients of the characteristic equation in powers ofε. Three cases were explored
in [26] which we now examine.

6.7.2
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Stability

From the linearized equations, we determine the following condition for the growth
rateµ:
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˛̨
˛̨
˛̨
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α
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0

0
B@
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e

+I∗ + N∗
h

!

−µ

1
CA −ε (I∗ + N∗

e )

− 1
2

0 −ε (I∗ + N∗
h)

0
B@

−a

−ε(I∗ + N∗
e )

−µ

1
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˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨
˛̨

=0

(6.98)
where

F ≡ 1 − e−µsc . (6.99)

Expanding the determinant, we obtain

µ4 + µ3
h
(sin

e + sout
e + 2I∗ + N∗

h + N∗
e )ε + a + 2εζ cos(∆)F

i

− µ2

2
64−(1 + y) −

2
64

ε
`
sin

e + sout
e + I∗ + N∗

h

´
(a + ε(I∗ + N∗

e ))

−ε2 (I∗ + N∗
h) (I∗ + N∗

e ) + ε2ζ2F 2

+2εζ cos(∆)F
`
a + ε(2I∗ + N∗

e + N∗
h + sin

e + sout
e )

´

3
75

3
75

+ µ

2
666666664

ε2ζ2F 2
`
a + ε(2I∗ + N∗

e + sin
e + sout

e + N∗
h)
´

+2εζ cos(∆)F

2
64ε

 
sin

e + sout
e

+I∗ + N∗
h

!0
B@

a

+ε(I∗ + N∗
e )

−ε2(I∗ + N∗
h) (I∗ + N∗

e )

1
CA

3
75

−εζ(1 + y) sin(∆)Fα

+2εζ cos(∆)F 1
2
(1 + y) + 1

2
(1 + y)

ˆ
a + (sin

e + sout
e )ε

˜

3
777777775

+ε2ζ2F 2

"
ε

 
sin

e + sout
e

+I∗ + N∗
h

! 
a + εI∗

+εN∗
e

!
− ε2 (I∗ + N∗

h) (I∗ + N∗
e )

#

−2εζ(1 + y) sin(∆)F α
4

ˆ
a + (sin

e + sout
e )ε

˜

+εζ cos(∆)F 1
2
(1 + y)

ˆ
a + (sin

e + sout
e )ε

˜
.

(6.100)

6.7.3

Similar carrier lifetimes τe and τh (case S)

We seek a solution of the form

µ = µ0 + εµ1 + . . . (6.101)
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and assume thatsin
h + sout

h = O(1). Inserting (6.93), (6.96) and (6.101) into (6.100),
we obtain the following sequence of problems forµ0 andµ1

O(1) : µ4
0 + µ2

0 = 0, (6.102)

O(ε) : 4µ3
0µ1 + 2µ0µ1

+ µ3
0

h
sin

e + sout
e + 2I∗ + N∗

h + N∗
e + sin

h + sout
h + 2ζ cos(∆0)F0

i

+ µ0

"
−ζ sin(∆0)F0α

+ζ cos(∆0)F0 + 1
2
(sin

h + sout
h + sin

e + sout
e )

#
= 0, (6.103)

where we have introduced
F0 ≡ 1 − e−µ0sc . (6.104)

The solution of Eq. (6.102) is
µ2

0 = −1

and from (6.103), we then obtain

µ1 = −Γ − 1

2
ζF0(cos(∆0) + sin(∆0)α) (6.105)

where

Γ ≡ 1

2

»
sin

e + sout
e

2
+ 2I∗ + N∗

h + N∗
e +

sin
h + sout

h

2

–
(6.106)

is the damping rate of the solitary laser [26]. Using (6.99) andλ0 = i, (6.105) then
implies that

Re(µ1) = −Γ − 1

2
ζ(1 − cos(sc))(cos(∆0) + sin(∆0)α) (6.107)

= −Γ − ζ sin2(
sc

2
)(cos(∆0) + sin(∆0)α).

The stability condition now is

ζ < ζH ≡ − Γ

sin2( sc
2

)(cos(∆0) + sin(∆0)α)
, (6.108)

if α sin(∆0) + cos(∆0) < 0. The lowest possible value forζH is for

∆0 = C = π + arctan(α) andsc = π(mod 2π).

It is given by

ζc ≡ Γ√
1 + α2

. (6.109)

In terms of the original parameters, the stability condition is the same as for (6.71)-(6.72)
with ΓS replacingΓQD

1 where

ΓS ≡ γ

2

»
sin

e + sout
e

2
+ 2I∗ + N∗

h + N∗
e +

sin
h + sout

h

2

–
. (6.110)

.
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6.7.4

Different carrier lifetimes τe and τh and a = O(1)

Assuming thatsin
h + sout

h = O(ε−1) or equivalentlya = O(1), we now find from
(6.100) thatµ0 satisfies

O(1) : µ4
0 + µ3

0a + µ2
0 + µ0

a

2
= 0 (6.111)

which is analyzed in [26]. We note thatζ does not appear in (6.111) meaning that the
feedback is too weak (k = O(γ)) to have an effect in this case.

6.7.5

Very small scattering lifetime of the holes ( a = O(ǫ−1))

We next assume that
a =

a1

ε
(6.112)

wherea1 ≡ ε2(sin
h + sout

h ) = O(1). Inserting (6.112) into (6.100), we now find the
following problems forµ0 andµ1

O(ε−1) : a1µ
3
0 + µ0

a1

2
= 0 (6.113)

O(1) : 3a1µ
2
0µ1 + µ1

a1

2
+ µ4

0

− λ2
0

h
−1 −

“
sin

e + sout
e + I∗ + N∗

h

”
a1 − 2ζ cos(∆0)F0a1

i

− 2ζ sin(∆0)F0
α

4
a1 + ζ cos(∆0)F0

1

2
a1 = 0 (6.114)

whereF0 is defined in (6.104). The solution of (6.113) is

µ2
0 = −1

2

and from (6.114), we then obtain

µ1 = −Γ − ζ

2
F0(cos(∆0) + sin(∆0)α) (6.115)

where

Γ ≡ 1

2

»
1

2a1
+ sin

e + sout
e + I∗ + N∗

h

–
(6.116)

is the damping rate of the ROs for the solitary laser [26]. Using (6.99) andµ0 = i/
√

2,
(6.115) implies

Re(µ1) = −Γ − 1

2
ζ(1 − cos(sc))(cos(∆0) + sin(∆0)α)

= −Γ − ζ sin2(
sc

2
√

2
)(cos(∆0) + sin(∆0)α). (6.117)

The stability conditions are the same as for (6.71)-(6.72) withΓDa replacingΓQD
1

where

ΓDa ≡ γ

2

»
1

2a1
+ sin

e + sout
e + I∗ + N∗

h

–
. (6.118)
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