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The optical modulation properties of a semiconductor quantum-dot laser, as observed
under optical injection, depend crucially on the internal carrier-carrier scattering processes
within the device. In this paper we show that in order to predict the modulation properties
of the laser it is most important to know the dynamics observed during the laser turn-on.
In contrast to quantum-well lasers the turn-on damping of quantum-dot devices depends
strongly nonlinear on the carrier-scattering lifetimes. Thus, di�erent QD laser devices with
internally scattering processes taking place on completely di�erent time scales, can yield
equal injection dynamics due to a qualitatively similar turn-on dynamics.
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1. Introduction

Quantum-dot (QD) laser are multilayer
semiconductor lasers where the inversion is
reached within embedded zero dimensional
structures that form in a self organized way
during the growth process. The presence of both
electrons and holes within the QDs allows for
stimulated emission, and ampli�cation of an
electromagnetic �eld travelling inside the device.
These QD lasers are promising candidates for
telecommunication applications in optical �bers
[1�4] due to their high temperature stability,
their low value of the threshold current density
and their emission wavelength around 1.3µm.
Further these lasers show highly damped turn-
on dynamics [5, 6] and, related to that, a low
sensitivity to optical feedback [7�10].

To date the optical and electrical modulation
properties of conventional quantum well lasers
are fairly well understood [11],[12]. However, the
dynamics of QD lasers under optical injection
[13, 14] and electrical modulation [15, 16] remains
in the focus of recent investigations. One reason
for that is the additional dynamical degree of
freedom within the device induced by the coupling
of the zero-dimensional QDs to the surrounding

two-dimensional electron reservoir. For the case of
optical injection, where a laser is unidirectionally
coupled to an injecting master laser, QD lasers
show smaller chaotic regions and less complicated
trajectories compared to other laser devices [14].
The details of the locking behavior and the
bifurcation structure sensitivity depends on the
band structure and thus on the carrier-scattering
lifetimes as shown in [13].

In this paper we want to show that the
dependence of the optical modulation properties
on the carrier lifetimes is strongly nonlinear and
directly related to the turn-on damping rate
of the laser. Since the turn-on damping shows
a pronounced maximum for carrier-scattering
lifetimes on the order of the relaxation oscillation
(RO) frequency, as shown in [15], qualitatively
similar turn-on dynamics of QD lasers can be
found for either very small or very large lifetimes.
Comparing the optical modulation properties for
both cases allows to judge whether the details of
the internal dynamics are crucial or whether the
resulting turn-on dynamics su�ces to predict the
dynamic behavior under optical injection.

The structure of the paper is as follows. After
introducing the model in Section 2 we discuss
the turn-on dynamics of di�erent QD lasers in
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Section 3. Subsequently the electrical modulation
properties as well as the dynamics with optical
injection are presented in Section 4 and Section 5,
respectively, both under the aspect of highlighting
the role of the material model.

FIG. 1. (a) Scheme of the optically injected QD
laser. QDs (light blue pyramids) are surrounded by
a quantum well (QW) (b) Energy diagram of the
band structure across a QD. hν labels the ground
state (GS) lasing energy. ∆Ee and ∆Eh mark the
energetic distance of the GS from the QW band edge
for electrons and holes, respectively. ∆e and ∆h denote
the distance to the bottom of the QD con�nement
potential.

2. Model

The band structure of the QDs embedded
in a quantum well laser structure is shown
in Fig. 1. The con�nement energies ∆Ee and
∆Eh mark the energy di�erences between the
QD ground state and the band edge of the
surrounding quantum well (QW) for electrons
and holes, respectively. Our QD laser model is
based on the model described in [5, 6] which
has shown good quantitative agreement with
experiments regarding the turn-on behavior and
the modulation response of QD lasers [6].

For the modeling of the optical injection
we use the ansatz already described [13] which
is consistent with approaches made in [11, 17].
The set of six nonlinearly coupled rate equations
displayed below describes the dynamics of the
photon density nph, the phase of the electric �eld
Φ, the electron and hole occupation probabilities
in the QDs, ρe and ρh, and the electron and hole
densities in the QW, we and wh, respectively:

ṅph = nph
[
2W̄ZQDa (ρe + ρh − 1)− 2κ

]
+
β

A
2ZQDa Rsp(ρe, ρh) +

2K
τin

√
nphn

0
ph cos(2π∆νinjt− Φ), (1)

Φ̇ =
α

2
[
2W̄ZQDa (ρe + ρh − 1)− 2κ

]
+
K

τin

√
n0
ph

nph
sin(2π∆νinjt− Φ), (2)

ρ̇e = −W̄A(ρe + ρh − 1)nph −Rsp(ρe, ρh) + Sin
e (we, wh)(1− ρe)− Sout

e (we, wh)ρe, (3)

ρ̇h = −W̄A(ρe + ρh − 1)nph −Rsp(ρe, ρh) + Sin
h (we, wh)(1− ρh)− Sout

h (we, wh)ρh, (4)

ẇe =
j

e0
− 2NQD

[
Sin
e (1− ρe)− Sout

e ρe
]
− R̃sp, (5)

ẇh =
j

e0
− 2NQD

[
Sin
h (1− ρh)− Sout

h ρh
]
− R̃sp. (6)

Here, W̄ is the Einstein coe�cient for the coherent
interaction and ZQDa = aLAN

QD
a is the number

of active QDs inside the waveguide (the factor
2 accounts for the spin degeneracy of the QD
levels). aL is the number of self-organized QD

layers and A is their in-plane area. NQD
a is

the density of dots per unit area of the active
QDs. As a result of the size distribution and
material composition �uctuations of the QDs
the gain spectrum is inhomogeneously broadened,
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and only a subgroup (density NQD
a ) of all QDs

(NQD) matches the mode energies for lasing. The
spontaneous emission from one QD is taken into
account by Rsp(ρe, ρh) = Wρeρh, where W is
the Einstein coe�cient for spontaneous emission
resulting from incoherent interaction of the QD
with all resonator modes. Please note that the
coe�cients W̄ and W di�er by three orders of
magnitude, and see e.g. [13] for details on their
derivation. β is the spontaneous emission factor,
measuring the probability that a spontaneously
emitted photon is emitted into the lasing mode.
Losses in the QW are taken into account by R̃sp =
BSwewh. 2κ are the optical intensity losses. ninj

is the injected photon density in the active region
of the QD laser per cavity round trip time and
∆νinj = νinj − νL is the input detuning between
the injecting laser frequency and the frequency
of the solitary QD laser. The time τin for one
roundtrip of the light in the cavity of length L
is given by τin = 2L√εbg/c with background
permittivity εbg. n

0
ph designates the steady state

photon density without injection (K = 0) which
of course depends on all operation parameters.

The linewidth enhancement factor α in
Eq. (2) models the phase-amplitude coupling
of the electric �eld E ∼ √

nphe
iφ. For QD

lasers this quantity α is problematic as discussed
recently [18], because it cannot account for the
independent dynamics of resonant (ρe, ρh) and
nonresonant (we, wh) charge carriers [18�20] and
eventually neglects a degree of freedom of the
dynamics. It was, however, shown that QD laser
models based on an α parameter still yield reliable
results as long as only the transitions between
stable and unstable behavior, i.e., Hopf and
saddle-node bifurcations, are investigated [18, 20].
Since this is the focus of our paper we choose
α to be constant but keep in mind that it may
vary with the operation conditions and that more
complex bifurcation scenarios may be missed.

The in- and out-scattering rates for electrons
and holes between QD and QW are denoted
by Sin

e , Sout
e and Sin

h , Sout
h as depicted in

Fig. 1. They result from microscopic calculations
of the Coulomb interaction between the 2D

Table 1. Numerical parameters used in the simulation
unless stated otherwise

symbol value symbol value
W 0.44ns−1 A 4 · 10−5cm2

W̄ 0.33µs−1 NQD
a 2.7 · 1010cm−2

2κ 0.1ps−1 NQD 1 · 1011cm−2

β 2.2 · 10−3 BS 500ns−1nm2

aL 15 τin 24ps
ZQD

a 1.8 · 106 α 0.9
T 300K ∆Ee(∆Eh) 74meV (40meV )
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FIG. 2. Turn-on damping ΓROand relaxation
oscillation frequency fRO of a QD laser with di�erent
internal steady state scattering lifetimes. The green
circles denote the di�erent QD lasers discussed in the
following. The pump current is set to j = 2jth (note
that the threshold current jth changes with τ)

carrier reservoir and the zero dimensional QD
(please note that in- and out scattering rates
are connected by detailed balance [5, 21]). The
microscopically calculated carrier scattering rates
used here are documented in [13]. They depend
on the carrier densities in the carrier reservoir and
on the band structure of the device. In contrast
to our previous paper [13] where we concentrated
on the impact of the band structure on the turn-
on dynamics and the locking behavior, the focus
of the present work is to resolve the role of
the material model for the modulation properties
by comparing QD lasers with equal turn-on
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parameters but di�erent internal dynamics. This
is possible because the turn-on damping ΓRO as
well as the turn-on frequency fRO depend in a
strongly nonlinear manner upon the scattering
lifetimes (de�ned by τe,h = (Sin

e,h + Sout
e,h )−1) as

can be seen in Fig. 2. Consequently a QD laser
can have similar values of ΓRO for completely
di�erent carrier scattering mechanisms. The green
circles in Fig. 2 mark the di�erent QD lasers
studied in the following. They are chosen to cover
all three di�erent dynamical regimes introduced
in [15], namely the �constant reservoir carrier
density regime� left of the maximum RO damping
found for slow scattering rates, the �coupled
regime� around the maximum and the regime of
�synchronized QD and QW dynamics� found for
very high scattering rates.

3. Turn-on dynamics

We start our discussion by considering the
shallow quantum dot laser with one ground state
as shown Fig. 1. The steady state lifetimes of this
laser are τe = 62 ps, τh = 15 ps for a current
of j = 2jth and therefore this laser lies in
the intermediate regime left of the overdamped
regime of Fig. 2 and shows strongly damped turn-
on dynamics. Its turn-on transients for di�erent
pump currents j are plotted in Fig. 3b. By either
decreasing or increasing the carrier lifetimes of
this shallow QD laser by an order of magnitude
we �nd reappearing oscillations in the turn-on
as can be seen in Fig. 3a and c. Experimentally
this variations in the carrier lifetimes can be
achieved by the presence of excited states, by
di�erent dot size (di�erent con�nement energies)
or by variations in the device temperature.
However for our purpose we simply use the
microscopic rates of the shallow dot laser and
multiply them by a factor of 0.1 (Fig. 3a) and
50 (Fig. 3c), respectively. Please note that the
QD laser considered here has a much higher
gain coe�cient g ∼ 2ZQDa W̄ if compared to the
laser modeled in [13]. The reason is that in the
present paper a much higher percentage (30%) of

the inhomogeneously broadened QD ensemble is
actually participating in the lasing process. Thus,
although equal functions for the microscopic rates
of the shallow QD are used, the steady states of
all carrier densities vary with the gain leading to
di�erent turn-on transients and later on also to
di�erent injection locking behavior.

For a better comparison the turn-on
dynamics for the di�erent lasers have been �tted
with a damped sinusoidal function. The results
for fRO and ΓRO are displayed in Fig. 3d and
e, respectively, as a function of multiples of the
respective threshold current jth. The dependence
of fRO and ΓRO on the electrical pump current
j depends on the di�erent timescales embedded
in the dynamic equations (1)-(6). For the case of
slow scattering rates (shallow dot× 0.1) analytic
equations, published in a previous publication
[22], exist. They read:

2πfRO×0.1 =
√

4κW̄An∗ph, (7)

ΓRO×0.1 =
W

2

[
1 +

2κ

2ZQDa W̄

]
+ W̄An∗ph

+
1
4

[ 1
τ∗e

+
1
τ∗h

]
. (8)

The values resulting from Eqs. (7) and (8),
using the steady state values n∗ph, τ

∗
h and τ∗e

obtained from numeric integration, are plotted
as dashed green line in Fig. 3d and e and match
nicely with the results obtained by �tting the
turn-on dynamics. However, Eqs. (7) and (8)
break down for the case of the very fast rates
(shallow dot ×50), as for this case di�erent
scalings have to be used in the asymptotic
derivation.

The nearly instantaneous coupling between
the QDs and the reservoir leads to turn-on
dynamics that are not mainly determined by the
carrier scattering lifetimes between QW and QD
but by the photon lifetime and the carrier losses
inside the QW (as known for QW lasers). In the
limit τeω

RO � 1 the rate equation system can
be reduced by using a steady state relation for
ρe(we) and ρh(we) which can be derived from
ρ̇e = ρ̇h = 0. In this limit of instantaneous
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FIG. 3. Turn-on oscillations for QD lasers with three di�erent internal carrier-scattering lifetimes: (a)10-fold
slower rates than microscopically calculated, (b) rates as obtained for shallow dot QD laser, (c) 50-fold faster
rates. The pump current varies between j = 1.5jth and j = 5jth (note that the threshold current changes with
τ) (d) and (e) show the RO frequency and damping rates, respectively, in terms of the pump current as obtained
by �tting the turn-on dynamics plotted above close to the �xed point. Green dashed lines: Analytic results for
10-fold slower rates given by Eqs.(7),(8)

coupling between QW and QD the dynamics is
described by 2 dynamic variables (we and ρe)
and fROτe→0 and ΓROτe→0 can be obtained analytically

from linearizing the reduced rate equation system
around the steady state. The equations read:
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2πfROτe→0 =
√

4κW̄An∗ph

√
∂(ρe + ρh)
∂(we/NQD)

, (9)

ΓROτe→0 =
1
2

×
[
2W̄An∗ph

∂(ρe + ρh)
∂(we/NQD)

+BS(w∗h + w∗e)
]

(10)

The values resulting from Eqs. (9) and (10)
are plotted as horizontal lines in Fig. 2 and
describe nicely the limits of fRO and ΓRO if
τe → 0. Further the appearance of the derivative
∂(ρe+ρh)
∂(we/NQD)

≈ 0.15 in Eq.(9) underlines that

reappearing RO oscillations in the coupled regime
can only be found if the ratio between in- and
out scattering rates depends on the carrier density
in the reservoir. Otherwise the derivative of ρe,h
which is in this limit given by ρe,h = (1 +
Soute,h /S

in
e,h)−1 vanishes.

The idea now is to compare the modulation
properties for lasers with equal turn-on frequency
fRO and damping ΓRO in order to single out the
impact of the material model. As indicated by
the thin horizontal lines in Fig. 3(d) and (e) the
two lasers (×50 and ×0.1) have equal turn-on
parameters for the currents: j×0.1 = 2.6jth and
j×50 = 3.5jth. The original shallow dot laser has
equal RO frequency at j×1 = 2jth however its
damping is much higher as can be seen in Fig.
3b.

4. Electrical modulation response

The electrical modulation response of the
di�erent lasers which have been discussed above
is plotted in Fig. 4a. The pump currents were
chosen to yield equal fRO for the di�erent lasers
(see horizontal line in Fig. 3d) . To obtain the
results, the laser was operated without optical
injection (K = 0) but with an electric pump
current that was modulated by a small amplitude
sinusoidal signal. The response curves of the
di�erent QD lasers (di�erent internal scattering
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FIG. 4. (a) Electrical modulation response of a
quantum dot laser and (b) corresponding turn-
on dynamics with the di�erent internal scattering
lifetimes already used in Fig. 3. The pump current was
chosen to yield equal RO frequency for all 4 lasers (see
thin horizontal line in Fig. 3d).

lifetimes) appear to be very di�erent. For the
very fast rates a pronounced resonance peak at
the turn-on frequency fRO is found (solid brown
curve), while the QD laser with very slow rates
(red dashed curve) shows a strongly decreasing
response curve which is similar to the response of
the shallow QD laser for modulation frequencies
below 3GHz. Nevertheless there is a resonance
peak for the slow carrier dynamics but it appears
much below the 3dB mark.

The explanation can be given by looking
at the internal timescales. While the fast
scattering processes (shallow dot ×50) result in
an enslavement of the QD population leading
to a response curve as known from QW lasers,

given by H(ω) = ω4
0

(ω2
0−ω2)2+4Γ2

ROω
2 with ω2

0 ≈
ω2
RO + Γ2

RO. The slow scattering between QD
and reservoir (shallow dot and shallow dot ×0.1),
on the other hand, leads to an additional degree
of freedom in the dynamics and thus additional
e�ects in the response function. For this regime
the relatively slow dynamics of the carrier transfer
between QD and QW becomes important for
the electrical modulation properties and the
transfer function for the modulation response has
an additional decaying contribution. This e�ect
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FIG. 5. Two-parameter bifurcation diagram of the
shallow-dot QD laser introduced above. Colored
shading labels the number of maxima found in the
time series per period, and the yellow shading shows
the region of cw laser emission (locking tongue).

was also recently reported in [15, 16]. Thus, as
soon as the carrier scattering times are on a
timescale larger than the inverse RO frequency, a
modi�ed transfer function needs to be used for the
electric modulation response that deviates from
the commonly known simple function.

However, although two of these di�erent
lasers yield equal RO frequency and damping,
evaluating the turn-on delay time allows one to
distinguish the internal carrier lifetimes as can
be seen in Fig. 4b. The delay time as well as the
photon density is much larger for the slow carrier
dynamics between QD and QW. This e�ect can
be understood analytically as reported in [23].

5. Laser dynamics under optical

injection

If the laser is subjected to external optical
injection a variety of di�erent dynamics can be
found in its time dependent output intensity as
described in detail in [11, 13]. It strongly depends
on the input laser frequency ∆νinj as well as on
its intensity K. This parameter dependence can
be best visualized in a two-parameter bifurcation

diagram where qualitatively di�erent behavior
is indicated by di�erent shading. The results
obtained by direct integration are summarized as
a contour plot showing locking tongues as known
from the Adler-equation [24]. These tongues are
the yellow regions in Fig. 5 and they represent
the parameter domain where the slave laser is
forced to emit continuous waves (cw) at the same
frequency as the injecting master laser. Outside
the yellow region the slave laser emits light that
is modulated in time showing 2 (orange area),
4(red area) or more, di�erent maxima per period.
The transition from the yellow locking region to
the pulsating solutions is formed either by a Hopf
bifurcation or a by a saddle node bifurcation on
a limit cycle (SNIPER) as indicated in Fig. 5.
Within the yellow hatched area the frequency of
the modulated light is still locked to the master
frequency.

As a result of the discussions presented in
the last section it is known that both the RO
damping and frequency depend crucially on the
pump current. Thus it is expected that changing
the pump current leads to changes in the locking
behavior of the injected laser. This can be seen
in Fig. 6. Here the results for a shallow dot
laser with rates increased by a factor of 5 are
shown for a current of j = 3.5jth and j =
5jth. Note that this laser shows qualitatively
similar turn-on dynamics as the shallow dot laser
of Fig. 5a, but with a RO frequency that is
much smaller. The dashed vertical lines in Fig. 6
mark the three major changes of the bifurcation
diagram with the current. At �rst the saddle-
node-Hopf point, i.e. the point in parameter space
where the Hopf bifurcation line meets the saddle-
node (SNIPER) bifurcation line as the border
of the locking tongue at the positive detuning
side, shifts to higher injection strength K. This
e�ect was also observed in [13] and can be
attributed to an increase in the RO damping
ΓRO. Second, the position of the period doubling
loop at the negative detuning side shifts to higher
K with increasing j, and last but not least
the width of the period doubling loop changes.
Comparing results for equal damping but di�erent
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RO frequency (not shown here) show that the
width of the period doubling loop indeed increases
with the RO frequency.

To elucidate the impact of the internal
processes we now compare the injection dynamics
for two QD lasers that show turn-on dynamics
with equal RO frequency and damping but that
have di�erent carrier lifetimes. To reach this
goal we use two QD lasers left and right of the
overdamped region in Fig. 2 (scattering rates ×50
and ×0.1) and operate them with di�erent pump
currents j (see Fig. 3 for the dependence of fRO
and ΓRO on j). At �rst it is obvious that these
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FIG. 7. Locking tongues of two QD lasers with
di�erent internal scattering lifetimes (×0.1 and ×50)
at a pump current of j = 2jth. Colored shading labels
the number of maxima found in the time series per
period, and yellow shading shows the locking region.

two lasers are much more sensitive to external
perturbations and thus show a more complicated
bifurcation diagram than the original shallow dot
laser of Fig. 5. As can be seen in Fig. 7, the
saddle-node-Hopf point as well as the position of
the period-doubling regime are equal for the two
weakly damped QD lasers. However, the exact
shape of the period-doubling regime depends on
the internal processes, which are di�erent in both
cases (the scattering rates di�er by 3 orders of
magnitude).
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6. Conclusion

We have shown that in order to predict
the optical modulation properties of a QD laser
it is most important to know the dynamics
observed during the laser turn-on. Di�erent QD
laser devices with internal scattering processes
taking place on completely di�erent time scales
can yield equal injection dynamics if they yield
qualitatively similar turn-on dynamics. However,
the electrical modulation properties depend on all
internal carrier-scattering timescales.

These results are important in conjunction
with possible model reductions. That is, in order

to predict the turn-on dynamics of a QD laser
over a range of di�erent operating conditions it
is crucial to microscopically include the complete
set of nonlinear internal scattering processes.
However, for describing optical injection or
feedback experiments with a QD laser where
the turn-on dynamics is known, it is possible to
signi�cantly reduce the model.
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