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Abstract
In this thesis, I study the complex dynamics of different semiconductor laser structures
under optical injection and under external optical feedback.

In the first part of this thesis, I concentrate on nanostructured quantum dot (QD)
lasers. Here, the impact of the internal nonlinear carrier dynamics – and thus the impact
of the band structure – on the dynamics of these QD lasers is intensively studied. There-
fore, a microscopically based rate equation model is used, in which the carrier scattering
dynamics between the discrete energy levels of the QDs and the surrounding carrier
reservoir is described by Coulomb scattering rates. These rates depend nonlinearly on
the carrier densities in the carrier reservoir and thus on the pumping conditions. Fur-
ther, they strongly depend on the energy spacing between the band edge of the carrier
reservoir and the discrete QD levels, which permits to describe different band structures.
The impact of the scattering rates on the damping of the relaxation oscillations (ROs)
of the solitary laser are discussed in detail. Beside the impact of the band structure, I
investigate the dependence of the complex dynamics of a QD laser under optical injec-
tion on the pump current and on the phase-amplitude coupling (α-factor). By means of
multiscale analysis, analytical approximations are derived for the saddle-node and Hopf
bifurcations bordering the region of stable continuous wave emission as well as for a
codimension-2 zero-Hopf point acting as organizing center for more complex dynamics,
and the minimal injection strength, below which no Hopf instability may occur. More-
over, for the QD laser subject to optical feedback, an analytic expression for the first
supercritical Hopf bifurcation marking the boundary for stable continuous wave emission
is obtained. The analytic expressions for the bifurcation lines and bifurcation points re-
veal their dependence on the RO damping, and thus on the band structure, as well as on
the α-factor. Further, the possibility to employ the QD laser subject to feedback as an
excitable optical unit is discussed. By adding white noise to the dynamic equation for
the electric field in the cavity, coherence resonance is observed in the excitable regime,
and its dependence on the pump current is studied.

In the second part of this thesis, the response of a passively mode-locked two-section
laser to external optical feedback is studied. This type of laser permits to realize compact
devices that are well suited for optical telecommunication applications due to their ability
to emit trains of short optical pulses with a high repetition frequency of 40 GHz, which
is an upcoming IEEE standard. One major drawback of passively mode-locked lasers
is their relatively large timing jitter degrading the quality of the pulse stream and thus
increasing the bit-error rate. Resonant optical feedback provides an easy-to-handle way
of reducing the timing jitter. I analyze the resonances of the inter-pulse interval time
and the external delay time, and it is shown that the resonances can be ordered in a
Farey-sequence similar to the resonances in externally driven systems, which allows for
easy prediction of the laser dynamics. Further, I discuss that the timing jitter can be
reduced drastically in the main resonances, where the largest stabilizing effect of the
feedback is obtained, which is of relevance for applications.



Zusammenfassung
In der vorliegenden Arbeit untersuche ich die komplexe Dynamik verschiedener Halblei-
terlaserstrukturen unter optischer Injektion und optischer Rückkopplung.

In dem ersten Teil der Arbeit stehen nanostrukturierte Quantenpunktlaser im Vorder-
grund. Hierbei analysiere ich den Einfluss der internen, nichtlinearen Ladungsträgerdy-
namik von Quantenpunktlasern – und damit der Bandstruktur – auf die Laserdynamik.
Dafür wird ein Ratengleichungsmodell verwendet, bei dem der Ladungsträgeraustausch
zwischen den diskreten Energieniveaus der Quantenpunkte und dem umgebenden La-
dungsträgerreservoir durch mikroskopisch berechnete Coulomb-Streuraten beschrieben
wird. Zum einen hängen diese nichtlinear von der Konzentration der Ladungsträger
in dem Ladungsträgerreservoir und damit von dem Pumpstrom ab und zum anderen
werden sie von dem energetischen Abstand zwischen den Bandkanten des Reservoirs
und den Quantenpunktniveaus bestimmt. Letzteres ermöglicht es, den Einfluss unter-
schiedlicher Bandstrukturen auf die Dämpfung der Relaxationsoszillationen (ROs) des
Lasers zu untersuchen. Für den optisch injizierten Quantenpunktlaser betrachte ich ne-
ben dem Einfluss der Bandstruktur zudem die Auswirkungen des Pumpstroms sowie
der Phasen-Amplitudenkopplung (α-Faktor) auf die komplexe Laserdynamik. Mit Hil-
fe einer Multiskalenanalyse werden analytische Ausdrücke für die Sattel-Knoten und
Hopf-Bifurkationslinien, die den Synchronisationsbereich (Arnoldzunge) begrenzen, her-
geleitet. Des Weiteren werden analytische Ausdrücke für den Kodimension-2 Sattel-
Knoten-Hopf-Punkt, der ein Organisationszentrum für komplexere Dynamik darstellt,
sowie für die Injektionsstärke, unterhalb derer keine Hopf-Bifurkation möglich ist, herge-
leitet. Auch für den Laser mit externer Rückkopplung wird ein Ausdruck für die Rück-
kopplungsstärke, bei der die erste Hopf Instabilität auftritt, abgeleitet. Die Formeln
für die Bifurkationslinien und Bifurkationspunkte zeigen deren Abhängigkeit von der
Dämpfung der ROs sowie von dem α-Faktor auf. Des Weiteren wird gezeigt, dass der
Quantenpunktlaser unter optischer Rückkopplung in einem bestimmten Parameterbe-
reich anregbar ist. Unter dem Einfluss additiven, weißen Rauschens weist das System in
diesem Regime Kohärenzresonanz auf, deren Pumpstromabhängigkeit untersucht wird.

In dem zweiten Teil der Arbeit untersuche ich den Einfluss zeitverzögerter optischer
Rückkopplung auf passiv modengekoppelte Zweisektionslaser. Diese zeichnen sich durch
regelmäßige Pulsemission mit einer hohen Wiederholrate von bis zu 40GHz aus. Diese
entspricht dem nächsten IEEE-Standard und ist daher von besonderem Interesse für die
digitale, optische Datenübertragung. Ein gravierender Nachteil dieser Laser ist, dass der
zeitliche Abstand aufeinanderfolgender Pulse (timing jitter) relativ großen Fluktuatio-
nen unterworfen ist, was zu einer erhöhten Bit-Fehlerrate führt. Optische Rückkopplung
stellt eine einfache Möglichkeit dar, den timing jitter zu reduzieren. In der vorliegen-
den Arbeit wird gezeigt, dass sich zwischen dem zeitlichen Abstand benachbarter Pulse
und der Umlaufzeit des Lichts in der externen Kavität ein ähnliches Resonanzverhalten
einstellt, wie es von dynamischen Systemen mit externem periodischen Antrieb bekannt
ist. Dadurch können die Resonanzen in einer Farey-Folge angeordnet werden, was ei-
ne einfache Vorhersage der Laserdynamik ermöglicht. Des Weiteren wird gezeigt, dass
innerhalb der Hauptresonanzen die Pulsfolge durch die Rückkopplung stabilisiert wird,
wodurch eine deutliche Verringerung des timing jitters bewirkt wird.
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CHAPTER

ONE

INTRODUCTION

Nowadays, semiconductor lasers and amplifiers play a key role for many technological
applications as for example high bit rate optical communication [KNO00], optical inter-
connects [KEE03], and electro-optic sampling [REI99]. Further, they are of importance
for biomedical applications as, for instance, optical coherence tomography [HUA91].

The first semiconductor lasers were realized in 1962 [HAL62, NAT62, HOL62, QUI62].
These early devices were based on p-n homojunctions, in which p and n doped regions
were made out of the same semiconductor material (GaAs). Thus, the band gap on both
sides of the junction was the same, and high pump currents and low temperatures were
needed to reach inversion. As a consequence, these bulk semiconductor lasers could only
be operated at low temperatures, and their lifetimes were too short for applications.
The breakthrough of semiconductor lasers as light sources for optical applications came
with the introduction of lasers based on a double heterostructure in 1969 by Alferov
et al. [ALF69] (see [COL12] for a review). In a double heterostructure, a quantum
film of a semiconductor material with a lower band gap is sandwiched between a bulk
material with a larger band gap forming a quantum well (QW) [KRO63]. If the quantum
film is thinner than the de-Broglie wavelength of the carriers, their energy levels are
discretized in a direction vertical to the layer. This confinement of the carriers in one
spatial dimension yields a splitting of the energy bands of the bulk semiconductor into
energetic sub-bands, which permits lower threshold currents and continuous wave (cw)
operation at room temperature [COL12].

However, a further confinement of the carries is possible: in lasers based on quantum
wires, the carries are confined in two spatial dimensions, and, eventually, in quantum
dot (QD) based semiconductor lasers, the charge carriers are confined in all three spatial
dimensions on a length scale smaller than the de-Broglie wavelength [BIM99], i.e, the
typical extension of QDs is on the order of 10 nm . Due to this carrier confinement in a
QD laser, the optical transition takes places between discrete energy levels broadened to
Lorentzians by the finite decay time of the polarization [CHO99]. This permits a further
threshold reduction and a higher temperature stability with respect to QW devices
[BIM08].

In contrast to the encouraging theoretical predictions [DIN76, ARA82, ASA86a], the
first QD lasers based on lattice-matched heterostructures were pulsed lasers operating

1



1. Introduction

only at low temperature up to 77K , and they had unpractical high threshold current
densities [HIR94a]. A milestone on the way to commercially successful QD lasers was the
discovery of universal self-organization effects, which are known as Stranski-Krastanow
growth mode. This growth mode leads to the formation of self-similar, lens shaped QDs
admitting to produce QD devices, in which the density of QDs in the active region, i.e.,
the gain of the device, as well as their optical properties, i.e., their material composition
and their size, are easily tunable [BIM95, SHC99, SHC03, SHC07]. Most common are
ternary alloys based on the InGaAs/GaAs material system, where the optical transition
takes places at 1.3µm. This is a local minimum of attenuation, and, at the same time,
the dispersion minimum of standard single mode optical fibers making this wavelength
range of particular interest for telecommunication applications.

From a dynamical systems point of view, semiconductor lasers are characterized by
a time scale separation between the fast photon and the slower carrier subsystem, i.e.,
they are typical slow-fast systems [ERN10b]. As a consequence, their turn-on dynamics
shows damped nonlinear intensity oscillations, which are called relaxation oscillations
(ROs). The damping of the ROs is a key point in order to understand the stability
properties of the laser subject to external perturbations, for instance, optical feedback
or optical injection. QW lasers show pronounced, weakly damped ROs, while the ROs
of QD lasers are strongly damped [KUN02, MAL06, ERN07a, LUE09, LUE11a]. As a
result, QD lasers display a higher dynamical stability under optical injection [ERN10a,
KEL11a, KEL11c, PAU12] and optical feedback [SU03, HUY04, OBR03a, CAR06a,
CAR05, CAR06a, GLO12].

In QD devices, the carriers are first injected into a surrounding QW acting as a carrier
reservoir, before they scatter into the discrete energy levels of the QDs, between which
the optical transition takes place. The carrier scattering rates strongly depend on the
energy spacing between the band edge of the QW and the discrete QD levels, i.e., on the
band structure of the device. The scattering rates provide (nonlinear) carrier lifetimes of
the carriers in the QD levels, which yield additional time scales compared to QW lasers.
The energy spacings determine how these time scales compare to the carrier lifetimes in
the carrier reservoir and the photon lifetime.

For a small energy spacing, short lifetimes (large scattering rates) are obtained, which
are on the same time scale or shorter than the photon lifetime yielding overdamped, very
stable devices, which act similar to gas lasers, i.e., typical class A lasers. For large energy
spacings, long carrier lifetimes on the order of pico-seconds are obtained, which guarantee
a clear time-scale separation between the carrier and the photon subsystem (time-scale of
femtoseconds) resulting in weakly damped, less stable lasers, whose dynamics is similar
to conventional QW lasers, i.e., typical class B lasers. QD lasers lie in-between these
two limiting cases and exhibit typical dynamical features of class B and class A lasers
[ERN07a, ERN10a, KEL11c].

One particularity of semiconductor lasers is their high sensitivity to external optical
perturbations due to the relatively low reflectivity of their facets [TAR95a]. On the one
hand, this may be a disadvantage, because in applications expensive optical isolators are
needed to guarantee a stable continuous wave (cw) emission of the laser. On the other
hand, from a fundamental physics points of view, semiconductor lasers display, subject
to optical injection or optical feedback, a wealth of different dynamical regimes ranging

2



from stable cw emission, over periodical intensity modulations, to chaotic waveforms
[TAR98a].

Numerous application arise from optical injection ranging from chirp reduction [OLS85],
over a reduction of relative intensity noise [SCH86g, YAB00], and enhanced side-mode
suppression [IWA82], to a larger bandwidth under direct optical modulation [JIN06,
LAU09a], and the generation of microwave signals [SEO01, CHA07].

Moreover, semiconductor lasers subject to delayed optical feedback are ideal candi-
dates to study the stabilization of steady states and periodic orbits by non-invasive
time delayed feedback control [SCH06a, FLU07, DAH07, DAH08b, FIE08, DAH10] (see
[SCH07, SCH09a] for an overview). Further, delay synchronization of coupled lasers
[HIC11], bubbling in coupled lasers [FLU09, FLU10], and networks of delay coupled
lasers [DAH11b, DAH12] are subject of current research (see [SOR13] for a recent re-
view).

This thesis is organized in two parts. Part I deals with QD semiconductor lasers under
optical injection and optical feedback. At first, a rate equation model for a QD laser that
focuses on a microscopical modeling of the Coulomb carrier scattering dynamics between
carrier reservoir and QDs is introduced in Chapter 2. Although microscopically funded,
this modeling approach is simple enough to gain analytic insight into the impact of the
band structure, the pump current, and the phase-amplitude coupling on the complex
dynamics of the QD laser under optical injection and optical feedback. Optical injection
is discussed in Chapter 3, and Chapter 4 deals with optical feedback.

In Part II passively mode-locked (ML) QW semiconductor lasers are investigated.
Mode-locking of semiconductor lasers is the method of choice to reach short pulse widths
at high repetition rates needed to use semiconductor lasers as transmitters in fiber
based optical networks [HAU00]. Mode-locking generates an optical pulse comb with
repetition rates (∼ 40GHz [FIO11]) far above the cutoff frequency for direct current
modulation (∼ 10GHz [SUG05]). However, especially passively mode locked lasers have
the drawback of a high temporal instability of the pulse stream, which is characterized
as timing jitter. Delayed optical feedback from an external fiber loop has turned out to
be an effective control method to suppress the timing fluctuations of the pulses [SOL93,
MUL06, MER09, AVR09, BRE10, LIN10e, LIN11d, LIN11f, FIO11]. Such a closed-
loop control has the advantage that the laser generates its own control signal, which
can be modified by tuning the delay time and the strength of the feedback. As a
consequence, real-time computation of the control signal can be avoided, which is crucial
for ML lasers due to their fast pulse-repetition dynamics. In this thesis, a delay equation
model of a passively mode-locked laser [VLA04, VLA05, VLA11] is extended to take into
account delayed feedback control. This simple modeling approach delivers insights into
the resonance structure of the inter-spike interval time, i.e., the temporal distance of
subsequent pulses, and the delay time. Moreover, it is shown how the timing jitter is
influenced by this resonance structure.

Eventually, a summary of the results of the thesis and an outlook to possible future
investigations of QD lasers subject to optical injection and delayed optical feedback is
given in Chapter 6. Moreover, Chapter 6 provides an outlook on possible continuations
of the work on passively ML semiconductor lasers subject to optical feedback.
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Quantum dot laser





TABLE OF SYMBOLS

Table 1.1.: List of corresponding quantities in the three different coordinate systems used in Part I,
which are characterized by different scalings of time. (first column): physical time t, (second
column): dimensionless time t ≡ 2κτin that is rescaled with respect to the photon lifetime (2κ)−1,

and (third column): dimensionless time s ≡ 2
√

κW̄N0
pht.

Meaning physical time t time t′ ≡ 2κt time s ≡ 2
√

κW̄N0
pht

injection/feedback strength K k̃, k̃1 k

of saddle-node bifurcation – – ksn

of Hopf bifurcation KH , KQD
H , KQW

H k̃H kH

of zero-Hopf points KZH,1, KZH,2 k̃ZH, k̃ZH,1 –

of critical Hopf point KH,c k̃H,c –

frequency detuning ∆νinj, ∆ωinj δω, δωs ∆, ∆1

of saddle-node bifurcation – δωsn
± , δωs,sn

± ∆sn
± , ∆sn

1,±

of Hopf bifurcation – δωH ∆H

of zero-Hopf point ∆νZH,1
inj δωZH,1 –

of critical Hopf point ∆νH,c
inj δωH,c –

inversion – ρinv, ρinv,1, ρ
s
inv u+, U+, ue

2 , Ue

2

of saddle-node bifurcation – ρsninv, ρ
s,sn
inv,±

(
ue

2

)sn

eigenvalues σ̃ σ λ

RO frequency
ωRO, ωref

RO, ωS
RO, ωRO, ωref , ωS, ω1/2, ωref

s , ωS
s

ωvf
RO, ωQW

RO ωvf , ωvf
1/2, ω

QW

ΓRO, Γref
RO, ΓS

RO, ΓRO, Γref , ΓS, Γ1, Γref
1 , ΓS

1RO damping
Γvf
RO, ΓQW

RO , ΓS,QW
RO Γvf , Γvf

1 , ΓQW, ΓS,QW

Hopf frequency ωref
H,t, ω

S
H,t, ω

vf
H,t ωH , ωref

H , ωS
H , ωvf

H ωH,s, ω
ref
H,s, ω

S
H,s
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CHAPTER

TWO

SOLITARY QUANTUM DOT LASER

2.1. Introduction

In this chapter, the model for the solitary semiconductor QD laser is introduced and
its turn-on dynamics is studied. As already discussed in the introduction, one striking
difference distinguishing QD from conventional semiconductor QW lasers is their special
carrier scattering dynamics between the discrete QD levels and the continuous sub-
bands of the surrounding carrier reservoir [BIM99, RAF11]. For instance, this scattering
dynamics is responsible for the strongly damped ROs of QD lasers in comparison to QW
lasers [KUN02, ERN07a, LUE09, ERN10a, KEL11c].

Our modeling approach aims to study in detail the dependence of the dynamics of the
QD laser on the carrier scattering dynamics. Therefore, a microscopically based rate
equation model is introduced that assumes a classical light field, but takes into account
microscopically calculated Coulomb scattering rates for the carrier exchange between
QD and carrier reservoir as discussed in [MAL06, MAL07, LUE08, LUE09, LUE10] (see
[LUE11a] for a concise review). The microscopically calculated Coulomb scattering rates
yield nonlinear carrier lifetimes τe and τh for electrons and holes in the QD levels, which
strongly depend on the band structure, i.e., on the size and the material composition
of the QDs, as well as on the filling of the carrier reservoir and thus on the pump
current [LUE09, LUE10a]. Further, in this microscopic modeling approach it is taken
into account that the energetic distances of the QD levels and the band edges of the
carrier reservoir are different for electrons and holes, which results in different dynamics
for electrons and holes in the QD levels as well as in the carrier reservoir. Therefore, in
a hierarchy of semiconductor modeling approaches (see [CHO99] for an overview), the
model bridges the gap between simple rate equation models and full quantum-mechanic
modeling approaches, which treat also the light field quantum-mechanically and permit
to study the photon statistic of the emitted light [SU10, GIE07]. Simpler rate equation
models take into account only one carrier type, i.e., the dynamics of electron-hole pairs
is modeled. Further, the carrier exchange between QDs and carrier reservoir is, in these
models, described by constant carrier lifetimes in the QD levels [GOU07], or by linear
in-scattering rates and constant out-scattering rates [OBR04, HUY04].

9



2. Solitary quantum dot laser

Our model is kept simple enough to derive analytical expression for RO frequency
and damping. Therefore, a variety of effects has been neglected. For instance, a more
complex modeling approach has to be chosen if changes in the emission wavelength due to
Coulomb enhancement are of interest [CHO05, LIN10, LIN10a, LIN12, LIN12a, LIN12t].
Furthermore, to study ultrafast coherent dynamics on the fs -scale, for example, the
gain recovery in QD-based optical amplifiers [GOM09], the dynamics of the microscopic
polarization becomes important, which has been eliminated adiabatically in our model.
To model the dynamics of the microscopic polarization, semiconductor Bloch equations
have to be considered [WEG10, MAJ10, MAJ11, MAJ11a, WIL12c].

This chapter is organized as follows. After an introduction to the QD laser model
in Subsection 2.2, the dynamical equations are non-dimensionalized in Subsection 2.3.
Then, the turn-on dynamics of the QD laser is studied for different band structures in
Subsection 2.4, and in Section 2.5, analytical expressions for the steady states as well as
RO frequency and damping of the QD laser are presented for different band structures.
These expressions reveal how the damping of the ROs is increased with respect to QW
lasers by the carrier lifetimes τe and τh. Finally, a summary is given in Section 2.6.

2.2. Quantum dot laser model

In this section, the dynamical equations modeling the solitary QD laser are introduced.
The QDs are embedded into a two dimensional QW acting as a carrier reservoir. A band
structure of the device is depicted in Fig. 2.1. The crucial parameters are the confinement
energies ∆Ee and ∆Eh that mark the energy differences between the QD ground state
and the band edge of the surrounding QW for electrons and holes, respectively. The
QD laser model is based on the model described in [LUE09, LUE10a], which has shown
good quantitative agreement with experiments regarding the turn-on behavior and the
modulation response of QD lasers [LUE10a]. The nonlinear, coupled, and five-variable
rate equation model including the photon number in the cavity Nph, as well as the
electron and hole occupation probabilities in the QDs, ρe and ρh, and the electron and
hole densities in the QW, we and wh, respectively, is given by the following equations

dNph

dt
=
[
2W̄ZQD

a (ρe + ρh − 1)− 2κ
]
Nph + β2ZQD

a Wρeρh, (2.1a)

dρe
dt

= Sin
e (1− ρe)− Sout

e ρe − W̄ (ρe + ρh − 1)Nph −Wρeρh, (2.1b)

dρh
dt

= Sin
h (1− ρh)− Sout

h ρh − W̄ (ρe + ρh − 1)Nph −Wρeρh, (2.1c)

dwe

dt
=

j

e0
− 2NQD

[
Sin
e (1− ρe)− Sout

e ρe
]
− BSwewh, (2.1d)

dwh

dt
=

j

e0
− 2NQD

[
Sin
h (1− ρh)− Sout

h ρh
]
− BSwewh. (2.1e)

Here, 2κ are the optical intensity losses, which are balanced by the linear gain term
2W̄ZQD

a (ρe + ρh − 1), where W̄ZQD
a is the linear gain coefficient for the processes of

induced emission and absorption. The gain coefficient is proportional first to the Ein-
stein coefficient of induced emission W̄ that measures the coherent interaction between

10



2.2. Quantum dot laser model

the two-level system and the laser mode, and second to the number ZQD
a of lasing QDs

inside the waveguide (the factor 2 is due to spin degeneracy). A detailed derivation of
W̄ may be found in [PAU12, GLO12]. The number of lasing QDs, ZQD

a , is given by
ZQD

a ≡ aLAN
QD
a , where aL is the number of self-organized QD layers, A is the in-plane

area of the QW, and NQD
a is the density per unit area of the active QDs. As a re-

sult of the size distribution and of the material composition fluctuations of the QDs,
the gain spectrum is inhomogeneously broadened, and only a subgroup (density NQD

a )
of all QDs (NQD) matches the mode energies for lasing. The spontaneous emission
from one QD is taken into account by the term Wρeρh, where W is the Einstein co-
efficient for spontaneous emission. It can be determined by calculating the coherent

En
er

gy

S
e in S eou

t

InGaAs QW

InGaAs QW

S hin

S
h out

we

wh

ρe

ρh

ΔEe

ΔEh

z

j

Figure 2.1: Energy diagram of the band structure across a QD.
The ground state lasing energy is labeled by ~ω. The ener-
getic distances of the QD levels from the band edge of the
carrier reservoir (QW) for electrons and holes are marked by
∆Ee and ∆Eh, respectively. The Auger in- and out-scattering
rates between QD levels and QW are denoted by Sin

e/h and

Sout
e/h, respectively. The occupation probabilities of the QDs

are denoted by ρe/h, the reservoir carrier densities are labeled
by we/h, and j is the pump current density.

interaction of a two-level system, i.e., a single QD, with all resonator modes in the
framework of the second quantization [CHO99]. Note that the coefficients W̄ and W
differ by three orders of magnitude. The spontaneous emission factor measuring the
probability that a spontaneously emitted photon is emitted into the lasing mode is de-
noted by β. The spontaneous emission in the QW is incorporated by BSwewh, where
BS is the band-band recombination coefficient. The carriers are first injected into the
carrier reservoir with the current density j, and e0 is the elementary charge. In the
lasing regime, where the reservoir carrier densities we and wh are very high, Coulomb
scattering, i.e., nonlocal Auger recombination, is the dominant carrier exchange pro-
cess between reservoir and discrete QD levels, and phonon scattering may be neglected
[WET04, WET04a, KUN05c, LOR06]. This is also supported by the modeling of car-
rier transport in QD structures [WET00, RAC02]. Nevertheless, phonon scattering is
taken into account for the intra-band cooling processes in the reservoir. Thus, for the
calculation of the Coulomb scattering rates a quasi-equilibrium within the carrier reser-
voir is assumed, which is realized by fast phonon intra-band scattering. The Coulomb
scattering rates are calculated microscopically within the framework of the Boltzmann
equation and an orthogonalized plane-wave approach [MAL06, MAL07]. The Coulomb
interaction is treated in the second-order Born approximation in the Markov limit up
to the second order in the screened Coulomb potential [NIE04, NIL05]. All relevant
electron-electron, hole-hole, and mixed processes are included. A detailed discussion
of the scattering processes can be found in [MAJ10, LUE11, LUE12]. The nonlinear
scattering rates are denoted by Sin

e and Sin
h for electron and hole capture into the QD
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2. Solitary quantum dot laser

levels and by Sout
e and Sout

h for carrier escape to the reservoir, respectively (see Fig. 2.1).
The scattering rates depend on the reservoir densities we and wh, and are thus pump
current dependent.

In thermodynamic equilibrium, there is a detailed balance between in- and out-
scattering rates, which allows one to relate the coefficients of in- and out-scattering
even away from the thermodynamic equilibrium [SCH87]. The detailed balance relation
for in- and out-scattering rates for the quasi-equilibrium then reads [LUE09, LUE10]

Sout
e (we, wh) = Sin

e (we, wh)e
− ∆Ee

kboT

[

e
we

DekboT − 1
]−1

, (2.2a)

Sout
h (we, wh) = Sin

h (we, wh)e
− ∆Eh

kboT

[

e
wh

DhkboT − 1
]−1

. (2.2b)

Here, ∆Ee ≡ EQW
e − EQD

e and ∆Eh ≡ EQD
h − EQW

h are the energy differences between
the QD levels, EQD

e and EQD
h , and the band edges of the QW, EQW

e and EQW
h , for

electrons and holes, respectively. The carrier degeneracy concentrations are given by
De/hkboT , where De/h ≡ me/h/(π~

2) are the 2D densities of state in the carrier reservoir
with the effective masses me/h. The temperature is denoted by T and kbo is Boltzmann’s
constant. Figure 2.2(a)–(d) depict electron in- and out-scattering rates (Sin

e and Sout
e )
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Figure 2.2.: In- and out-scattering rates for electrons (Sin
e (a) and Sout

e (b)) and holes (Sin
h (c) and Sout

h

(d)), respectively, in dependence of the electron density in the carrier reservoir we (normalized to
2NQD). The energy spacings between the band edges of the carrier reservoir and the discrete energy
levels of the QDs are ∆Ee = 210meV and ∆Eh = 50meV for electrons and holes, respectively
(reference rates). Crosses denote results of microscopic calculations and lines denote fit functions
given in Appendix A.0.1. The gray dashed and the dash-dotted black line denote steady state values
of we for pump current densities of j = 1.5jth and j = 3.5jth, respectively. jth is the current density
at lasing threshold. Different colors denote different ratios wh/we of hole (wh) and electron (we)
densities in the carrier reservoir. Parameters as in Table 2.2.
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2.2. Quantum dot laser model

as well as hole in-and out-scattering rates (Sin
h and Sout

h ) in terms of the electron density
we in the carrier reservoir for three fixed ratios wh/we of hole and electron densities.
The energy spacings are ∆Ee = 210meV and ∆Eh = 50meV for electron and holes,
respectively. Crosses mark microscopically calculated values, while colored lines depict
the fit functions given in Appendix A.0.1. Gray dashed and black dash-dotted vertical
lines denote the steady state values of we close to (j = 1.5jth) and well above threshold
(j = 3.5jth), where jth denotes the threshold current density. jth is the current density,
at which the induced emission starts to dominate the induced absorption and the cavity
losses [HAK83a].

Hole in- and out-scattering rates are larger than their electronic counterparts, due
to the smaller energetic distances of the QD level of the holes to the band edge of the
reservoir. For low reservoir densities, the in-scattering rates increase quadratically with
we as expected from mass action kinetics.

The carrier lifetimes τe and τh that result from Coulomb scattering between QDs and
carrier reservoir are defined by the nonlinear scattering rates as

τe ≡ (Sin
e + Sout

e )−1 and τh ≡ (Sin
h + Sout

h )−1. (2.3)

It is important to note that these lifetimes are not constant but depend on the carrier
densities in the surrounding carrier reservoir and thus on the injected pump current.
They constitute the additional time scales that distinguishes QD from QW lasers. In
the following chapters, their importance for the turn-on dynamics of the laser as well as
for its dynamical response to external optical injection and feedback will be discussed.
One advantage of QD lasers is that the additional lifetimes τe and τh can be tuned by
the growth conditions and the material composition of the QDs [BIM99], which changes
the energy spacings ∆Ee and ∆Eh between the band edge of the carrier reservoir and
the QD levels. The energy spacings determine how τe and τh compare to the carrier
lifetimes in the carrier reservoir and the photon lifetime. The pump dependent steady

(a) (b) (c)

Figure 2.3.: Nonlinear steady state carrier lifetimes τe and τh for electrons and holes, respectively, as
resulting from the microscopically calculated scattering rates calculated microscopically for (a): slow,
(b): reference, and (c): fast rates (see Table 2.1). Parameters as in Table 2.2. Modified from [PAU12].

state values of τe and τh are shown in Fig. 2.3 for three different QD structures, which
are compared throughout this work. The different structures are modeled by using three
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2. Solitary quantum dot laser

Table 2.1.: Energy differences ∆Ee and ∆Eh between carrier reservoir and QD ground state for the
three different sets of scattering rates used for the simulations as well as steady state carrier lifetimes
for electrons (τe) and holes (τh). For a pump current density of j = 3.5jth. (jth is the pump current
density at lasing threshold.)

data set ∆Ee ∆Eh τe τh

slow 140meV 120meV 0.395 ns 0.129 ns
reference 210meV 50meV 0.071 ns 0.005 ns
fast 74meV 40meV 0.021 ns 0.01 ns

different sets of confinement energies between QD and carrier reservoir listed in Table
2.1.

By controlling the growth mode during epitaxy, it is possible to create QDs with
different size and composition. As such the reference rates plotted in Fig. 2.3(b) result
from QDs with a base length of 18×18 nm and a ratio of 10 between the effective masses
of holes and electrons (as used in [LUE10a]). They are named "reference", because
with these rates, good agreement of the QD model with experimental turn-on curves is
observed [LUE09]. Figure 2.4 shows the turn-on dynamics of the photon number Nph

as measured from experiment (black stars), which is superimposed by the calculated
turn-on dynamics for j = 2.2jth and j = 2.7jth (blue lines), respectively. Typical for QD
lasers is the strong suppression of the ROs.

Figure 2.4: QD laser turn-on after the pump
current jth is switched on simulated with the
reference rates (blue curves) and compared
to experimental results (black stars) for j =
2.2jth and j = 2.7jth, respectively. Modified
from [LUE09].

Differences in the effective masses (e.g. obtained by changing the QD composition)
are expressed in a different ratio between electron and hole confinement energy (see
[LUE10]). Fig. 2.3(a) depicts the case of large confinement energies that are similar
for electrons and holes, i.e., ∆Ee ≈ ∆Eh, resulting in long Auger scattering lifetimes.
Increasing the size of the dots leads to smaller confinement energies (shallow dots with
smaller energetic distance between the QD levels and carrier reservoir) and thus to the
fast scattering rates (Fig. 2.3(c)). Fit function for the three sets of scattering rates
can be found in the Appendix A. All other numerical parameters that were used in the
simulation are shown in Table 2.2.
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2.3. Non-dimensionalized rate equations

Table 2.2.: Physical parameters used in the simulation of the QD laser model unless stated otherwise.

symbol value symbol value symbol value

W 0.7 ns −1 A 4 · 10−5 cm 2 T 300K

W̄ 0.11µs −1 NQD
a 0.3 · 1010 cm −2 L 1mm

2κ 0.1 ps −1 NQD 1 · 1011 cm −2 εbg 14.2

β 2.2 · 10−3 BS 540 ns −1 nm 2 τin 24 ps

aL 15 ZQD
a 1.8 · 106 me 0.043m0

λopt 1.3µm νlas 230THz mh 0.45m0

2.3. Non-dimensionalized rate equations

For the subsequent study of the dynamical equations (2.1), they are rewritten into a
dimensionless form. This has two advantages: on the one hand, the number of indepen-
dent parameters is reduced by combining them into dimensionless groups, which can be
for example time scale ratios. On the other hand, dimensionless equations are better
suited for numerical simulations, because very large and very small numbers are avoided
[STR94a, FLU11a]. As it is usually done for rate equation models of semiconductor
lasers, time is rescaled with respect to the photon lifetime τph ≡ (2κ)−1 [ERN10b] by
introducing the dimensionless time t′ ≡ 2κt. Furthermore, dimensionless reservoir pop-
ulations We ≡ we/(2N

QD) and Wh ≡ wh/(2N
QD) are introduced, which are of order

one. The dynamical equations (2.1) then read

N ′
ph = ρinv(ρe, ρh)Nph + dρeρh, (2.4a)

ρ′e = γ
[

Fe(ρe, ρh,We,Wh)− rw(ρe + ρh − 1)Nph − ρeρh

]

, (2.4b)

ρ′h = γ
[

Fh(ρe, ρh,We,Wh)− rw(ρe + ρh − 1)Nph − ρeρh

]

, (2.4c)

W ′
e = γ

[

J − Fe(ρe, ρh,We,Wh)− cWeWh

]

, (2.4d)

W ′
h = γ

[

J − Fh(ρe, ρh,We,Wh)− cWeWh

]

, (2.4e)

where ( · )′ denotes differentiation with respect to the dimensionless time t′. In Equa-
tion (2.4a) a rescaled inversion ρinv was introduced, which is defined as1

ρinv(ρe, ρh) ≡
1

2
[g(ρe + ρh − 1)− 1] . (2.5)

1For this model, ρinv is not a very useful coordinate to simplify the calculation of the steady states,
because there is no simple expression for the spontaneous emission terms −ρeρh in the QD equa-
tions (3.12c) and (3.12d) in terms of ρinv. However, introducing ρinv permits to directly compare the
modeling results with most of the literature on three variable models (R, Ψ, ρinv) of QW lasers under
optical injection, where the rescaled inversion is usually denoted by N or Z. For recent reviews of
the literature see for example [WIE05] and [ERN10b].
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2. Solitary quantum dot laser

Since the occupation probabilities ρe and ρh are restricted to values between zero and
one, ρinv is in turn restricted to

−(g + 1)

2
≤ ρinv ≤

g − 1

2
.

The functions Fe and Fh contain the contributions of the scattering rates

Fe(ρe, ρh,We,Wh) ≡ sine (We,Wh)(1− ρe)− soute (We,Wh)ρe, (2.6a)

Fh(ρe, ρh,We,Wh) ≡ sinh (We,Wh)(1− ρh)− south (We,Wh)ρh. (2.6b)

Here, dimensionless in-scattering rates (sine , soute ) and out-scattering rates (soute , south ),
dimensionless carrier lifetimes (te, th), the linear gain coefficient g, the ratio of photon
and carrier lifetimes γ, the ratio of the Einstein-factors of induced and spontaneous
emission rw, the dimensionless pump rate J , the spontaneous emission coefficient d, and
the coefficient of spontaneous and non-radiative losses in the carrier reservoir c have
been introduced as follows

s
in/out
e/h ≡ 1

W
S
in/out
e/h , t−1

e/h ≡ 1

W
(Sin

e/h + S
in/out
e/h ), g ≡ 2aLW̄ANQD

a

2κ
,

rw ≡ W̄

W
, γ ≡ W

2κ
, J ≡ j

e02NQDW
,

d ≡ β
WZQD

a

κ
, c ≡ BS2NQD

W
. (2.7)

The values of the dimensionless parameters g, γ, c, and rw, which correspond to the
physical parameters of Table 2.2, are listed in Table 2.3.

Table 2.3.: Parameter values for the dimensionless dynamical equations for the QD laser (Eqs. (2.4))
that correspond to the physical parameters given in Table 2.2.

Parameters Value Meaning

g 3.78 Linear gain parameter

γ 7× 10−3 Ratio of photon and carrier lifetime

rw 1.5× 10−4 Ratio of Einstein-factors of induced and spont. emission

c 1.54 Spontaneous and non-radiative losses in QW

d 55.44 Coefficient of spontaneous emission

For the subsequent analysis, it is crucial to note that the carrier equations (2.4b)–(2.4e)
are not independent but contain carrier conservation, which can be seen by verifying that

ρ′e +W ′
e = ρ′h +W ′

h (2.8)

holds. Thus, ρe− ρh+We−Wh is a constant to be determined by the initial conditions.
In the absence of doping, this constant is zero and the effect of reservoir doping can
be included by choosing a non-zero initial value for one of the reservoir densities, i.e.,
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2.4. Turn-on dynamics

n-doping is described by We 6= 0 and p-doping by Wh 6= 0 [LUE10]. Due to the carrier
conservation, one dynamical variable can be eliminated by expressing one carrier type
in terms of the others, i.e.,

Wh = ρe +We − ρh. (2.9)

2.4. Turn-on dynamics

In their dimensionless form, the dynamical equations (2.4) directly reveal the different
time scales that determine the dynamics. It has been proposed by Tredicce at al. in
[TRE85] that lasers may be classified by the ratio of three important time scales given
by the decay of the polarization, of the field in the cavity, and of the carriers:

i In class C lasers, these three dynamical variables decay on the same time scale.
This leads to complex dynamics, and chaotic behavior may be observed already for
the solitary laser.

ii In class B lasers, the polarization decays on a much faster time scale (femtoseconds)
than the field in the cavity, and may be eliminated adiabatically. Furthermore, a time
scale separation exists between the fast photon and the slower carrier subsystem, i.e.,
the photon lifetime τph (tenth of picoseconds) is much smaller than the carrier lifetime
τc (nonoseconds). This means that the laser is a slow-fast system and thus responds
to a perturbation by weakly damped, pronounced oscillations back to equilibrium,
which are called relaxation oscillations (ROs) [ERN09]. QW semiconductor lasers
are typical class B lasers. Complex and particularly chaotic dynamical behavior only
occurs if the laser is subject to an external perturbation, which adds an additional
degree of freedom. This perturbation may consist of external optical injection or
external optical feedback.

iii In class A lasers, the polarization as well as the carriers decay much faster than
the field, and both may be eliminated adiabatically. The simple dynamics of class
A lasers is well described by one differential equation for the field. External pertur-
bations add one degree of freedom, which makes periodic or quasi periodic behavior
possible. Typical representatives of class A lasers are gas lasers. Their cavity con-
sists of highly refractive mirrors, which guarantees a long photon lifetime. Also QD
semiconductor lasers can reach the dynamical stability of class A laser [ERN10a],
which is discussed in the present and the next Chapter.

In the dynamical equations (2.4) for the QD laser, the polarization has already been
eliminated adiabatically. In contrast to QW lasers, the carrier lifetimes τe and τh of the
optically active levels in QD lasers may be tuned by adapting the band structure. If the
QD laser behaves like a class B or a class A laser, depends on the scaling of τe and τh with
respect to the photon lifetime τph = 2κ. (Note that in the dimensionless equations (2.4)
the photon lifetime is unity, i.e., the scaling of the dimensionless carrier lifetimes te
and th with respect to unity has to be discussed.) Figure 2.5(a)–(c) depict the turn-on
dynamics of the QD laser for the three different band structures listed in Table 2.1, and
additionally the limit of very large scattering rates is depicted in Fig. 2.5(d). For this
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2. Solitary quantum dot laser

limit, the in-scattering rates of the shallow dot structure (fast rates) have been multiplied
by a factor of 1 · 104.

(a)

(b)

(c)

(d)

slow

reference

fast

very fast

Figure 2.5.: Turn-on dynamics for (a): slow, (b): reference, (c): fast, and (d): very fast sets of scat-
tering rates studied in this work. Left column: Time traces of the photon number Nph (normalized
to the steady state photon number N0

ph), the electronic occupation probability ρe, and the electron
density in the carrier reservoir We. Middle column: Phase space projections of the trajectories onto
a plane spanned by We and ρe (ρ0e and W 0

e are the steady state values of ρe and We, respectively).
Right column: Phase space projections of the trajectories onto a plane spanned by We and Nph.
Parameters J = 2.5 · Jth and other parameters as in Table 2.2.

The slow rates represent the class B limit of the equations. The carrier equations
(2.4b)–(2.4e) are multiplied by the small parameter γ, and the functions Fb (b = e for
electrons and b = h for holes), which contain the contributions of the scattering rates, are
small enough to guarantee that the product γFb ≪ 1 remains small. This means that the
equations are of slow-fast type. As a consequence, the time series of the photon number
Nph (Fig. 2.5(a) left column) shows pronounced, weakly damped relaxation oscillations.
In a linear theory, RO damping and frequency are determined by the eigenvalues of the
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2.4. Turn-on dynamics

Jacobien of Eqs. (2.4). The RO damping ΓRO is determined by the eigenvalue, whose
real part has the smallest absolute value, i.e., by the eigenvalue with the smallest decay
rate. This eigenvalue is denoted as leading eigenvalue. Usually, the lasing fixed point is a
stable focus and has a pair of complex conjugate leading eigenvalues σ̃± = −ΓRO± iωRO.
The RO frequency ωRO is then given by the absolute value of the imaginary parts of
these eigenvalues. For class B lasers, the damping is much smaller than the frequency
(ΓRO ≪ ωRO) and oscillations can be observed. Figures 2.6(a) and (b) depict frequency
ωRO and damping ΓRO of the ROs, respectively, for the four different band structures
of Fig. 2.5. RO frequency and damping were calculated from the eigenvalues of the
linearized dynamical equations.

The fast rates represent the class A limit of the QD equations. Here, the product
of γFb is of order one, and the time scale separation breaks down2. As a result, the
time series of Nph in Fig. 2.5(c) shows an overdamped, relaxation free turn-on behavior.
From Fig. 2.6, it can be seen that for J < 2.2Jth (Jth denotes the pump current at lasing
threshold) ωRO and ΓRO are of the same order of magnitude, which makes oscillations
impossible. For higher pump currents, the leading eigenvalue is real.

The typical QD laser represented by the reference set of rates lies in between the
class A and the class B limit of the equations. A time scale separation still exists, but
the RO damping is much higher while the RO frequency is nearly the same as for the
slow rates (see Fig. 2.6). This results in strongly suppressed ROs, which are depicted
in the time series of Fig. 2.5(b). Lingnau et al. studied RO frequency and damping
of the shallow dot structure (energy differences of fast rates) by varying the lifetime of
the electrons in the QDs (τe) while keeping the ratio of electron and hole lifetime fixed
[LIN12, LUE13]. The authors observed that for the deep-dot structure, increasing the
electronic lifetime from large values (corresponding to the slow rates) to smaller values
first yields an increase of the RO damping. Then, the RO damping reaches a maximum,
and eventually decays again. For the shallow-dot structure, the RO oscillations are
completely damped out close to the maximum. Furthermore, the authors observed that
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Figure 2.6.: Frequency ωRO (a) and damping ΓRO (b) of the RO oscillations versus the pump current J
(normalized to the pump current at lasing threshold Jth) as obtained from the numerically calculated
eigenvalues for the four different band structures studied in this work. Parameters as in Table 2.3.

2In the following, the Landau symbol O is frequently used to describe the scaling of a quantity, e.g.,
’γFb is of order one’ may be written as γFb = O(1) [BEN10].
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2. Solitary quantum dot laser

the maximum of the RO damping for the deep dot structure appears when ωRO ∼ τ−1
e .

This corresponds to the observation that in the strongly damped regime, ΓRO and ωRO

are of the same order of magnitude, because the analytical formula for the RO damping
of the reference rates reveals that the dominant contribution of the RO damping rate is
given by the inverse lifetimes of the slower species, i.e.,

ΓRO ∼ τ−1
e

2
≈ Sin

e

2
.

This analytic expression for the RO damping was derived in [LUE11] and will also be
discussed in detail in Section 2.5.3. Generally, the electrons are slower than the holes,
i.e., τe > τh, because the energetic distance between carrier reservoir and QD levels is
larger for electrons due to their lower effective masses [MAJ10]. Thus, the dominant
contribution to the RO damping is always given by the slower carrier type.
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Figure 2.7: RO damping ΓRO and
RO frequency ωRO of the QD laser
with respect to the inverse elec-
tronic carrier lifetime τ−1

e . Elec-
tron and hole lifetimes τe and τh
have been varied by multiplying the
in-scattering rates Sin

e/h by constant
factors. Black and red dashed lines
label asymptotic values of ωRO and
ΓRO in the limit of very fast scatter-
ing rates (τe/h → 0), respectively.
Red, green, and blue arrows indi-
cate the values of τe for the refer-
ence and the fast set of rates, re-
spectively. Parameters: j = 2 · jth
and other parameters as in Ta-
ble 2.3. Modified from [LUE13].

In Fig. 2.7, RO damping ΓRO (black dashed lines) and RO frequency ωRO (red solid
lines) of the shallow-dot QD laser (energy distances of fast set of scattering rates) are
plotted with respect to the inverse electronic carrier lifetime τ−1

e . The carrier lifetimes τe
and τh have been varied by multiplying the in-scattering rate Sin

e/h with constant factors

(indicated by green dots). Meanwhile, the pump current has been adapted to keep a
fixed pump level of J = 2Jth. The red dot and the red arrow denote the microscopically
calculated scattering rates for the shallow dot structure, i.e., the fast set of scattering
rates. It is located close to the maximum of the RO damping. Decreasing the scattering
rates by multiplying with a factor smaller than unity, yields a strong decrease of the RO
damping. Blue and green arrows indicate the inverse electronic lifetimes τ−1

e as obtained
from the deep dot structures of the reference rates and the slow rates, respectively. The
RO damping decreases from the fast over the reference to the slow set of rates, as depicted
in the time series of Figs. 2.5(a)–(c). Increasing the scattering rates by multiplying with
a factor larger than unity, i.e., decreasing τ−1

e , leads to a strong decrease of the RO
damping, which results in a reappearance of the ROs. For very large values of the
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2.5. Analytic results

scattering rates, RO damping and RO frequency saturate to constant values denoted by
the horizontal black dashed line and the horizontal red dashed line, respectively. The
turn-on dynamics in the limit of very fast scattering rates is depicted in Fig. 2.5(d).

For slow, reference, and fast scattering rates, the reservoir populations We and Wh

vary very little above lasing threshold. This can be seen in the time series of Fig. 2.5(a)–
(c) (left column) as well as in the phase space projections onto to (We,Nph)-plane (right
column). From the latter, it can be seen that during the turn-on oscillations, We remains
close to its steady state value above threshold W 0

e . For not too large scattering rates,
the reservoir is large enough to be hardly effected by the lasing process. Further, the
middle column of Figs. 2.5(a) and (b) reveals that for the slow and the reference rates,
the decay of We is faster than the decay of ρe, which expresses in a nearly vertical section
at the end of the trajectory. In contrast, for the fast and very fast rates, ρb decay faster
than Wb, which expresses in nearly horizontal segment at the end of the trajectory (see
middle column of Figs. 2.5(c) and (d)).

In contrast to slow, reference, and fast rates, the variation of the reservoir populations
are more pronounced in the limit of very fast scattering rates (Fb → ∞) depicted in
Fig. 2.5(d). The oscillations of We observed in the time series (left panel) express in a
projection of the trajectory onto the (We,Nph)-plane in a spiraling motion towards the
lasing fixed point, which is a stable focus (right panel). The reason is that the large
scattering rates induce a carrier exchange fast enough for QD and reservoir carriers
to be in quasi-equilibrium, which induces a strong coupling between reservoir and QD
levels [LIN12]. The laser system may now be described by dynamical equations for the
dynamical variables N+

b ≡ ρb +Wb, which are the sums of the carrier population in the
QD levels and in the carrier reservoir. This is discussed in detail in Section 3.7.4. The
resulting equations are structurally similar to class B laser equations with a clear time
scale separation between the photon and the slow carrier subsystem expressed by the
small parameter γ. These findings are consistent with those obtained for a three variable
rate equation model for a QD laser in [ERN07a].

2.5. Analytic results

In the last section, it was discussed that the band structure of a QD laser has a strong
impact on the damping of the ROs. In this section, analytical approximations of RO
frequency and damping are introduced and compared to the corresponding expressions
for a QW laser. Therefore, at first, a standard rate equation model for a conventional QW
laser is discussed in Subsection 2.5.1. Then, in Subsection 2.5.2, the steady states of the
QD laser are studied, before discussing the analytical expressions for RO frequency and
damping in the limit of the reference and the slow sets of scattering rates (cf. Table 2.1)
in Subsections 2.5.3 and 2.5.4, respectively. Furthermore, in Subsection 2.5.5 a reduced
set of equations is derived that is valid in the limit of vanishing carrier lifetimes τe and
τh, i.e., in the limit of very fast scattering rates. Expressions for RO frequency and
damping are then derived from the reduced set of equations, and compared to the QW
laser. Table 2.4 summarizes the main results of this section. The analytical expressions
for frequency ωRO and RO damping ΓRO are expressed with respect to dimensionless
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2. Solitary quantum dot laser

Table 2.4.: Analytic expressions for RO frequency ωRO and RO damping ΓRO with respect to dimen-
sionless time t′ ≡ 2κt as obtained for reference, slow, and very fast rates as well as for the QW laser,
respectively.

rates/laser RO frequency (ωRO) RO damping (ΓRO)

reference ωref ≡
√

γrwN0
ph Γref ≡ γ

2

[

rwN
0
ph

(
th
γ + 1

)

+ t−1
e + ρ0h

]

slow ωS ≡
√

2γrwN0
ph

ΓS ≡ ΓS,QW + γ
2

[

g−1 +
(t−1

e
+t−1

h
)

2

]

with ΓS,QW ≡ γ
2 (1 + 2rwN

0
ph)

very fast ωvf ≡
√

γrwN0
ph

(
2+ze+zh

(1+ze)(1+zh)

)

Γvf ≡ γrwN0
ph

2(1+ze)(1+zh)







2 + zh + ze
+ρ0h(1 + zh) + ρ0e(1 + ze)

+c

[
W 0

e zh(1 + ze)
+W 0

hze(1 + zh)

]







QW laser ωQW ≡
√

2γQWrQWN0
ph ΓQW ≡ γQW (1+2rQWN0

ph)

2

time t′ = 2κt, which permits best to compare the expressions obtained for the reference
rates (ωref and Γref), for the slow rates (ωS and ΓS), the limit of very fast rates (ωvf and
Γvf), and for the QW model discussed in the next section (ωQW and ΓQW).

2.5.1. Quantum well laser

In this section, analytical expressions for RO frequency and damping for a rate equation
model for a conventional, single-mode, class B QW laser model [MOR92, OTT11] are
derived. The QW rate equations are given by

dE
dt

=
1

2

[

Gn(n− ntr)−
1

τph

]

E , (2.10a)

dn

dt
=

j

e0
− n

τc
−Gn(n− ntr)(E)2. (2.10b)

Here, E is the slowly varying amplitude of the electrical field, which is normalized such
that E2 = Nph, and n is the carrier density. The linear gain coefficient is denoted by
GN , ntr is the transparency density of carriers, j is the pumping current density, e0
the elementary charge, and τph and τc are the photon and carrier lifetimes, respectively.
Equating the left hand sides of Eqs. (2.10) to zero, the non-zero intensity steady state
(Nph 6= 0) is

n0 = ntr +
1

Gnτph
, (2.11)

(E0)2 =
1

Gn(n0 − ntr)
(
j

e0
− n0

τc
), (2.12)

22



2.5. Analytic results

where the superscript ( · )0 is used to mark steady state values. From the linearized
equations, the characteristic equation for the growth rate σ̃ is the determined as

σ̃2 +

(
1

τc
+Gn(E0)2

)

σ̃ +
1

τph
Gn(E0)2 = 0. (2.13)

In order to properly define the RO frequency and its damping rate, we take advantage
of the fact that τph << τc, i.e., that the photon subsystem is much faster than the one
of the carriers. The roots of the quadratic equation then take the form

σ̃ = −ΓQW
RO ± iωQW

RO , (2.14)

where

ΓQW
RO ≡ 1

2

(
1

τs
+Gn(E0)2

)

, (2.15)

ωQW
RO ≡

√

Gn

τph
(E0)2 −

(

ΓQW
RO

)2

≈
√

Gn

τph
N0

ph (2.16)

are defined as the RO damping rate and RO frequency of the solitary laser, respectively.
They are the main quantities of a laser that can be easily measured experimentally.

In order to determine asymptotic approximations, the rate equations have to be re-
formulated in dimensionless form. The simplest way is to measure time in units of the
photon lifetime by introducing

t′ ≡ t/τph. (2.17)

Furthermore, introducing the new dimensionless dependent inversion ρinv defined by

ρinv ≡
1

2
[Gn(n− ntr)τph − 1] (2.18)

allows to reduce the number of parameters.
Inserting Eqs. (2.17) and (2.18) into Eqs. (2.10a) and (2.10b), yields

dE
dt′

= ρinvE , (2.19a)

dρinv
dt′

= γQW
[
P − ρinv − rQW(1 + 2ρinv)E2

]
, (2.19b)

where the time scale separation γQW, the pump P , and rQW3 are defined by

γQW ≡ τph
τc

, P ≡ Gnτphτc
2e0

(j − jth) , where jth ≡ e0

(
ntr

τc
+

1

Gnτphτc

)

and rQW ≡ τcGn

2
. (2.20)

3Note that often in the literature (cf. [TAR95a, TAR98a, WIE05, ERN10b]) a rescaled field amplitude

R ≡
√
rQWE is introduced, such that the rescaled intensity I ≡ R2 is of O(1). However, to compare

the findings of this section with those derived for the QD model in the next sections, E2 = Nph is
used.
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2. Solitary quantum dot laser

The non-zero intensity steady state is given by

ρ0inv = 0 and N0
ph ≡ (E0)2 = P/rQW. (2.21)

The rescaled inversion ρ0inv is zero above lasing threshold, which is known as gain-
clamping [PET91], and N0

ph increases linearly with the pump P ∼ j − jth. The charac-
teristic equation for the growth rate σ is given by

σ2 + γQW(1 + 2rQWN0
ph)σ + 2γQWrQWN0

ph = 0. (2.22)

Provided γQW is sufficiently small, the roots of Eq. (2.22) are complex conjugate. The
dimensionless RO damping rate and the RO frequency (in units of time t′) are then
defined from the imaginary and real part of these roots. We obtain

ΓQW ≡ γQW
(1 + 2rQWN0

ph)

2
= γQW (1 + 2P )

2
, (2.23a)

ωQW ≡
√

2γQWrQWN0
ph − (ΓQW)2 ≈

√

2γQWrQWN0
ph as γQW → 0. (2.23b)

Note that the RO damping scales like γQW and is thus much smaller than the RO
frequency, which scales like

√

γQW. This is the reason for the pronounced relaxation
oscillations observed in class B lasers.

The same dimensionless time t′ ≡ t/τph is used in the analysis of the QD rate equations
of the solitary laser discussed in the remainder of this section as well as in the analysis of
the QD laser under optical injection (Chapter 3) and the analysis of the QD laser subject
to optical feedback (Chapter 4). Furthermore, the dynamic equations are formulated
such that a small time scale separation parameter γ multiplies the right hand side of the
carrier equations (cf. Eqs. (2.4)).

2.5.2. Steady states of solitary QD laser

Now, the solitary QD laser equations (2.4) are analyzed starting with the steady states.
For the subsequent analysis, the spontaneous emission in the field equation (2.4) is
neglected by setting d = 0. Equating to zero the right hand sides of Eqs. (2.4), yields
the steady state relations

0 = ρ0invN
0
ph, (2.24a)

0 = γ
[

Fe(ρ
0
e, ρ

0
h,W

0
e ,W

0
h )− rw(ρ

0
e + ρ0h − 1)N0

ph − ρ0eρ
0
h

]

, (2.24b)

0 = γ
[

Fh(ρ
0
e, ρ

0
h,W

0
e ,W

0
h )− rw(ρ

0
e + ρ0h − 1)N0

ph − ρ0eρ
0
h

]

, (2.24c)

0 = γ
[

J − Fe(ρ
0
e, ρ

0
h,W

0
e ,W

0
h )− cW 0

eW
0
h

]

, (2.24d)

0 = γ
[

J − Fh(ρ
0
e, ρ

0
h,W

0
e ,W

0
h )− cW 0

eW
0
h

]

, (2.24e)

where steady state values of dynamical variables are denoted by superscript ( · )0. Equa-
tion (3.18) shows that above threshold (Nph 6= 0) the inversion is clamped to zero

ρ0inv ≡
1

2

[
g(ρ0e + ρ0h − 1)− 1

]
= 0, (2.25)
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2.5. Analytic results

which is known as gain-clamping [TAR95a]. Next, the steady state of the photon number
may be expressed in terms of the carrier populations and the pump current, by inserting
Eq. (2.24d) into Eq. (2.24b)

N0
ph =

g

rw

(
J − cW 0

eW
0
h − ρ0eρ

0
h

)
≈ g

rw
(J − Jth) =

g

rw

(
J

Jth
− 1

)

Jth. (2.26)

Here, the gain-clamping of Eq. (2.25) has been used to write ρ0e + ρ0h − 1 = g−1. The
approximation in the last equality of Eq. (2.26) is based on the assumption that the
product of the carrier densities does not vary significantly above threshold, which permits
to introduce the threshold current of the solitary laser as

Jth ≡ cW th
e W th

h − ρthe ρthh , (2.27)

where quantities with superscript ( · )th are taken at the lasing threshold of the solitary
laser. Equation (2.26) expresses the linear increase of the photon number with the
current observed above threshold [COL95, HAK83a].

Further, with the help of the carrier conservation relation of Eq. (2.9), expressions of
ρ0e and ρ0h in terms of the reservoir populations W 0

e and W 0
h are obtained from Eq. (2.25),

which read

ρ0e =
1

2

[
1 + g

g
+W 0

h −W 0
e

]

and ρ0h =
1

2

[
1 + g

g
−W 0

h +W 0
e

]

. (2.28)

Eventually, the steady states of the reservoir populations W 0
e and W 0

h can be calculated
by inserting Eqs. (3.31) into Eqs. (2.24d) and (2.24e), and the solving self-consistently
for W 0

e and W 0
h . This has to be done numerically, because Fe and Fh are nonlinear

functions of W 0
e and W 0

h (see Eqs. (2.6)).

2.5.3. QD laser – RO frequency and damping for the reference
rates

In the limit of the reference and the slow set of scattering rates (cf. Table 2.1), analytical
expression for RO frequency and damping of the QD laser have been derived by Lüdge
et al. in Ref. [LUE11]. In this and the next subsection, the resulting expression are
discussed for the slow and the reference rates, respectively. The asymptotic methods
needed to derive these expression are introduced in Section 3.6 of Chapter 3, and even-
tually the formulas for RO damping and frequency (cf. Table 2.4) are retrieved from the
eigenvalues of the laser under optical injection in Section 3.8.

With respect to the dimensionless time t′ ≡ (2κ)−1t, RO frequency and damping of
the solitary laser are given for the set of reference scattering rates by

ωref ≡
√

γrwN0
ph ≈

√

γg(J − Jth) and (2.29a)

Γref ≡ γ

2

[

rwN
0
ph

(
th
γ

+ 1

)

+ t−1
e + ρ0h

]

≈ γ

2

[

g(J − Jth)

(
th
γ

+ 1

)

+ t−1
e + ρ0h

]

, (2.29b)
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2. Solitary quantum dot laser

respectively. In the approximations of Eqs. (2.29), a linear dependence of N0
ph on the

pump current was assumed (see Eq. (2.26)). Eventually, we obtain for the RO frequency
ωref
RO ≡ 2κωref and damping Γref

RO ≡ 2κΓref in terms of physical time t

ωref
RO = 2κ

√

γrwN0
ph ≈ 2κ

√

γg(J − Jth), (2.30a)

Γref
RO = κγ

[

2rwN
0
ph

(
Wτh
γ

+
1

2

)

+
1

Wτe
+ ρ0h

]

≈ κγ

[

2g(J − Jth)

(
Wτh
γ

+
1

2

)

+
1

Wτe
+ ρ0h

]

. (2.30b)

Figures 2.8(a) and (b) depict RO frequency and damping as obtained from the numer-
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Figure 2.8.: Comparison of RO frequency ωref
RO (a) and RO damping Γref

RO (b) calculated numerically
from the eigenvalues of the full system (black solid lines) with their analytical approximations of
Eqs. (2.30a) and (2.30b) (blue dashed lines). The thin dash-dotted green line marks the dominant
contribution κγ/(Wτe) of the RO damping. Parameters: reference rates and other parameters as in
Table 2.3.

ically calculated eigenvalues of the full system (full black lines) and from the analytical
approximations (2.30) (blue dashed lines). The RO frequency clearly shows the square-
root like scaling with the pump current as predicted by Eq. (2.30a), and Γref

RO scales in
very good approximation linearly with the pump current. Further, for low pump cur-
rents, the κγ/(Wτe)-term (green dashed line in Fig. 2.8(b)) constitutes the dominant
contribution to the RO damping. This permits to conclude that for low pump currents
the slower carrier type, i.e., the electrons, dominate the turn-on damping [LUE11], while,
for pump currents high above threshold, the first two terms in the rectangular brackets of
Eq. (2.30b) become more important. Next, the expression (2.29a) for the RO frequency
of the QD laser is compared to the corresponding expression (2.23b) for the QW laser.
It can be seen that the RO frequency of the QD laser is by a factor 1/

√
2 lower than for

the QW laser if for QD and QW the same time scale separation (γQW = γ), the same
ratio of the Einstein factors (rQW = rw), and the same steady state photon number N0

ph

are assumed.
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2.5.4. QD laser – RO frequency and damping for the slow rates

For the slow set of scattering rates of Table 2.1, RO frequency and damping read in
units of time t′ = (2κ)−1t

ωS ≡
√

2γrwN0
ph ≈

√

2γg(J − Jth), (2.31a)

ΓS ≡ ΓS,QW +
γ

2

[

g−1 +
(t−1

e + t−1
h )

2

]

, (2.31b)

where we have introduced

ΓS,QW ≡ γ

2
(1 + 2rwN

0
ph) ≈

γ

2
[1 + 2g(J − Jth)] , (2.32)

The contribution ΓS,QW corresponds to the RO damping of the QW laser (cf. Eq. (2.23a))
for γQW = γ and rQW = rw. Furthermore, the linear dependence of N0

ph ≈ g/(rw)(J−Jth)
on the pump current J (see Eq. (2.26)) was used. Finally, in units of the physical time
t = 2κt′ the damping rate reads

ωS
RO ≡ 2κ

√

2γrwN0
ph ≈ 2κ

√

2γg(J − Jth), (2.33a)

ΓS
RO ≡ ΓS,QW

RO + κγ

[

g−1 +
1

W

(
τ−1
e + τh−1

2

)]

, (2.33b)

where the QW contribution to the damping rate ΓS,QW
RO is given by

ΓS,QW
RO ≡ κγ

[
1 + 2rwN

0
ph

]
≈ κγ [1 + 2g(J − Jth)] . (2.34)
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Figure 2.9.: Comparison of RO frequency ωS
RO (a) and RO damping ΓS

RO (b) as obtained numerically
form the eigenvalues of the full system (black lines) with their analytical approximations of Eqs. (2.33a)

and (2.33b) (blue dash dotted lines). The QW contribution ΓS,QW
RO of Eq. (2.34) is marked by a green

dash-dotted line, and the blue shaded region marks the difference of ΓS
RO and ΓS,QW

RO . Parameters:
slow rates and other parameters as in Table 2.3.

Figures 2.9(a) and (b) depict RO frequency and damping as obtained from the eigen-
values of the full system (full black lines) and from the analytical approximations (2.33)
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2. Solitary quantum dot laser

(dashed blue lines), respectively. As in the limit of the reference rates, the RO fre-
quency clearly shows the square-root like scaling with the pump current as predicted
by Eq. (2.33a). The RO damping ΓS

RO (see Eq. (2.33b)) scales for J & 2Jth linearly
with the pump current. For the QW contribution ΓS,QW

RO , this can be seen directly from
Eq. (2.34), and the term in the rectangular brackets in Eq. (2.33b) scales nearly linearly
with the pump current, because the constant term proportional to g−1 is negligible, and
the inverse carrier lifetimes τ−1

e and τ−1
h increase nearly linearly with J . To see this,

note that for the slow set of scattering rates, the in- and out-scattering rates S
in/out
e/h

for both, electrons and holes, are similar to the electronic scattering rates for the ref-
erence set of rates. The latter are depicted in Fig. 2.2(a) and (b), respectively. From
Fig. 2.2(b), we see that the out-scattering rates are negligible, which yields τ−1

e,h ≈ Sin
e/h,

and from Fig. 2.2(a), we note that well above threshold, i.e., to the right of the gray
dashed line denoting the steady state of we for J = 1.5Jth, the in-scattering rates scale
nearly linearly with the pump current.

The RO frequency is exactly the same as for a QW laser (cf. Eq. (2.23b)) with
the same time scale separation (γQW = γ) and the same ratio of the Einstein factors
(rQW = rw). It would thus be by a factor

√
2 higher than in the limit of the reference

rates (see Eq. (2.30b)) if both lasers had the same steady state photon number N0
ph at

the same pump level J/Jth (see last equality in Eq. (2.26)). However, comparing the
pump dependence of ωS

RO in Fig. 2.9(a) with the pump dependence of ωref
RO in Fig. 2.8,

we see that the higher photon number in the case of the reference rates overcompensates
the factor

√
2, and consequently, ωref

RO is even slightly higher than ωS
RO.

As already discussed in the introductory Section 2.2, the damping is much higher in
the limit of the reference rates than in the limit of the slow rates, which may be seen by
comparing Fig. 2.8(b) with Fig. 2.9(b). The formula (2.33b) for the damping of the slow
rates contains two contributions. The first term ΓS,QW

RO corresponds to the damping rate
of a QW laser having the same time scale separation (γQW = γ), the same ratio of the
Einstein factors (rQW = rw), and the same steady state photon number (see Eq. (2.23a)).
The second term contains the contribution of the carrier lifetimes τe and τh in the QD
levels and thus describes the impact of the band structure on the RO damping. Since
electron and hole lifetimes are similar for the set of slow rates (see Table 2.1), they enter
symmetrically into the expression (2.33b). Further, from Table 2.1, it can be seen that
τe and τh are now similar to the electronic lifetime in the limit of the reference rates.
This is why they contribute in the same way to ΓS

RO (see Eq. (2.33b)) than the electronic
lifetime τe contributes to Γref

RO (see Eq. (2.30b)). The bluish shaded region in Fig. 2.9
marks the difference between the full damping rate ΓS

RO and its QW contribution ΓS,QW
RO .

Thus, it describes the impact of the band structure. The difference increases with the
pump current, because τ−1

e and τ−1
h increase faster with the pump current (cf. Fig. 2.3)

than the steady state of the photon number N0
ph.

2.5.5. QD laser – limit of very fast scattering rates

The limit of very fast scattering rates is described by the limit Fb → ∞ (b = e for
electrons and b = h for holes) of the dynamical equations (2.4). In this regime, the
carrier lifetimes τb in the QD levels vanish, and the carrier exchange is fast enough to
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2.5. Analytic results

ensure that QDs and carrier reservoir remain in quasi-equilibrium during the turn-on
process. This results in an enhanced coupling between reservoir and QD variables, which
is best taken into account by introducing the new variables N+

b and N−
b

N+
b ≡ ρb +Wb and N−

b ≡ ρb −Wb. (2.35)

Rewriting ρb and Wb in terms of the new variables, yields

ρb =
N+

b +N−
b

2
and Wb =

N+
b −N−

b

2
. (2.36)

Further, for the subsequent analysis, it is convenient that the dynamical variables are
all O(1), which simplifies their comparison to the small parameter γ describing the time
scale separation. Therefore, we rescale the photon number Nph

4 with respect to its
steady state value N0

ph (see Eq. (2.26)) by introducing Nph = N0
phR

2, where R is O(1).
The dynamical equations (2.4) then read in the new coordinates

R′ = ρinvR, (2.37a)

(N+
e )

′ = (N+
h )

′ = γ
[

J − rph(ρe + ρh − 1)R2 − ρeρh − cWeWh

]

, (2.37b)

(N−
e )

′ = γ
[

− J + 2Fe − rph(ρe + ρh − 1)R2 − ρeρh + cWeWh

]

, (2.37c)

(N−
h )

′ = γ
[

− J + 2Fh − rph(ρe + ρh − 1)R2 − ρeρh + cWeWh

]

, (2.37d)

where rph ≡ rwN
0
ph has been introduced. Due to the carrier conservation (2.8), which

reads in these coordinates as (N+
e )

′ = (N+
h )

′, the dynamical variables N+
e and N+

h

have the same dynamics, and additionally one carrier variable may be eliminated, i.e,
expressed in terms of the others. For the set of very fast scattering rates, we may
assume that the terms Fb ≡ sinb − (sinb + soutb )ρb expressing the impact of the Coulomb
scattering rates are at least O(γ−2) large, which justifies an adiabatic elimination of N−

e

and N−
h , i.e, to assume (N−

e )
′ = (N−

h )
′ = 0. Equating to zero the right hand sides of

Eqs. (2.37c) and (2.37d), and employing the definitions of the Fb’s, the QD populations
can be expressed as

ρb = sinb tb −
tb
2
{J + rph(ρe + ρh − 1)R2 + ρeρh − cWeWh},

where we have used the dimensionless carrier lifetimes tb ≡ (sinb + soutb )−1, which are at
least O(γ2) small. Since the terms in the curly brackets are all O(1), they constitute
only a small correction to the first term, and the above equation can be written as

ρb = tbs
in
b +O(γ2). (2.38)

In- and out-scattering rates are related by the detailed balance relation (2.2) [LUE09],
which reads in its dimensionless form (see also Appendix A)

soutb = sinb e
− ∆Eb

kboT
[
ecbWb − 1

]−1
, (2.39)

4Typically, Nph = O(104), which implies that the product of rwN
0
ph is a O(1).
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2. Solitary quantum dot laser

where the coefficients cb ≡ 2NQD/(DbkboT ) were introduced. Inserting Eq. (2.39) into
Eq. (2.38), the ρb ’s can be expressed in terms of the reservoir populations Wb as

ρb(Wb) = tbs
in
b =

1

1 + soutb /sinb
=

(

1 + e
− ∆Eb

kboT
[
ecbWb − 1

]−1
)−1

, (2.40)

which is valid up to O(γ2). From the above formula, we see that in leading order ρe
is only a function of We, and that the same holds for the holes. Thus, the coupling to
the other carrier type is at least O(γ2) small, and may be neglected. This permits to
express the reservoir populations Wb in terms of ρb by inverting Eq. (2.40)

Wb(ρb) =
1

cb
ln

(

1 + e
− ∆Eb

kboT
ρb

1− ρb

)

. (2.41)

Instead of expressing the right hand sides of the dynamical equations (2.37a) and
(2.37b) in terms of the N±

b s, we can use Eq. (2.41) to write N+
e = ρe + We(ρe) as a

function of ρe. This permits to formulate the right hand side of Eq. (2.37b) as

(N+
e )

′ =
d

dt′
(ρe +We(ρe)) = (1 + ∂ρeWe)ρ

′
e. (2.42)

Employing the above equation, the dynamical equations (2.4) simplify in the limit of
very large scattering rates (Fb → ∞) as

R′ = ρinvR, (2.43a)

ρ′e =
γ

1 + ze

[
J − rph(ρe + ρh − 1)R2 − ρeρh − cWeWh

]
, (2.43b)

where the abbreviations

zb ≡ ∂ρb
∣
∣
ρ0b
Wb =

[

cb(1− ρb)

(

e
∆Eb
kboT (1− ρb) + ρb

)]−1

(2.44)

have been introduced. In Eqs. (2.43) the hole populations ρh and Wh(ρh) are functions of
ρe. For a given value of ρe, the electronic population in the reservoir We can be calculated
from Eq. (2.41) for b = e. Furthermore, the occupation probability of the hole level ρh
can be calculated by inserting Eq. (2.41) for b = h into the carrier conservation (2.9),
which yields

ρh +Wh(ρh) = ρe +We(ρe). (2.45)

The above equation can then be solved for ρh, and eventually, Wh can be calculated
from Eq. (2.41) for b = h.

The dynamical equations (2.43) describe a typical slow-fast system consisting of a fast
optical subsystem (Eq. (2.43a)) and a slow carrier subsystem (Eq. (2.43b)). The time
scale separation is expressed by the small parameter γ. (Note that ze and the terms in
the brackets in Eq. (2.43b) are all O(1).) Thus, from Eqs. (2.43), we would expect the
turn-on dynamics of the QD laser to be similar to the one of a class B QW laser. That
this is actually the case can be seen from the time series in Fig. 2.5(d), which shows
pronounced, weakly damped ROs that are typical for class B QW lasers.

In the remainder of this section, at first, the steady states of Eqs. (2.43) are discussed,
and then analytical expression for frequency and damping of the ROs are derived.
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2.5. Analytic results

Steady states

The steady states are calculated from Eqs. (2.43) by equating to zero their right hand
sides, which yields

0 = ρinvR
0, (2.46a)

0 =
γ

1 + ze

[

J − rph(ρe + ρh − 1)
(
R0
)2 − ρeρh − cWeWh

]

. (2.46b)

By definition, the steady state of R above leasing threshold is given by R0 = 1.
Since the optical steady state equation (2.46a) is the same as for the full system (see
Eq. (2.4a)) with R0 replaced by N0

ph, the gain-clamping relation ρ0inv = 0 remains valid
(see Eq. (2.25)). From the carrier Eq. (2.46b), we then see that also the expression (2.26)
for N0

ph as a function of the carrier populations remains valid. The steady state ρ0e of ρe
may be obtained by at first calculating the steady state ρ0h of ρh as a function of ρ0e from
Eq. (2.45), inserting then the resulting expression for ρ0h = ρh(ρ

0
e) into Eq. (2.25), and

then solving for ρ0e. Subsequently, ρ0h is calculated by inserting ρ0e back into Eq. (2.45),
and eventually, the steady states of the reservoir populations W 0

e and W 0
h can be calcu-

lated from Eqs. (2.41).

RO frequency and damping in the limit of very fast scattering rates

For the linearization of the dynamical equations (2.43), the partial derivatives of ρh
and Wh with respect to ρe have to be calculated. Employing the carrier conservation
relation (2.45), they can be calculated as

∂ρe
∣
∣
ρ0e
ρh = ∂ρe

∣
∣
ρ0e
(ρe +We −Wh) = 1 + ze − (∂ρe

∣
∣
ρ0e
ρh)zh

⇔ ∂ρe
∣
∣
ρ0e
ρh =

1 + ze
1 + zh

, (2.47a)

∂ρe
∣
∣
ρ0e
Wh = zh

1 + ze
1 + zh

, (2.47b)

where the derivative has been taken at the steady state value ρ0e of the solitary laser.
Linearizing Eqs. (2.43) around the lasing steady state (N0

ph, ρ
0
e), yields the following

characteristic equations for the growth rate σ

det








−σ gR0

2

(

1 + 1+ze
1+zh

)

−γ2rphR
0

(1+ze)g
−γ




rph(R

0)2
(

1
1+ze

+ 1
1+zh

)

+
ρ0h

1+ze
+ ρ0e

1+zh
+ c
(

W 0
e zh

1+zh
+

W 0
hze

1+ze

)



− σ







= 0, (2.48)

where the gain-clamping ρ0inv = 0 has been used. Solving for σ, yields two complex
conjugate solutions

σ± = −γΓvf
1 ± i

√

γrph(R0)2
cz

1 + ze
− γ2(Γvf

1 )
2 = −γΓvf

1 ± i
√
γωvf

1/2 +O(γ2), (2.49)
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2. Solitary quantum dot laser

where we have introduced

cz ≡
(

1 +
1 + ze
1 + zh

)

(2.50)

as well as

Γvf
1 ≡ 1

2

[
rwN

0
ph

(1 + ze)(1 + zh)

(
2 + zh + ze + ρ0h(1 + zh) + ρ0e(1 + ze)
+c (W 0

e zh(1 + ze) +W 0
hze(1 + zh))

)]

, (2.51a)

ωvf
1/2 ≡

√

rph(R0)2
cz

1 + ze
=

√

rwN0
ph

(
2 + ze + zh

(1 + ze)(1 + zh)

)

. (2.51b)

Damping and frequency of the ROs are then given in terms of the dimensionless time t′

by
Γvf ≡ γΓvf

1 and ωvf ≡ √
γωvf

1/2, (2.52)

respectively. In terms of the physical time t, RO damping and frequency read5

Γvf
RO ≡ κγ

[

(W̄/W )N0
ph

(1 + ze)(1 + zh)

(
2 + zh + ze + ρ0h(1 + zh) + ρ0e(1 + ze)

+BS2NQD

W
(W 0

e zh(1 + ze) +W 0
hze(1 + zh))

)]

, (2.53a)

ωvf
RO ≡ 2κ

√

γ(W̄/W )N0
ph

(
2 + ze + zh

(1 + ze)(1 + zh)

)

, (2.53b)

where zb is given as a function of the carrier densities in the reservoir wb:

zb = ∂ρb
∣
∣
ρ0e
Wb =

1

2NQD
∂ρb
∣
∣
ρ0e
wb.

Note that the damping scales like γ and is thus small compared to the frequency, which
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Figure 2.10.: Comparison of RO frequency ωS
RO (a) and RO damping ΓS

RO (b) as obtained numerically
form the eigenvalues of the full system (black lines) with their analytical approximations of Eqs. (2.53)
(blue dash dotted lines). Parameters: Very fast scattering rates and other parameters as in Table 2.3.

scales like
√
γ. This is well known from class B semiconductor lasers [ERN10b] (see also

5Note that Γvf
RO and ωvf

RO are given by Γvf
RO = 2κγΓvf

1 and ωvf
RO = 2κ

√
γωvf

1/2, respectively.
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2.6. Summary

Section 2.5.1). In Figure 2.10, RO frequencies (Fig. 2.10(a)) and damping (Fig. 2.10(b))
obtained numerically from the eigenvalues of the full equations (3.12) (solid black lines)
are compared to the analytical approximations of Eqs. (2.53) (blue dashed lines). The
analytical approximation agree perfectly with the numerical results. The square-root like
increase of ωvf

RO and the linear increase of Γvf
RO with the pump current can be attributed

to the linear dependence of N0
ph on the pump current (see Eq. (2.26)).

Comparison to QW laser

Next, the expressions for RO damping and frequency of Eqs. (2.52) are compared to the
expressions obtained for the standard rate equation model for a class B laser derived
in Section 2.5.1 (see Eqs. (2.23)). The limit of ze → 0 of Eqs. (2.52) corresponds to a
decoupling of the QD levels from the carrier reservoir ωvf → ωQW. If we additionally
assume that both lasers have the same time scale separation (γQW = γ), the same ratio
of the Einstein factors of spontaneous and induced emission (rQW = rw), and the same
steady state photon number N0

ph, the RO frequency of the QD laser converges to the

one of the QW laser ωvf → ωQW. Further, employing the limit ze → 0, we obtain for
the RO damping of the QD laser Γvf (see Eqs. (2.52))

Γvf =
γ

2

[

2rwN
0
ph + rwN

0
ph

(

1 +
1

g

)]

, for ze → 0. (2.54)

The above expression shows that Γvf has in the limit ze → 0 the same linear dependence
on N0

ph ∼ J − Jth and thus on the pump current J as RO damping for the QW laser
ΓQW (cf. Eq. (2.23a)). However, since rwN

0
ph > 1 and g > 0, the damping is in the

limit ze → 0 larger than for the QW laser. Note however that the reduced dynamical
equations (2.43) derived in the limit of very fast scattering rates are valid for strong
coupling between carrier reservoir and QD levels, which is expressed by ze = O(1).

2.6. Summary

In this chapter, a rate equation model for a QD laser has been introduced, in which the
carrier exchange between discrete QD levels and the surrounding quantum well acting as
a carrier reservoir is mediated by microscopically calculated Coulomb scattering rates.
The latter yield carrier lifetimes τe and τh of electrons and holes in the QD levels,
which depend on the band structure, i.e., on the material composition and the growth
conditions of the QDs. Further, τe and τh constitute additional time scales, which are
responsible for the strongly suppressed ROs of QD lasers [ERN07a, LUE11]. The turn-on
dynamics has been discussed for three different band structures as well as in the limit of
vanishing carrier lifetimes, which has revealed that band structure engineering permits
to strongly influence the turn-on of the laser. Subsequently, analytical expressions for
RO frequency and damping of the QD laser for different band structures have been
presented and compared to the corresponding expressions for a conventional class B
QW laser model. These expressions have revealed how the carrier lifetimes τe and τh,
i.e., the band structure, increases the turn-on damping of QD lasers if compared to the
turn-on damping of QW lasers.
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CHAPTER

THREE

QUANTUM DOT LASER UNDER OPTICAL INJECTION

3.1. Introduction

In this chapter, the complex dynamics of QD lasers under optical injection is discussed.
In the typical injection setup sketched in Fig. 3.1, the light of a laser (the master laser)
is injected into a second laser (the slave laser). Here, the slave laser is the QD semi-
conductor laser discussed in Chapter 2. For sufficiently large injection strength K and
small input frequency detuning ∆νinj ≡ νinj − νth between the optical frequency of the
injecting master laser νinj and the optical frequency of the free running slave laser νth, the

0 1
−3

−2

−1

0

1

2

3

 phase-locking

periodic + complex dynamics

Master Slave

Figure 3.1.: Sketch of the injection setup. The master laser injects light with optical frequency νinj into
the slave laser, and the carrier frequency of the free running slave laser is νth. Under injection, its
output frequency ν(t) depends on the injection strength K and input frequency detuning ∆νinj =
νinj − νth between master and slave. For small ∆νinj, phase-locking is observed (yellow region), i.e.,
stable cw operation of the slave on the frequency of the master νinj, and for larger injection, periodic
or more complex waveforms are found (orange region). Einj and E denote the slowly varying field
amplitudes of the master and slave under injection, respectively.

slave phase-locks to the master laser. This means the master laser imposes its spectral
properties onto the slave, which then displays stable continuous wave (cw) operation at
the frequency of the master laser [ERN10b]. The phase-locking region forms an Arnold’s
tongue [ARN03] in the (K,∆νinj)-plane, which is depicted by the yellow region in Fig 3.1.
This injection setup is frequently used to injection lock a high power slave laser to a
master laser with lower power but a higher frequency stability. Thus, optical injection
permits chirp reduction [OLS85], reduction of relative intensity noise [SCH86g, YAB00],
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3. Quantum dot laser under optical injection

and enhanced side-mode suppression [IWA82]. Further, the RO frequency of the slave
laser can be enhanced under optical injection, which permits a larger bandwidth under
direct electrical modulation [JIN06, LAU09a] and the generation of microwave signals
[SEO01, CHA07].

Outside the phase-locking tongue, the slave laser may display a rich variety of dynam-
ical responses reaching from strictly periodic waveforms over quasi-periodic to chaotic
outputs. (See [WIE05] for a comprehensive review of the complex bifurcation scenario.)
The chaotic output has been used for secure communication [MUR02, YU07, WAN09b].

Due to their small phase-amplitude coupling and strongly suppressed relaxation os-
cillations, QD lasers under optical injection show smaller chaotic regions and less com-
plicated trajectories compared to semiconductor QW lasers devices [ERN10a, KEL11a,
KEL11c]. Based on experimental studies on QD lasers [GOU07, KEL09, ERN10a],
simple rate equation approaches have been used to model their optical response un-
der optical injection and to investigate the stability regions and bifurcation scenarios
[ERN10a, OLE10]. Further, models based on the standard rate equation approach
[PET91] that take into account the gain material and excited state filling typical for QD
based devices by an effective gain compression parameter have been proposed [SU05].
They have proven to successfully model the modulation response of quantum dash lasers
subject to optical injection [NAD09]. In these models, the gain compression parame-
ter is obtained by fitting the nonlinear dependence of the relaxation oscillation (RO)
frequency on the output intensity [GRI08] permitting to model non-constant α-factors
that depend nonlinearly on the pump current [GRI08a]. More sophisticated modeling
approaches reveal that for QD lasers the α-factor is problematic [LIN12b], because it
cannot account for the independent dynamics of resonant charge carries in the QDs and
nonresonant charge carriers of the surrounding carrier reservoir [MEL06, LIN12a] and
eventually neglects a degree of freedom of the dynamics. It was, however, shown that
QD laser models based on a constant α-parameter still yield reliable results as long as
only the transition between stable and unstable behavior, i.e., saddle-node and Hopf
bifurcations, are considered [LIN12a, LIN12b, LIN13]. In this chapter, we focus on an
analytical study of the bifurcations of the stable lasing fixed point at the borders of
the phase-locking region. Therefore, for the sake of simplicity, a rate equation approach
with a constant α-factor is chosen. Further, more complex modeling approaches reveal
that the dynamics of QD lasers is rather more stable than described by models with
constant α-factor [LIN13]. In the framework of the present, simple modeling approach
a low constant α-factor is used.

The focus of this chapter lies on the distinguishing properties of QD lasers, and on
understanding the interplay between epitaxial structure and optical properties by linking
the dynamics of the QD laser under injection directly to the carrier exchange dynamics
between the QD and carrier reservoir without the need of fit parameters. Therefore,
in the next section, the microscopically based QD laser rate equation model that was
described in Chapter 2.1 is extended to model optical injection. Then, the impact of α-
factor, band structure and pump current on the laser under optical injection is discussed
in Section 3.2 before focusing on bistabilities of locked solutions in Section 3.4. From
Section 3.5 to Section 3.8, analytic expressions for the steady states of the dynamical
equations as well as expressions for the saddle-node and Hopf bifurcation lines limiting

36



3.2. Model of QD laser under optical injection

the locking-tongue are derived. The bifurcation lines are then compared to results of
numerical path continuation in Section 3.9. In Section 3.10, the influence of the injection
on the damping of the QD laser is discussed, and in Section 3.11, concluding remarks
are given.

3.2. Model of QD laser under optical injection

In this section, a field equation appropriate to describe external optical injection from a
master laser is introduced, and combined with the QD material model that was intro-
duced in Chapter 2. Further, the implementation of the equations into path continuation
software is discussed in Subsection 3.2.1.

A semiclassical, single mode approach is chosen to model the interaction of the field
in the cavity with the injected light field, which has been proven to be adequate for the
description of semiconductor lasers subject to external optical injection [TAR95a]. In
this approach, the electromagnetic field in the cavity is dealt with classically, using the
Maxwell equations, while the amplifying medium inside the cavity is treated quantum
mechanically [HAK81]. The electric field in the cavity of the QD slave laser E as well
as the electromagnetic field of the injecting master laser Einj are treated in the slowly
varying envelope approximation, by assuming that the fields can be split into a product
of a slowly varying envelope function and a fast oscillating plane wave

E(t) ≡ E(t)eiωtht + c. c. and Einj(t) ≡ Einjeiωinjt + c. c., (3.1)

where c. c. denotes the complex conjugate. The slowly varying and complex field ampli-
tude of the slave laser and the constant real amplitude of the injected field are denoted
by E and Einj, respectively, and ωth and ωinj are the carrier frequencies of slave and
master, respectively. The emission frequency of the slave laser at lasing threshold ωth is
chosen as its carrier frequency. The carrier frequencies are in the THz -regime (optical
wavelengths), while E varies on the time scale of the ROs (GHz), which is studied in
the following. The carrier frequency of the slave laser refers to an optical wavelength of
λopt = c/(ωth) = 1.3µm .

The field amplitude E is scaled such that E ≡
√

Nphe
iφ, where φ is the phase of the

field. Thus, the instantaneous emission frequency of the slave laser is given by

ωlas ≡
(

ωth +
dφ

dt

)

. (3.2)

The stochastic differential equation for the slowly varying field amplitude E of the
slave laser, i.e, the QD laser, subject to optical injection reads

dE
dt

=
1 + iα

2

[

2W̄ZQD
a (ρe + ρh − 1) − 2κ

]

E +

√

β
Rsp(ρe, ρh)

2
ξ(t) +

K

τin

∣
∣E0
∣
∣ei∆ωinjt,

(3.3)

where the linewidth enhancement factor α has been introduced. It models the phase-
amplitude coupling by assuming a linear variation of the absorption and the refractive
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3. Quantum dot laser under optical injection

index with the carrier density. Since refractive index and absorption are described by
real and imaginary part of the complex electronic susceptibility, this corresponds to the
assumption of a linear dependence of the electronic susceptibility on the carrier density.
See [LIN13] for a detailed discussion of the validity of this approach. In the semiclassical
approach of Eq. (3.3), the spontaneous emission is modeled by a complex Gaussian white
noise term ξ(t) [HEN82], i.e.,

ξ(t) = ξ1(t) + iξ2(t), 〈ξi(t)〉 = 0,

〈ξi(t)ξj(t̃)〉 = δi,jδ(t− t̃), for ξi(t) ∈ R, i ∈ {1, 2},

and the rate of the spontaneous emission reads

Rsp(ρe, ρh) ≡ 2ZQD
a Wρeρh. (3.4)

It has been determined by rewriting the stochastic differential equation (3.3) for the
solitary laser (K = 0) in polar coordinates (Nph,φ) by means of an Ito transformation
[GAR02, FLU07]. A comparison with the deterministic term for the spontaneous emis-
sion in the dynamical equation for the photon number of the solitary laser (Eq. (2.1a)),
which was obtained by a fully quantum mechanical approach [CHO99], then yields the
correct expression for Rsp.

The last term in Eq. (3.3) models the external injection. Here, K is the strength of
the injected light

K ≡ (1− r)

∣
∣Einj

∣
∣

∣
∣E0
∣
∣
, (3.5)

where the slowly varying field amplitudes of the solitary slave laser, and the injecting
laser (master laser) are denoted by E0 and Einj, respectively. The transmission coefficient
of the facet of the slave laser, through which the light of the master laser is injected,
is given by 1 − r, where r is the reflection coefficient for the field amplitude that is
assumed to be real. Beside K, the frequency detuning ∆ωinj ≡ ωinj − ωth between the
carrier frequency of the master laser ωinj and the frequency of the slave laser at lasing
threshold ωth is used as a bifurcation parameter throughout this chapter. To derive the
field equation (3.3), it has to be assumed that E varies little during the roundtrip time
of the light in the cavity. This is why the injection rate K is measured in units of the
cavity roundrip time τin [WIE05, TAR95a].

To derive scaling laws for the dynamical variables needed for the asymptotic analysis
of the following sections, it is convenient to rewrite the field equation (3.3) in a dimen-
sionless form by rescaling time with respect to the photon lifetime (2κ)−1 as already
discussed for the solitary laser in Section 2.3. Introducing the new time t′ ≡ 2κt, the
rescaled field equation reads

E ′ =
1 + iα

2

[

g(ρe + ρh − 1)− 1
]

E +

√

β
rsp(ρe, ρh)

2
ξ(t) +

K

2κτin
|E0|eiδωt. (3.6)

Here, ( · )′ denotes the differentiation with respect to t′, and additionally to the dimen-
sionless groups from Eq. (2.7), the dimensionless rate of the spontaneous emission rsp,
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3.2. Model of QD laser under optical injection

and the dimensionless bifurcation parameter δω determining the input detuning between
master and free running slave laser have been introduced as

rsp(ρe, ρh) ≡
Rsp

2κ
=

WZQD
a

κ
ρeρh and δω ≡ ∆ωinj

2κ
. (3.7)

In the subsequent calculation, the stochastic term is neglected by setting β = 0. Fur-
thermore, we note that equation (3.6) is non-autonomous. However, for the analytical
considerations it is convenient to treat rotating wave solutions with non-zero δω but
constant photon number and carrier densities as fixed points. Therefore, a coordinate
transformation onto a frame rotating with the frequency distance between master and
slave δω is performed, by introducing E = Ẽeiδωt′ , where Ẽ is the amplitude of the field
in the rotating frame. In the new coordinates, the field equation (3.6) reads

Ẽ ′ =

(
1 + iα

2

[

g(ρe + ρh − 1)− 1
]

− iδω

)

Ẽ +
K

2κτin
|Ẽ0| (3.8)

Since only the modulus of the electrical field Ẽ enters into the carrier equations
(2.4b)–(2.4e), they remain unchanged with Nph = |Ẽ |2.

Further, it is convenient to rewrite the complex field amplitude in polar coordinates
Ẽ =

√
Nphe

iΨ, where Ψ is the phase of the field amplitude in the rotating frame, which
yields two real equations for the photon number Nph and the phase Ψ, respectively1,

N ′
ph =

[

g(ρe + ρh − 1)− 1
]

Nph +
2K

2κτin

√

N0
phNph cos(Ψ), (3.9a)

Ψ′ = −δω +
α

2
[g(ρe + ρh − 1)− 1]− K

2κτin

√

N0
ph

Nph

sin(Ψ). (3.9b)

By first writing E as E =
√
Nphe

iφ and, second, noting that it can also be written as

E = Ẽeiδωt′ =
√

Nphe
i(Ψ+δωt), we see that φ can be expressed in terms of Ψ and δω as

φ = Ψ+ δωt′. (3.10)

From Eq. (3.10), we see that Ψ = φ − δωt′ is the phase difference between the phase φ
of the slave and the phase δωt′ of the master laser. The dynamics of φ is expressed by

φ′ =
α

2
[g(ρe + ρh − 1)− 1]− K

2κτin

√

N0
ph

Nph

sin(φ− δωt′) (3.11)

and decouples from the set of dynamical equations, which consists of the field equa-
tions (3.9) and the carrier equations (2.4b)–(2.4e).

For the asymptotic analysis presented later in Subsection 3.7.4, it is convenient that
the dynamical variables are all O(1), which simplifies their comparison to the small
parameter γ describing the time scale separation. Therefore, we rescale the photon

1Alternatively, we can directly plug the ansatz E ≡
√
Nphe

i(Ψ+δωt′) in the field equation (3.6).
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number Nph
2 with respect to its value for the solitary laser N0

ph by introducing Nph =
N0

phR
2, where R is O(1). In terms of R, the dynamical equations read3

R′ = ρinvR + k̃ cos(Ψ), (3.12a)

Ψ′ = −δω + αρinv −
k̃

R
sin(Ψ), (3.12b)

ρ′e = γ
[

Fe − rph(ρe + ρh − 1)R2 − ρeρh

]

, (3.12c)

ρ′h = γ
[

Fh − rph(ρe + ρh − 1)R2 − ρeρh

]

, (3.12d)

W ′
e = γ

[

J − Fe − cWeWh

]

, (3.12e)

W ′
h = γ

[

J − Fh − cWeWh

]

, (3.12f)

where a rescaled injection strength k̃ and the ratio rph were introduced as

k̃ ≡ K

2κτin
and rph ≡ rwN

0
ph, (3.13)

which are both O(1). The phase equation (3.12b) is of Adler’s type [ADL73]. For low
injection strengths, the degrees of freedom of the inversion and the photon number N0

ph

may be neglected. The system is then effectively one dimensional, and the phase-locking
dynamics of the laser can be described only by the phase equation (3.12b) [ERN10b].

3.2.1. Preparing the equations for numerical path continuation

Numerical path continuation allows to compute, continue, and analyze the stability of
steady state solutions and periodic solutions. Moreover, homoclinic and heteroclinic
orbits can be computed. The basic idea of numerical path continuation is to find an
object of interest and then follow it in a suitable parameter space. Compared to direct
numerical integration, it has the advantage that also unstable objects, i.e., unstable fixed
points and periodic orbits, and their bifurcations can be tracked. This permits to obtain
a more complete picture of the underlying dynamics of the system under consideration.
Mathematically, continuation is set up in such a way that there are L − 1 equations
for L unknown variables, so that the solution space is geometrically a one-dimensional
curve in R

L [KRA05a]. The inverse function theorem guarantees that once a first point
on this solution curve (branch of solutions) is found, then it is possible to continue
it in parameter space [KUZ95]. This is usually done with the method called pseudo-
arclength continuation involving a prediction step in the direction tangent to the curve
and a Newton correction step in the space perpendicular to this tangent. During the
computation, the stepsize along the branch is adapted in response to the success of the
Newton correction [KRA07]. The idea of continuation can be used to follow branches of
many implicitly defined problems. Most important, since local bifurcations are marked

2Typically, Nph = O(104), which implies that the product of rwN
0
ph is a O(1).

3As a shortcut, we can directly plug the ansatz E ≡
√

N0
phRei(Ψ+∆ωt) in the field equation (3.3).
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3.3. Dynamics of optically injected laser

by changes of stability of fixed points and periodic orbits [GLE94], they may be followed
in parameter space. To analyse the stability of steady state solutions, approximations
are computed to the rightmost, stability determining roots of the characteristic equation.
Similarly, the stability of periodic solutions is determined by calculating approximations
to their Floquet multipliers. Periodic solutions are represented by a suitable boundary
value problem, which is solved by a piecewise polynomial representation of the solu-
tion (orthogonal collocation). In Chapter 4, it will be discussed that the laser under
optical feedback is described by a delay differential equation (DDE) for the complex
slowly varying envelope of the electric field E . The characteristic equation of a DDE
is transcendental so that it has infinitely many solutions. However, it can be shown
that for each ǫ < 0, there is always only a finite number of eigenvalues with real parts
larger than ǫ [DIE95]. Thus, it is sufficient to calculate the finite number of eigenvalues
with real parts larger than zero to determine the stability of a system of DDEs. This
permits to extend the methods that have been developed for numerical path continua-
tion of ordinary differential equations to DDEs [ENG01, ENG02, KRA05a, GLO11]. A
comprehensive review of numerical path continuation methods for ordinary and delay
differential equations is given in Ref. [KRA07].

So far, the optical equations (3.9) were discussed in polar coordinates (Nph,Ψ). For the
numerical path continuation, the representation in polar coordinates is not a good choice,
because it introduces the symmetry Ψ 7→ Ψ+2π. As a consequence, there is a topological
difference between a limit cycle with a bounded phase, i.e., a phase that remains within
the interval (−π, π] and a limit cycle with unbounded phase (running phase solution)
[WIE05]. However, the transition from a bounded to an unbounded phase is not a
bifurcation, but an "artifact" of the representation in polar coordinates, which is not
present in Cartesian coordinates Ẽ = Ẽx + iẼy. Therefore, Cartesian coordinates are
more convenient for numerical path continuation. In Cartesian coordinates, the optical
equations (3.9) read

Ẽ ′
x =

1

2

[

g(ρe + ρh − 1)− 1
]

(Ex − αEy) + δωEy + k̃, (3.14)

Ẽ ′
y =

1

2

[

g(ρe + ρh − 1)− 1
]

(Ey + αEx)− δωEx. (3.15)

3.3. Dynamics of optically injected laser

In this section, the dynamics of the optically injected QD laser modeled by equa-
tions (3.12) is discussed. In this and in the next section, the dynamics is studied in de-
pendence of the frequency detuning ∆νinj (measured in GHz) and the injection strength
K that varies between 0 and 1, instead of the corresponding dimensionless quantities δω
and k̃4 to simplify the comparison with other publications and experimental results.

In the first part of this section, the dynamics of a typical QD laser is modeled by
using a small α-factor of α = 0.9 and by a band structure that is described by the
reference scattering rates (cf. Table 2.1). Then the influence of the α-factor and of

4Note that ∆νinj and K are related to the dimensionless quantities δω and k̃ defined in the previous

section by ∆νinj = κδω/π and K = 2κτink̃, respectively.
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3. Quantum dot laser under optical injection

the band structure on the dynamics is studied in Subsections 3.3.1 and 3.3.2, respec-
tively, and eventually the dependence of the dynamics on the pump level is discussed in
Subsection 3.3.3.

Figure 3.2.: Two-parameter bifurcation diagram for small α = 0.9 in dependence of injection strength
K and input frequency detuning ∆νinj. The color code marks the number of local extrema, i.e., the
number of maxima and minima, of the photon number Nph. The light yellow area (phase-locking
tongue) marks the average frequency locking with steady state photon number, i.e., cw-lasing. The
yellow-orange hatched area shows periodic modulations of Nph, i.e., motion on a limit cycle with
a locked average frequency. Blue, black, and white lines indicate period doubling (PD), Hopf and
saddle-node (SN) bifurcation lines, respectively. Solid and dashed lines indicate super and subcritical
bifurcations, respectively. Red diamonds and gray circles mark codimension-2 zero-Hopf (fold-Hopf)
points (ZH1 and ZH2) and cusp points (C), respectively. Parameters: J = 3.5Jth, reference rates,
and other parameters as in Table 2.3. Modified from [PAU12].

The contour plot in Figure 3.2 depicts the dynamics of the laser under optical injection
in the (K,∆νinj)-plane. For each pair of (K,∆νinj)-values, the system was integrated un-
til transient effects had died out, and then the number of local extrema of different height
has been extracted from the time series of the photon number Nph. Color coded is the
number of local extrema of different height. (For periodic waveforms, this corresponds
to the number of local extrema per period.) Further, in order to obtain a clear picture
of the bifurcations, path continuation was performed with the software tool matcont

[DHO03]. The complete bifurcation scenario of an injected class B laser is very com-
plex [WIE99, WIE05]. (A concise review is given in [WIE05a].) Here, the focus lies on
the saddle-node (SN) (white lines) and Hopf bifurcation lines (black lines), for which
analytic approximation are derived at the end of this chapter. Furthermore, period
doubling (PD) bifurcation lines (blue lines) have been continued to study the depen-
dence of the regions with complex dynamics from α-factor, band structure, and pump
current. Bifurcations of stable objects are of special interest for the comparison with
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experiments, because they can be observed experimentally. Following the notation of
[WIE99], bifurcations of stable objects, e.g., fixed points, limit cycles, and tori, in which
another stable object is created, are called supercritical, while bifurcations, in which no
attractors are created, are called subcritical throughout this work5. For example, a Hopf
bifurcation of a stable fixed point is called supercritical if a stable limit cycle is created
in this bifurcation. It is called subcritical if an unstable limit cycle coexists with the
stable fixed point before the bifurcation point, and the fixed point is destabilized by
the limit cycle at the bifurcation point. In the bifurcation diagram of Fig. 3.2, super-
and subcritical bifurcation lines are depicted by solid and dashed lines, respectively.
Although not directly visible in experiments, subcritical bifurcation lines are necessary
to obtain an overall and consistent picture of the bifurcation scenario. Furthermore,
subcritical bifurcation curves may change their stability and become supercritical when
laser parameter as for example the α-factor are changed [WIE99].

Figures 3.3(a)–(d) depict one parameter bifurcation diagrams of local extrema of Nph

as a function of the input frequency detuning ∆νinj for four values of the injection
strength K. In these diagrams, a single point indicates continuous wave operation, while
two points (maxima and minima) indicate periodic pulsing marked by light shading.
Furthermore, Figs. 3.3(e)–(h) depict the resulting frequency difference νinj − ν (output
detuning) of the optical frequency of the master laser νinj to the instantaneous frequency
of the slave laser ν as a function of the input frequency detuning ∆νinj. From Eq. (3.2),
it can be seen that the instantaneous frequency of the slave laser is given by ν ≡
ωlas/(2π) = ωth+

dφ
dt

. Figures 3.3 thus correspond to vertical sections of Fig. 3.2. Further,
figures 3.4(a)–(d) depict time series of Nph (left column), projections of the attractors
onto the complex Ẽ-plane (middle column), and the power spectral densities (PSD) SẼ
of Ẽ as a function of the output frequency detuning νinj−ν (right column) for four points
in the (K,∆νinj)-plane, labeled by (a)–(d) in Fig. 3.2. The power spectral density reveals
the frequency contributions of the signal. It will called power spectrum in the following
(see Appendix D.3 for its definition).

Phase-locking occurs when a stable equilibrium exists for the phase difference Ψ of
master and slave lasers. From the relation (3.10) of Ψ to the phase of the slave laser
φ, it can be seen that phase-locking, i.e., Ψ′ = 0, implies φ′ = δω = ∆ωinj/(2κ). The
instantaneous frequency ν of the slave laser is then given by

ν =
ωlas

2π
=

1

2π

(

ωth +
dφ

dt

)

=
1

2π
(ωth + 2κφ′) =

ωth −∆ωinj

2π
= νinj. (3.16)

5Note that for Hopf bifurcations there exists a different definition of super- and subcritical. For
the two-dimensional Hopf normal form, a supercritical Hopf bifurcation takes place when a stable
limit-cycle is created that destabilized the stable fixed point, while in subcritical Hopf bifurcation,
an unstable limit-cycle destabilizes the stable fixed-point. This definition can be generalized to
higher dimensional systems by defining that in a supercritical Hopf bifurcation, the dimension of
the unstable manifold of the fixed point is increased by two, while the limit-cycle gains a pair of
complex conjugate Floquet-multipliers σ± with |σ±| < 1. In a subcritical Hopf bifurcation, the
unstable dimension of the fixed point increases by two, and a complex conjugate pair of Floquet-
multipliers of the limit-cycle leaves the unit-cycle. In the two dimensional center-manifold of a
Hopf bifurcation, the high-dimensional then reduces to the generic two dimensional case of the Hopf
normal form [KUZ95]. In this work, we call in the high dimensional case only those Hopf bifurcation
supercritical, in which a stable limit cycle is created.
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Figure 3.3.: (a)–(d): One-parameter bifurcation diagrams showing maxima and minima of the photon
number Nph (normalized to the area of the laser’s cross section A) as a function of the input detuning
∆νinj ≡ νinj− νth. (e)–(h): Output detuning νinj− ν in terms of input detuning ∆νinj. The injection
strengths are ((a) and (e)): K = 0.1, ((b) and (f)): K = 0.21, ((c) and (g)): K = 0.39, and ((d)
and (h)): K = 0.52. Blue dashed lines indicate the interval of input detunings ∆νinj, where operation
is found, light shadings mark periodic, quasiperiodic, or chaotic pulsing. Labels SN, PD, and Hopf
indicate saddle-node, period-doubling, and Hopf bifurcations, respectively. Parameters: α = 0.9,
J = 3.5Jth, and other parameters as in Table 2.3. Modified from [PAU12].

This means that phase-locking implies frequency locking. In the phase-locking region
of the (K,∆νinj)-plane, stable cw operation of the slave laser on the frequency of the
master laser νinj is observed, i.e., only one extrema of the photon number is detected. In
Figure 3.2, phase-locking occurs within the yellow tongue-like structure centered around
zero detuning ∆νinj = 0. The width of this locking-tongue increases with the injection
strength K. For zero α-factor, the locking-tongue is symmetric with respect to the
line ∆νinj = 0, and its asymmetry increases with the α-factor. For low values of K,
the locking boundary is given by a saddle-node bifurcation. In this bifurcation, the
lasing fixed point, which is a stable focus, collides with an unstable fixed point, which
is a saddle-focus, and the fixed points annihilate. In the one parameter bifurcation
diagrams of Figs. 3.3(a)–(d), the phase-locking expresses in a steady state of Nph (only
one extremum) bordered by the vertical blue dashed lines indicating the saddle-node
bifurcations. The output frequency detuning νinj−ν is zero indicating that the frequency
of the slave laser is entrained by the one of the master (cf. power spectrum in Fig. 3.2(a)).
For most values of K, the saddle-node bifurcations, which border the locking tongue,
take place on a stable invariant cycle. This global bifurcation is called saddle-node on a
limit cycle, saddle-node infinite period (SNIPER), or saddle-node on an invariant cycle
(SNIC) bifurcation [KUZ95, SCH00, HIZ08b, AUS09].

Outside the locking region, the slowly varying field amplitude Ẽ of the slave laser
oscillates with a frequency close to the input detuning ∆νinj resulting in a periodic
modulation of Nph with one maximum and one minimum (orange regions in Fig. 3.2).
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(a)

(b)

(c)

(d)

Figure 3.4.: Left column: Time-series of the photon number Nph (normalized to the steady state value
of the solitary laser N0

ph). Middle column: Projections of the trajectory onto a plane spanned by

the components Ẽx and Ẽy of the complex field amplitude Ẽ . Right column: Power spectral density
SẼ . (a): Stable continuous wave operation for zero input frequency detuning ∆νinj = 0 and injection
strength K = 0.1. (b): Limit cycle close to saddle-node bifurcation ∆νinj = 1.1GHz and K = 0.1.
(c): Limit cycle with bounded phase close to Hopf bifurcation for ∆νinj = 3.2GHz and K = 0.39.
(d): Limit cycle with unbounded phase for ∆νinj = 7GHz and K = 0.39. Parameters: α = 0.9,
J = 3.5Jth, and other parameters as in Table 2.3.
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Approaching the saddle-node line from the outside of the locking tongue for small K,
the flow on the stable limit cycle slows down near the point, where the saddle-node
bifurcation will appear and then makes a quick excursion along the other part of the
periodic orbit. Figure 3.4(b) depicts the dynamics close to the SNIPER bifurcation. The
time series now displays regular pulsing of Nph, and the projection onto the complex Ẽ-
plane shows the limit-cycle. The quick excursion corresponds to the pulses in the time
series. At the SN line, a stable nose and an unstable saddle-focus appear, and the laser

H1

ZH1

Figure 3.5: Bifurcation lines in a plane
spanned by injection strength K and fre-
quency detuning δω. The homoclinic bi-
furcation line is denoted by h1 and the
supercritical saddle-node and Hopf bifur-
cation lines are labeled by SN and H1,
respectively. The codimension-2 zero-
Hopf point for positive detuning is la-
beled by ZH1. Black and gray lines de-
note supercritical and subcritical bifur-
cation lines, respectively. The h1-line
touches the SN line in four codimension-
2 bifurcation points Ai for i ∈ {1, 2, 3, 4}
forming two homoclinic teeth. The line,
along which the saddle is neutral, is de-
noted by ns. It intersects with h1 in two
codimension-2 Belyakov points B1 and
B2. Modified from [WIE02].

locks to the stable node. This kind of phase-locking can be described by the dynamical
equation (3.12b) for Ψ only by neglecting the degrees of freedom of Nph and the carrier
variables. This means that the system is effectively one dimensional. An equation of
this type was firstly derived by Adler to describe phase locking in externally driven
radiofrequency oscillators [ADL73]. This is why this type of locking is also known as
Adler’s type locking. Further, approaching the SNIPER bifurcation line from the interior
of the locking tongue, the laser subject to spontaneous emission noise becomes excitable.
A superthreshold perturbation away from the stable fixed point then leads to a large
excursion of the trajectory in the phase space along the "ghost" of the limit cycle, which
was previously annihilated in the SNIPER bifurcation. As a result, the laser emits an
intensity spike. Further, in the excitable regime coherence resonance may be observed
[OLE10, ZIE13]. Coherence resonance is the effect that an increase of the noise can lead
to an increase of the regularity of the spikes [HU93a, PIK97], which will be discussed in
detail in Section 4.8.

Wieczorek et al. showed in [WIE02] that for semiconductor class B lasers the saddle-
node bifurcation does not always take place on a limit cycle, i.e., in a SNIPER bifurca-
tion, due to the additional degrees of freedom of field amplitude and carrier inversion. As
shown in Fig. 3.5, at special codimension-2 bifurcation points (non-central homoclinic
saddle-node bifurcation points) labeled by A1 and A2, a homoclinic curve h1 touches the
saddle-node (SN) line. Consequently, between A1 and A2 the saddle-node bifurcation
does not take place on a limit cycle. The homoclinic line bends into the interior of
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the locking tongue forming a so-called homoclinic tooth. The same is true between A3

and A4 and at many more homoclinic teeth that become smaller for increasing injec-
tion strength. Within the homoclinic teeth, the stable node created in the saddle-node
bifurcation, i.e., the lasing fixed point, coexists with the limit cycle, which renders the
system bistable. The limit cycle is then annihilated in the homoclinic bifurcation at h1

in a collision with a saddle-point. Closely beyond h1, the system is excitable, and noise
induced dynamics, for instance, irregular spiking can be observed [OLE10, KEL11a].
The larger homoclinic tooth in Fig. 3.5 intersects with the dashed curve ns, where the
saddle created in the saddle-node bifurcation is neutral. This neutral case is reached
when the absolute value of the real parts of a real eigenvalue and the real parts of the
complex conjugate eigenvalues are equal. Below the ns line, the homoclinic orbit bifur-
cates at h1 into an attractive periodic orbit, i.e., a stable limit-cycle, and we obtain the
bistability discussed above. This is known as simple Shil’nikov case [KUZ95]. Above
ns, the bifurcating limit cycle is no longer stable, which is known as chaotic Shil’nikov
case. Breaking the homoclinic orbit at h1 at any point above ns leads to the creation
of n-homoclinic orbits for any n ∈ N. While the ns line is not a bifurcation line, its
intersection points with the homoclinic line h1 labeled by B1 and B2 are codimension-2
bifurcation points known as Belyakov points. They mark the transition between the
simple and the chaotic Shil’nikov case. Above these points the laser exhibits complex
multi-pulse excitability close to h1, which was studied in detail in [WIE02, WIE05a]
(see [WIE07] for a comprehensive review on this topic). Excitability and coherence res-
onance of a topologically identical phase space configuration found in semiconductor
lasers subject to external optical feedback will be discussed in detail in Section 4.8.

For increasing K, the injection becomes strong enough to undamp the ROs of the
slave laser. This is why the phase-locking region is bounded for high injection strength
by supercritical Hopf bifurcations (solid black lines in Fig. 3.2). This means that at the
bifurcation line, a stable limit-cycle is born, and the lasing fixed point is destabilized.
The one dimensional bifurcation diagrams of Nph in Figs. 3.3(c) and (d) reveal a square-
root like scaling of the photon number for positive detuning, which is the fingerprint
of a supercritical Hopf bifurcation [STR94a]. Figure 3.4(c) depicts time-series, phase
space projection, and power spectrum for K = 0.4 and a detuning of ∆νinj = 3.2GHz
closely beyond the supercritical Hopf bifurcation line for positive detuning (see label (c)
in Fig. 3.2). The time series shows a periodic modulation of Ẽ , and the power spectrum
reveals that the frequency of the modulation is 5GHz , which is close to the RO frequency
of the solitary laser (cf. Fig. 2.6). Thus, the Hopf bifurcation has indeed undamped the
ROs. In projection onto the complex E-plane (Fig. 3.2(d) (middle panel)), the exchange
of energy between the electric field and the inversion expresses in a motion on a limit-
cycle. This implies that Ψ is no longer constant but remains bounded, because the
limit-cycle does not cross the origin of the complex plane. Thus, the average frequency
ν̄ ≡ (〈ωth + dφ

dt
〉T )/(2π) of the slave laser, which is obtained by averaging ν over the

period T of the limit cycle, remains locked. This can also be seen from the power
spectrum, which has its dominant frequency still at zero output detuning. Thus, while
phase-locking implies frequency locking, the opposite is not true. This can be seen
from Figs. 3.3(g) and (h) by noting that the output detuning νinj − ν remains zero even
after the occurrence of the supercritical Hopf bifurcation for positive detuning marked
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by the rightmost blue dashed lines in Figs. 3.3(g) and (h). The parameter regions, at
which frequency-locking without phase-locking occurs, are indicated by yellow hatched
areas in Fig. 3.2. Recently, frequency-locking without phase-locking has been observed
experimentally in a dual-frequency solid state laser [THE11].

Going away from the Hopf bifurcation line, the limit cycle of Fig. 3.4(d) (middle panel)
increases until it touches the origin of the complex Ẽ-plane, and the phase becomes
unbounded. Figure 3.4(d) depicts the dynamics for K = 0.4 and a large detuning of
∆νinj = 7GHz , i.e., beyond the regime of a bounded phase (see label (d) in Fig. 3.2). In
the complex Ẽ-plane, the limit cycle now encircles the origin, which yields a drift in the
phase. The laser oscillates with a frequency corresponding to the frequency of the free
running laser νth shifted according to the new average value of the inversion. These fast
oscillations are modulated by the slow frequency of 7GHz , which corresponds to the
input detuning ∆νinj between master and slave laser. Thus, a beating between νth and
νinj is observed, which appears as the highest peak in the power spectrum of the slowly
varying field amplitude Ẽ , is at −7GHz . The injected field appears at zero together with
an additional phase-conjugate peak at −14GHz characteristic for nonlinear oscillations
(see Fig. 3.4(d) right). This effect is called four wave-mixing [WIE05a, MAJ12].

The points in parameter space, where a saddle-node line and a Hopf line become
tangent, are called zero-Hopf points (also referred to as saddle-node Hopf or fold-Hopf
points). The codimension of these points is two. The zero-Hopf point for positive
detuning is labeled by ZH1, the one for negative detuning is labeled by ZH2, and both
are marked by red diamonds in Fig. 3.2. These codimension-2 bifurcation points are
known to generate complex dynamics in their vicinity [WIE99]. Indeed, in Fig. 3.2 close
to each of the zero-Hopf points, regions of complex dynamics (dark red, gray, and white
regions) are found. Both regions are limited by period doubling (PD) bifurcations, which
lead to a motion onto a two-folded limit cycle in phase space. Within the large period
doubling loop for negative detuning, complex dynamics is observed (gray and white
regions). In the two white regions of Fig. 3.2, a cascade of period doubling bifurcations
leads to chaotic pulsations of the photon number [SCH89c]. Depicted in Fig. 3.2 are
only the first two bifurcation lines of the cascade, which lead to a periodic motion on
two- and four-fold limit cycles in phase-space, respectively.

At a zero-Hopf point, the saddle-node line changes from super- to subcritical, and
depending on the normal form coefficients, the Hopf line may change from super to
subcritical, and a torus bifurcation (also known as Neimark-Sacker bifurcation) line may
appear [KUZ95, GUC83]. Here, the Hopf line changes at ZH1 and ZH2 from super- to
subcritical (see Fig. 3.2), and supercritical torus lines appear (not shown). One branch
of the torus line connects ZH1 and ZH2. Close to ZH2, it intersects in a 1 : 2 resonance
with the period doubling line closest to ZH2. This is why the latter changes from super-
to subcritical. An analytic approximation of the torus line connecting ZH1 and ZH2 was
found for a single mode, class B QW rate equation model in [NIZ99]. Further, the other
branch of the torus line leaving from ZH1 intersects with the period-doubling line closely
above ZH1, in a 1 : 2 resonance. For the QW rate equation model mentioned above, the
torus lines were studied analytically using averaging methods in [NIZ01, ERN10b]. For
injection strength K > KZH,2 (where KZH,2 is the injection strength of the ZH2 point),
bistability between stable fixed points may occur in a triangle formed by the supercritical
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saddle-node and the Hopf line leaving from the ZH2 point and the saddle-node line
coming from the origin. This will be discussed in detail in Subsection 3.4. Within
the locking tongue, the RO damping is smaller for positive detuning than for negative
detuning, [KEL12a], which will be discussed in detail in Section 3.10. This is the reason
why for negative detuning the ROs are easier undamped than for negative detuning, and
the zero-Hopf point for positive detuning ZH1 is located at a lower injection strength
K than the zero-Hopf point at negative detuning ZH2.

Summing up, the position of the zero Hopf points is crucial for the injection dynamics
of the laser. For positive detuning, the slave laser locks to the master in a supercritical
Hopf bifurcation for K > KZH,1 and in a saddle-node bifurcation for K < KZH,1 (KZH,1

is the injection strength of the ZH1 point). For negative detuning and K > KZH,2,
bistability between fixed points may be observed. Moreover, both zero-Hopf points are
located in the vicinity of regions of complex dynamics, to which they are connected in
torus bifurcations. This is the reason why they are called organizing centers, and analytic
approximations for the upper zero-Hopf point ZH1 are discussed in Subsection 3.8.6.

3.3.1. Impact of the phase-amplitude coupling (α-factor)

In the last section, an overview of the dynamics in the (K,∆νinj)-plane was given. Now,
the impact of the phase-amplitude coupling on the dynamics of the injected laser is
analyzed. In the introduction of this chapter, it was discussed that in models, in which
the phase-amplitude coupling is described by a constant α-factor, the dynamics of QD
lasers is best approximated by small values of α, while QW lasers typically have large
α-factors [KAN05]. In Figure 3.6, the dynamics of the injected laser with small α = 0.9
(Fig. 3.6(a)) is compared to its dynamics with large α = 3.2 (Fig. 3.6(b)). The dynam-
ics for a small α-factor was already discussed in the previous section. (Figure 3.6(a) is
identical to Fig. 3.2.) With increasing α, the phase-locking range shrinks, because the
upper supercritical Hopf bifurcation line bends towards zero input detuning. Thus, pul-
sating behavior of the photon number is found for ∆νinj = 0 at high injection strengths.
This was observed experimentally in QW lasers [WIE02a, SIM03, WIE05a], but not
in QD lasers, which at zero detuning remain stable for arbitrary injection strengths
[ERN10a]. For QD lasers, the locking tongue remains nearly symmetrical with respect
to ∆νinj [KEL11c]. This permits to conclude that QD lasers have indeed a smaller
phase-amplitude coupling than QW lasers, which is supported by more complex model-
ing approaches [LIN12b, LIN13]. For QD models, in which the phase-amplitude coupling
is simply described by a constant α-factor, this may be modeled by using small values
for α, i.e. α . 2. Such a choice of α avoids that the upper supercritical Hopf bifurcation
line crosses the zero detuning line.

Further, the region with complex dynamics close to the upper codimension-2 zero-
Hopf point ZH1 increases for large α-factor and moves to the interior of the saddle-node
lines that emerge from the origin of the (K,∆νinj)-plane. For negative detuning, one now
finds large regions of multistability between periodic (dark-red) as well as quasiperiodic
and chaotic motion (purple and white regions) with the lasing fixed point. To see this,
note that the thick blue lines, which indicate supercritical period-doubling bifurcations,
now extend deeply into the yellow region that indicates the existence of a stable fixed
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supercrit. Hopf

supercrit. Hopf

saddle-node (SN)

(a) (b)

Figure 3.6.: Two-parameter bifurcation diagram in dependence of injection strength K and input fre-
quency detuning ∆νinj for (a): small α = 0.9 and (b): large α = 3.2. The color code marks the
number of local extrema, i.e., the number of maxima and minima, of the photon number Nph. The
light yellow area (locking tongue) marks the average frequency locking with steady state photon num-
ber, i.e., cw-lasing. The yellow-orange hatched area shows periodical modulations of Nph, i.e., motion
on a limit cycle with a locked average frequency. Blue, black, and white lines indicate period doubling
(PD), Hopf and saddle-node (SN) bifurcation lines, respectively. Solid and dashed lines indicate super
and subcritical bifurcations, respectively. Red diamonds and gray circles mark codimension-2 zero-
Hopf (fold-Hopf) points (ZH1 and ZH2) and cusp points (C), respectively. Parameters: J = 3.5Jth,
reference rates, and other parameters as in Table 2.3. Modified from [PAU12].

point. The color code shown in the Fig. 3.6 was obtained by up-sweeping the value of
the injection strength K, and thus parts of the stable limit cycle operation show up
inside the yellow area of cw operation. Down-sweeping K instead, reveals only stable
cw operation up to the saddle-node line for negative detunings. In experiments, up-
and down-sweeping indicate the directions, in which the injection strength is changed.
For instance, starting with zero injection and increasing it slowly can lead to different
dynamic scenarios than starting with high injection strength and decreasing it slowly.
In the simulations, this is done by choosing the last value of the time series as initial
conditions for the next simulation.

Qualitatively, the results agree well with results for QD lasers that are modeled with
equal and constant lifetimes for electrons and holes [OLE10, KEL11a]. However, in the
modeling approach discussed in this chapter, the lifetimes are no fitted parameters, but
nonlinear functions of the carrier density in the reservoir that are given by the band
structure. Thus, changes concerning the operation point of the device, e.g. changing the
pump current, can be studied without re-adjusting parameters.

Summing up, with increasing α-factor, the dynamics of the slave laser becomes more
complex, and the region of phase-locking, in which the slave laser provides stable cw
operation on the frequency νinj of the injected light, is decreased.
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(a) (b)

Figure 3.7.: Two-parameter bifurcation diagram in dependence of injection strength K and input fre-
quency detuning ∆νinj for small α = 0.9 and slow scattering rates (a) as well as fast scattering rates
(b). The color code marks the number of local extrema, i.e., the number of maxima and minima, of
the photon number Nph. The light yellow area (locking tongue) marks the average frequency locking
with steady state photon number, i.e., cw-lasing. The yellow-orange hatched area shows periodical
modulations of Nph, i.e., motion on a limit cycle with a locked average frequency. Blue, black, and
white lines indicate period doubling (PD), Hopf and saddle-node (SN) bifurcation lines, respectively.
Solid and dashed lines indicate super- and subcritical bifurcations, respectively. Red diamonds and
gray circles mark codimension-2 zero-Hopf (fold-Hopf) points (ZH1 and ZH2) and cusp points (C),
respectively. Parameters: J = 3.5Jth, and other parameters as in Table 2.3. Modified from [PAU12].

3.3.2. Impact of the band structure

So far, the reference rates (see Table 2.1) have been used in the simulations. They exhibit
a long electronic lifetime τe in the QD level that mainly determines the RO damping
of the solitary QD laser [LUE09, LUE11]. The damping is a crucial parameter for the
understanding of the dynamics of the QD laser under optical injection. Both, the band
structure and the pump current effect the RO damping via the carrier lifetimes τe and τh
in the QD levels and the steady state photon number N0

ph. Analytically, this dependence
was discussed for the solitary laser in [LUE11]. In this and the following subsections,
an overview of the dynamics of a QD laser under optical injection in dependence on the
band structure and on the pump current is given, before presenting a detailed analytic
study in Sections 3.5–3.10.

As discussed in Section 2.2, different carrier lifetimes τe and τh can be implemented
into the simulations by using scattering rates that have been calculated for different QD
sizes and thus different band structures (cf. Fig. 2.3). The different carrier lifetimes
influence the size of the phase-locking region in the (∆νinj, K)-plane. Figure 3.7(a)
and (b) depict the locking-dynamics for slow and fast scattering rates, respectively, as
introduced in Table 2.1. The α-factor is α = 0.9, and a pump current of J = 3.5Jth has
been chosen. Thus, Figs. 3.7 correspond to Fig. 3.2 that was obtained for the reference
rates. From the turn-on dynamics of the solitary laser (see Fig. 2.4) and the RO damping
presented in Fig. 2.6 it can be seen that a deep-dot structure modeled by the set of slow
Coulomb scattering rates results in a low RO damping. The RO damping increases for
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the reference rates, and a shallow-dot structure modeled by the set of fast Coulomb
scattering rates eventually has the highest RO damping.

By comparing Fig. 3.7(a) (slow rates) with Fig. 3.2 (reference rates) and Fig. 3.7(b)
(fast rates), it can be seen that the zero-Hopf point for positive detuning ZH1 shifts
to higher K, and the size of the yellow-orange hatched area indicating mean frequency
locking on a limit cycle decreases. The shift of ZH1 towards higher K can be directly
attributed to the increase of the RO damping, because for higher values of the damping,
a larger injection strength K is needed to undamp the ROs. In contrast, the zero-Hopf
point for negative detuning ZH2 shifts to lower values of K, which increases the region
in phase space, in which bistability of fixed-points is observed (see Subsection 3.4).

A second crucial effect of the lifetimes on the bifurcation diagram can be found at
the negative detuning side of the locking range. For large lifetimes and thus small
damping, the range of sustained multipulse emission with complex pulse shape is large,
and the lower PD bifurcation line is found already for small values of K (Fig. 3.7(a)).
Further, chaotic transients and complex bifurcations are found outside the locking range
for negative detunings. In contrast, the bifurcation diagram plotted in Fig. 3.7(b) for
the strongly damped QD laser shows a large range of frequency locked cw operation.
A very small area with more complex pulse shape is found near the zero-Hopf point
for positive detuning, and for K > 0.5, a small region limited by a PD bifurcation
line is found at the negative detuning side close to ZH2. It is interesting to note that
the period-two oscillations within the PD area have a bounded phase and thus show
mean frequency locking as indicated by hatching. The complete suppression of complex
pulsforms (multipulses) generated in PD bifurcation was also reported for a class A QD
semiconductor laser [KEL11a]. These lasers can be approximately described by a single
rate equation for the complex electric field amplitude and thus, as a two-variable system,
cannot show chaos.

It can be concluded that a stronger damping of the turn-on dynamics leads to a
reduction of the areas with complex dynamics and enlarges the range of stable frequency
locked cw operation. This relation between turn-on damping and locking behavior should
be interesting for experimentalists, as the knowledge of the α-factor and the small-signal
modulation response should be sufficient to predict and optimize the locking behavior
of a laser.

3.3.3. Impact of the pump current

Having discussed the impact of the α-factor and the band structure on the dynamics of
the QD laser under optical injection, we now focus on the impact of the pump current.
The pump current affects many characteristics of the QD laser, e.g., with increasing
pump current the photon number and electron and hole densities in the carrier reservoir
increase (see [LUE10]). This, in turn, influences the scattering rates, i.e., the carrier
lifetimes τe and τh, that have a strong impact on the RO damping. Figures 3.8(a) and (b)
show the two-parameter bifurcation diagrams for current densities of J = 2.1Jth and J =
4.9Jth, respectively. The α-factor is α = 0.9, and the figures thus correspond to Fig. 3.2,
where a pump level of J = 3.5Jth was chosen. The figures show that the codimension-
2 saddle-node-Hopf-point for positive detuning, at which the upper subcritical Hopf
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(a) (b)

Figure 3.8.: Two-parameter bifurcation diagram for α = 0.9 for injected current densities of (a): J =
2.1Jth and (b): J = 4.9Jth. The light yellow area indicates the locking region at cw operation, the
yellow-orange hatched area indicates the region of frequency locking on a limit cycle. The color code
indicates the number of extrema per period of the photon density. Saddle-node, period-doubling, and
Hopf bifurcation lines are indicated. Parameters: Reference scattering rates and other parameters as
in Table 2.3. From [PAU12].

bifurcation line changes to a supercritical one, shifts towards higher injection strengths
K and higher input detunings ∆νinj with increasing pump current. For J = 2.1Jth, the
upper zero-Hopf point ZH1 is located at KZH,1 = 0.14 (see Fig. 3.8(a)), for J = 3.5Jth,
it is located at KZH,1 = 0.22 (see Fig. 3.2), and for the high pump level of J = 4.9Jth,
it is eventually located at KZH,1 = 0.27 (see Fig. 3.8(b)). Further, the period-doubling
(PD) bifurcation lines for negative detuning shift to higher values of K.

Note that, if the lifetimes τe and τh are chosen to be constant, the locking range is
invariant under changes of the pump current. Thus, the changes in the locking behavior
with the pump current can be attributed to the nonlinearity of the carrier lifetimes,
which makes them a crucial ingredient for a quantitative modeling of QD lasers under
optical injection. High current densities lead to high electron and hole densities in the
carrier reservoir, which lead to short carrier lifetimes of electrons and holes, τe and τh,
respectively, and thus to a higher RO damping.

Concluding, it can be assessed that changing the band structure in the previous sub-
section leads to changes in the locking behavior that have a similar tendency as found in
this chapter for the lifetime variations. A shallow-dot band structure with large Coulomb
scattering rates has a similar effect as a high current density, and a deep-dot structure
with small Coulomb scattering rates has a similar effect as low current density. The
reason is that both, band structure and pump current effect the carrier lifetimes in the
QD levels, which in terms have a strong influence on the RO damping. The RO damp-
ing increases if the carrier lifetimes in the QD levels τe and τh decrease. Thus, high RO
damping can be achieved by either choosing shallow-dots or high pump current densities
(cf. Fig. 2.3).

53



3. Quantum dot laser under optical injection

3.4. Bistabilities of locked solutions for high injection

strength

In this section, the bistability of stable fixed points observed for high values of the in-
jection strengths K and negative input detuning ∆νinj are discussed. Bistable optical
systems are of special interest, due to their potential use as optical switches needed for
all-optical implementations of logical operations and all-optical memory. So far, these
applications have been demonstrated for bistable semiconductor ring and micro-disk
lasers [HIL04, LI08a]. Particularly, bistability of fixed points is of interest for applica-
tions, because it guarantees stable cw emission of the laser in both operation modes.
Bistability of fixed points in injection locked Fabry-Perot semiconductor QD lasers was
first mentioned in [GOU07] and was then studied in detail experimentally and described
theoretically in [ERN10a, KEL11c]. For their analytic investigations, the authors used
a rate equation model consisting of dynamical equations for the complex amplitude of
the electric field, the carrier density in the carrier reservoir, and an additional equation
for the inversion in the QDs. The latter permits to take into account the special car-
rier scattering dynamics in the QDs. For the in-scattering rates, a linear dependence
of the carrier density on the reservoir and constant out-scattering rates were assumed
[OBR04, ERN07a]. The authors showed that small phase amplitude coupling and strong
RO damping are the main laser parameters that are responsible for the higher dynamical
stability of QD lasers. In [KEL11c], the dynamics of the QD laser under injection was
directly compared to the dynamics of a class A laser model consisting of only one equa-
tion for the complex field amplitude [MAY02]. This revealed that the injection locked
dynamics of a QD laser is very similar to a class A laser. Indeed, the bifurcation diagram
the authors obtained in the (K,∆νinj)-plane looked similar to the one of Fig. 3.7(b) for
the set of fast scattering rates (shallow-dots) and small α = 0.9. Both, class A and QD
lasers have a nearly symmetric phase-locking tongue with respect to the input frequency
detuning ∆νinj, and the upper supercritical Hopf line bends towards large detunings
such that the phase-locking range increases for high values of K. In contrast, the phase-
locking range of QW lasers with high α-factors (cf. Fig. 3.6(b)) decreases for increasing
K, because the upper supercritical Hopf line bends towards zero detuning. Furthermore,
for negative input detuning bistability between fixed points becomes possible in a tri-
angle formed by two supercritical saddle-node lines and a supercritical Hopf line. The
dynamics inside this triangle is now discussed in more detail.

3.4.1. Bistability for fast scattering rates

Figure 3.9 depicts the saddle-node (gray) and Hopf (red) bifurcation lines for the set of
fast rates (see Table 2.1) and small α = 0.9 in the (K,∆νinj)-plane. Supercritical and
subcritical bifuractions are denoted by solid, thick and thin, dashed lines, respectively.
In the following, we want to focus on the triangle formed by the supercritical saddle-
node lines labeled by SN1 and SN2 and the lower supercritical Hopf line labeled by
H2. Codimension-2 zero-Hopf (ZH1 and ZH2) and cusp points (C) are labeled by red
diamonds and gray circles, respectively. Within the locking tongue, three fixed points
are involved into the bifurcation scenario [WIE99]. Figures 3.9(b)–(d) depict the photon
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Figure 3.9.: (a): Saddle-node (gray lines labeled by SN1 and SN2) and Hopf (red lines labeled by H1

and H2) bifurcation lines as functions of injection strengths K and frequency input detuning ∆νinj for
the set of fast scattering rates and small α = 0.9. Super- and subcritical bifurcation lines are plotted
by thick, solid and thin, dashed lines, respectively. Codimension-2 zero-Hopf (fold-Hopf) points (ZH1

and ZH2) and cusp points are labeled by red diamonds and gray circles, respectively. (b), (c), and
(d): Steady states of the photon number Nph (normalized to the photon number of the solitary laser
N0

ph) as functions of ∆νinj. The figures correspond to vertical sections of (a) marked by lines labeled
by B, C, and D, respectively. Stable and unstable fixed points are depicted by solid and dashed lines,
respectively, and saddle-node and Hopf bifurcation points are labeled by open black and red circles,
respectively. Gray crosses in (a) and gray dashed lines in (c) and (d) denote the parameter values of
the time-series depicted in Fig. 3.10. Parameters: J = 1.5Jth and other parameters as in Table 2.3.
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number Nph of these three branches of fixed points as functions of the detuning ∆νinj for
three values of K. Stable and unstable fixed points are denoted by solid and dashed blue
lines, respectively. For K < KZH,2 (KZH,2 is the injection strength of the ZH2-point),
bistability of fixed points is not possible. This can be seen in Fig. 3.9(b) that corresponds
to a vertical section of Fig. 3.9(a) along the solid black line labeled B. The upper stable
branch, i.e., the lasing branch of fixed points, gains its stability in an inverse supercritical
Hopf bifurcation when crossing the H1-line. At the lower saddle-node line (SN2), the
lasing fixed point collides with a saddle (open black circle labeled SN1 in Fig. 3.9(b)).
This saddle then collides with an other coexisting saddle at the saddle-node line SN1,
which is subcritical (open black circle labeled SN1 in Fig. 3.9(b)). This means that at
the SN1-point a saddle with a one-dimensional unstable manifold collides with a saddle
with a two-dimensional unstable manifold. Thus, two saddles coexist between SN1 and
SN2. Bistability can occur if one of them is stabilized in an additional bifurcation. This
is what happens beyond the zero-Hopf point ZH2, in which the Hopf line (H2) (and also
SN1) change from sub- to supercritical. The H2-line is then located between SN2 and
SN1, and stabilizes the lower saddle. This is shown in Fig. 3.9(c), which corresponds to
a section along the vertical green line labeled C in Fig. 3.9. On the right hand side of the
H2 point (red point), bistability between fixed points is observed, while on the left hand
side, bistability of the upper steady state and the stable limit cycle (not shown) occurs
between H2 and SN2. The H2 line eventually crosses the SN2 line at K = 1.12. Beyond
this point, bistability of fixed points can be observed in the whole ∆νinj-interval between
the saddle-node lines SN2 and SN1. This is shown in Fig. 3.9(d), which corresponds to
a vertical section in Fig. 3.9(a) along the solid blue line labeled by D.

Time series in the bistability region with spontaneous emission noise, i.e., β 6= 0, are
depicted in Fig. 3.10. Fig. 3.10(a) shows a time series for K = 0.88 and ∆νinj = −7GHz .
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Figure 3.10: Bistability of attractors
within the locking tongue. The
switching is induced by a rectangu-
lar increase of the injection strength
with a duration of 400 ps . (a):
Switching from stable limit cycle to
fixed point for ∆νinj = −7GHz
and K = 0.88. (b): Current
pulse. (c): Switching between sta-
ble fixed points for ∆νinj = −8GHz
and K = 1.14. Parameters: fast
rates, α = 2, J = 1.5Jth, β =
1.1 · 10−3, and other parameters as
in Table 2.3.
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This point is marked by a gray cross on the green vertical line labeled by C in Fig. 3.9(a)
and by the gray dashed line in Fig. 3.9(c). Initially, the laser evolves on the stable limit
cycle that was born at the H2 point (red dot in Fig. 3.9(c)). The limit cycle is deformed
by the spontaneous emission noise. At t = 4.5 ns a short, rectangular pulse with a
duration of 400 ps and a height of Einj = 1.4 Einj,0 is superimposed to the constant
injection with Einj,0, which is depicted in Fig. 3.10(b). (Note that the relation of K and
Einj,0 is given by Eq. (3.5).) This pulse excites the system, which then relaxes to the
stable fixed point. A switching process into the opposite direction is also possible by
reducing the injection strength for a short time. Figure 3.10(c) depicts the bistability of
fixed points for ∆νinj = 8GHz and K = 1.14, which is marked by a gray cross on the
blue vertical line labeled by D in Fig. 3.9(a) and by the gray dashed line in Fig. 3.9(d).
Initially, the system rests in the fixed point with the lower photon number. At t = 4.5 ns ,
the current pulse provokes a switching to the stable fixed point with the higher photon
number.

Both, the bistability of a periodic orbit and a fixed point as well as the bistability of
two fixed points have been observed experimentally in a QD laser under optical injection
[ERN10a, KEL11c]. However, in this experiment the spontaneous emission noise showed
out to be strong enough to induce the switching processes. At least for the set of fast
scattering rates discussed so far, this is only possible very close to the bifurcation points.
For applications, it would be advantageous to design the band structure such that the
intensity difference between the steady state intensities of the stable fixed points is
large enough to prevent noise induced switching processes. Our simulations suggest that
this should be possible for shallow-dot band structures. In the next subsection, the
dependence of the bistability region on the band structure is discussed.

3.4.2. Dependence of bistability region on band structure

Figures 3.11(a)–(d) depict saddle-node (gray) and Hopf bifurcation (red) lines in the
(K,∆νinj)-plane for slow, reference, fast, and very fast Coulomb scattering rates, respec-
tively. The slow, reference, and fast rates describe the band structures summarized in
Table 2.1, and the very fast rates are obtained by multiplying the in-scattering rates of
the fast set by the factor 1 · 104 (see Section 2.2). The triangles, in which bistability be-
tween fixed points is possible, are blue shaded. For the slow rates, the supercritical part
of the Hopf line H2 has nearly the same slope than the saddle-node line S1. Furthermore,
the lower zero-Hopf point ZH2 (red diamond), beyond which bistability of fixed points
is possible, is located at a very high injection strength K = 2.1 close to the lower corner
of the triangle, which is given by the lower cusp point C (gray circle). As a result, the
surface of the triangle is so small that bistability of fixed points should not be observable
experimentally. In Section 2.3, it was discussed that the dynamics of solitary laser for
the slow set of rates is similar to the dynamics of QW lasers. The slow carrier exchange
between carrier reservoir and QD levels ensures a clear timescale separation between the
fast photon- and the slow carrier-subsystems, which is expressed by the small factor γ
multiplying the right hand sides of the carrier equations (see Eqs. (2.4)). Similar to a
typical class B QW laser, this QD laser is a slow-fast system, showing the characteristic,
weakly damped and thus pronounced ROs. The smallness of the bistability region agrees
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(b)

(c) (d)

bistability
between

fixed points

C

ZH1

H2

H1

ZH2

C

C

C

ZH2
ZH1

H1

H2

H2
H2

ZH2

ZH2

H1
H1

C

CC
ZH1 ZH1

C

Figure 3.11.: Locking tongues in a plane spanned by injection strength K and frequency detuning ∆νinj
for slow rates (a), reference rates (b), fast rates (c), and very fast rates (d). Red and gray lines
denote Hopf (H1 and H2) and saddle-node bifurcations, respectively. Solid thick and dashed thin lines
mark sub- and supercritical bifurcation lines. Zero-Hopf (ZH1 and ZH2) and cusp (C) points are
marked by red diamonds and gray dots, respectively. In the blue shaded regions bistability between
phase-locked steady states occurs. Parameters: J = 1.5Jth and other parameters as in Table 2.3.
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well with experimental findings for QW lasers, where bistability of fixed points was not
observed [WIE02a, SIM03].

Going from the slow set of rates (Fig. 3.11(a)) over the reference set of scattering
rates (Fig. 3.11(b)) to the fast set of rates (Fig. 3.11(c)), the ZH2-point shifts strongly
towards lower values of the injection strengths. Meanwhile, the cusp point C shifts only
weakly. This results in a successive increase of the triangle in phase space (blue shading),
in which bistability of fixed points is observed. Comparing the bifurcation diagram for
the fast rates to the one of the very fast rates depicted in Fig. 3.11(d), both, ZH2-
point and lower cusp point C shift toward higher values of K, but still the bistability
region remains larger than for the reference rates. Note that for the very fast rates, the
bistability region is still much larger than for the slow rates, although both have similar
RO damping. This indicates that the special Coulomb scattering dynamics of QD laser
can not be described completely by its influence on the linear laser characteristics, i.e.,
RO frequency and damping.

Concluding, our analysis suggests that a shallow-dot band structure formed by large
QDs is advantageous to increase the region, in which bistability of fixed points is observed
in phase space. This might be a hint that quantum dash semiconductor lasers, in which
the active region consist of large, elongated QD like structures, could be well suited to
realize all-optical switches.

3.5. Analytic expressions for steady states

In the last section, an overview of the complex dynamics of QD semiconductor lasers
under optical injection was given. Starting from this section the focus lies on analytic
solutions. At first, the steady states of the dynamical equations are discussed in this
section, before expressions for saddle-node and Hopf bifurcation lines are discussed in
the next sections. To alleviate the notation, no new symbols are introduced for the
steady states of the dynamical variables. Equating to zero the left hand sides of the
dynamical equations (3.12), we obtain

0 = ρinvR + k̃ cos(Ψ), (3.17a)

0 = −δω + αρinv −
k̃

R
sin(Ψ), (3.17b)

0 = Fe − rph(ρe + ρh − 1)R2 − ρeρh, (3.17c)

0 = Fh − rph(ρe + ρh − 1)R2 − ρeρh, (3.17d)

0 = J − Fe − cWeWh, (3.17e)

0 = J − Fh − cWeWh. (3.17f)

Assuming lasing conditions (R 6= 0), Eq. (3.17a) yields an expression for the inversion
in terms of the injection strength k̃ and the phase difference between master and slave
Ψ

ρinv = − k̃

R
cos(Ψ). (3.18)

For the solitary laser (k̃ = 0), the expression (2.25) for the gain-clamping (ρ0inv = 0) is
retrieved from Eq. (3.18).
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3. Quantum dot laser under optical injection

Next, we would like to determine the width of the phase-locking tongue, which is given
by the condition Ψ′ = 0. Furthermore, explicit expressions are derived for the saddle-
node lines bordering the phase-locking tongue for low injection strength. Therefore,
Eq. (3.18) is inserted into Eq. (3.17b), which yields an implicit equation for the steady
states of Ψ and R in dependence of the input detuning δω

δω = − k̃

R

(

α cos(Ψ) + sin(Ψ)
)

= − k̃

R

√
1 + α2 sin

(

Ψ+ arctan(α)
)

, (3.19)

where some trigonometric relations6 have been used for the second equality. From
Eq. (3.19), two solutions for the phase difference between master and slave Ψ are ob-
tained

Ψ1 ≡ − arcsin

(
δωR

k̃
√
1 + α2

)

− arctan(α), (3.21a)

Ψ2 ≡ (2n+ 1)π + arcsin

(
δωR

k̃
√
1 + α2

)

− arctan(α), for n ∈ Z. (3.21b)

As discussed in the previous section, inside the phase-locking region always one of the so-
lutions (3.21) is stable, which is known as phase-locking or Adler’s type locking [ADL73].

Equation (3.19) admits solutions for Ψ only if the condition
∣
∣
∣
∣

δωR

k̃
√
1 + α2

∣
∣
∣
∣
≤ 1

is fulfilled, which defines the boundaries of the phase-locking tongue. At these boundaries
pairs of solutions are created in saddle-node bifurcations. The detuning at the saddle-
node bifurcation lines is given in dependence of k̃, R, and α by

δωsn
± (k̃, R, α) ≡ ± k̃

√
1 + α2

R
. (3.22)

The above equation permits to determine the width of the locking tongue as

2|δωsn
± | = 2k̃

√
1 + α2

R
, (3.23)

which reveals that the width of the locking tongue increases with α. Further, the saddle-
node points (limit-points) in the (δω,ρinv)-plane can be calculated by first inserting
Eq. (3.22) into Eqs. (3.21), and then plugging the expressions for Ψ1/2 into Eq. (3.18),
which yields

(δωsn
± , ρsninv) ≡ ± k̃

R

(√
1 + α2,

α√
1 + α2

)

, (3.24)

where the signs are the same as in Eq. (3.22) and are independent of the choice of the
phases Ψ1 and Ψ2.

6 The following trigonometric relations are needed

cos(arctan(α)) =
1√

1 + α2
, sin(arctan(α)) =

α√
1 + α2

, (3.20a)

sin(x± y) = sin(x) cos(y)± cos(x) sin(y), cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y). (3.20b)
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Figure 3.12: Steady state solutions in a
plane spanned by frequency detuning δω
and inversion ρinv. The fixed points lie
on an ellipse (black dash-dotted line).
Stable and unstable fixed points are de-
noted by open and filled red diamonds,
respectively. The locking-boundary is
given by the two intersection points
of the ellipse and the saddle-node line
(blue line) located at

(
δωsn

− ,−|ρsninv|
)

and
(
δωsn

+ , |ρsninv|
)
, respectively (black circles

labeled by LP). The lasing fixed point
(stable node) of the solitary laser is de-
noted by a filled black diamond. Param-
eters: α = 2.0, R = 2, k̃ = 0.5, and
δω = 0.2.

Geometrically, the locked solutions, i.e., the solutions of equations (3.17), lie on an
ellipse in the (δω, ρinv)-plane. This can be seen by noting that equations (3.18) and (3.19)
are a parametric representation of an ellipse with the phase difference Ψ acting as a curve
parameter. Figure 3.12 depicts the ellipse by a black dash-dotted line. For nonzero α-
factors, it is tilted with respect to the δω-axis. Another expression for the ellipse that
will become important in the subsequent sections can be obtained by inserting the square
of Eq. (3.18) into the square of Eq. (3.19) and employing 1 = sin2(x) + cos2(x), which
yields

k̃2 = R2
[
ρ2inv + (αρinv − δω)2

]
. (3.25)

Solving for the inversion, we obtain two branches of solutions

ρinv =
1

1 + α2



δωα±

√

(1 + α2)k̃2

R2
− δω2



 . (3.26)

Plus and minus branch correspond to different fixed points of the system. Usually, the
fixed point with the lower carrier inversion is stable within the phase-locking region.
Since the term under the square-root in Eq. (3.26) remains real within the phase-locking
region, it follows that the minus branch has the lower inversion. In Fig. 3.12, the stable
and the unstable fixed points are denoted by a filled red diamond, and an open black
diamond, respectively. Note that these two fixed points are, in contrast to the black
ellipse, obtained for fixed bifurcation parameters k̃, δω, and α. For given bifurcation
parameters the phase differences Ψ1 and Ψ2 can be calculated from Eqs. (3.21). The
corresponding steady states of the inversion ρinv may then be calculated by inserting
Ψ1/2 into Eq. (3.17a). The unstable fixed point (plus sign in Eq. (3.26)) is obtained
from Ψ1, and the stable fixed point (minus sign in Eq. (3.26)) is obtained from Ψ2.
Equivalently, the inversion ρinv of stable and unstable fixed points may be calculated
directly by inserting k̃, δω, and α into Eq. (3.26). At the end of this section, it will
be shown how R = R(k̃, δω, α) needed in Eqs. (3.21) and (3.26) can be calculated for
given bifurcation parameters k̃, δω, and α. (In the sketch of Fig. 3.12 R has been set to
R = 2.)
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3. Quantum dot laser under optical injection

Demanding that the saddle-node condition of Eq. (3.22) is fulfilled, the square root in
Eq. (3.26) vanishes, and we obtain

ρinv(δω, α) =
δωα

1 + α2
, (3.27)

which is depicted by a blue line in Fig. 3.12. The locking boundary given by the limit
points (saddle-node bifurcation points) of Eq. (3.24) is geometrically described by the
intersection points of the ellipse (3.25) with the line (3.27) (black open circles labeled
by LP). The solution with the lower inversion (minus sign in Eq. (3.26)) is stable and
lies below the saddle-node line (3.27) (filled red diamond). The other solution (plus sign
in Eq. (3.26)) lies above this line and is unstable (open black diamond). Depending
on the bifurcation parameters k̃, δω, and α the stable solution can have a lower or a
higher inversion than the solitary laser (ρ0inv depicted by a horizontal gray dashed line).
A lower inversion corresponds to constructive interference of master and slave and a
higher inversion to destructive interference. The lasing fixed point of the solitary laser
is denoted by a filled black diamond in Fig. 3.12.

Next, the steady state of R2 (or alternatively of Nph = N0
phR

2) may be expressed
in terms of the carrier populations and the pump current by inserting Eq. (3.17e) into
Eq. (3.17c)

Nph =
1

rw(ρe + ρh − 1)
(J − cWeWh − ρeρh)

(2.5)
=

g

rw(2ρinv + 1)
(J − cWeWh − ρeρh)

(2.27)
≈ g (J − Jth)

rw(2ρinv + 1)
, (3.28)

where in the second equality the definition (2.5), of the rescaled inversion ρinv was used,
and in the approximation in the last line of Eq. (3.28) the definition of the threshold
current Jth of Eq. (2.27) was employed.

To find an expression for ρe and ρh in terms of We and Wh, and of the parameters
k̃ and δω, α, and J , the expression for the steady state of R2 obtained from the last
equality in Eq. (2.26)

R2 =
g(J − Jth)

rph(2ρinv + 1)
, (3.29)

is, at first, inserted into Eq. (3.25), which is then solved for ρinv yielding

ρinv =
k̃2rph + δωgα(J − Jth)

g(1 + α2)(J − Jth)

± 1

g(1 + α2)(J − Jth)

[ (
k̃2rph + δωgα(J − Jth)

)2

+g(J − Jth)(1 + α2)
(
k̃2rph − δω2g(J − Jth)

)

] 1
2

. (3.30)

The expressions for the steady states of ρe and ρh are then obtained by inserting the
carrier conservation relation (2.9) into the definition (2.5) of ρinv

ρe =
1

2

[
2ρinv + 1 + g

g
+Wh −We

]

, (3.31a)

ρh =
1

2

[
2ρinv + 1 + g

g
−Wh +We

]

. (3.31b)
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To sum up, for given parameters k̃, δω, α, and J the steady state values of the dynamical
variables can be calculated as follows: at first, the expression (3.30) for ρinv are inserted
into Eqs. (3.31) for ρe and ρh. This permits to obtain We and Wh by inserting the
resulting expressions into Eqs. (3.17e) and (3.17f), and solving self-consistently for We,
and Wh, which has to be done numerically, because the scattering rates are nonlinear
function of We and Wh. Then ρe and ρh can be calculated from Eqs. (3.31). Further,
R2 (Nph) may be obtained by inserting the resulting expressions into Eqs. (3.29) and
(2.26), respectively, which eventually permits to calculate the phases Ψ1 and Ψ2 from
Eqs. (3.21).

3.6. Asymptotic approximations

In the following, analytic expressions for the saddle-node and Hopf bifurcation lines that
border the phase-locking region of the QD laser under optical injection are discussed.
These local bifurcations can be found by analyzing the eigenvalues of the linearization
[STR94a]. The QD laser system introduced in Eqs. (3.9) and (3.12c)–(3.12f) is too
complex to obtain analytic expressions for its eigenvalues by directly linearizing the full
set of equations. Moreover, the small parameter γ describing the time scale separation
multiplies the complete right hand sides of the carrier equations (3.12c)–(3.12f), which
implies that the limit γ → 0 is singular. Thus, one cannot take advantage of the smallness
of γ to simplify the equations by firstly expanding the equations in a power-series with
respect to γ and then neglecting higher order contributions.

Singular means that γ = 0 leads to a qualitatively different solution than finite γ ≪ 1
[HIN95, BEN10]. Setting γ = 0, equations (3.12c)–(3.12f) reduce to ρ′e = ρ′h = W ′

e =
W ′

h = 0. The carrier populations are constant and thus the photon number Nph of
the solitary laser (k̃ = 0, δω = 0) increases or decreases exponentially (see Eq. (3.9a)).
In contrast, for finite γ stable steady state lasing is observed. Perturbations from this
equilibrium decay either exponentially to the lasing steady state in the overdamped
limit of the fast scattering rates or damped ROs are observed for the slow, reference,
and very fast rates, respectively (cf. Fig. 2.5). Thus, for γ small, we would expect
that the leading order problem in γ is conservative, and the damping is introduced by
the higher order contributions [LUE11]. In the following, a coordinate transformation
is discussed that removes the singularity at γ = 0 [LUE11] and has been successfully
used for rate equations of conventionally class B QW lasers [ERN10b]. Further, this
change of coordinates reveals that the dynamical equations for the reservoir populations
follow in the limits of the reference, the slow, and the fast rates nearly passively the QD
variables and may thus be neglected. This permits an analytic treatment of the reduced
equations. In the limit of vanishing carrier lifetimes τe/h, i.e., for very fast rates, the
dynamical variables of the reservoir population cannot be neglected due to the strong
coupling of QDs and carrier reservoir. Therefore, a reduced set of dynamical equations
is discussed in Subsection 3.7.4, which is an extension of the dynamical equations (2.43)
that have been derived for the solitary laser in Section 2.5.5 to the case of optical
injection. This reduced set of equations permits to obtain expressions for saddle-node
and Hopf bifurcation lines by direct linearization.
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3. Quantum dot laser under optical injection

3.6.1. Resolving the singularity at γ = 0

The key observation is that the frequency of the ROs scales like
√
γ. Rescaling time with

respect to the time scale of the ROs permits to resolve the singularity [LUE11]. The
scalings of the deviations from the steady states of the carrier variables are then obtained
by balancing the dynamical equations. A derivation of this change of coordinates for
the solitary laser from scaling arguments may be found in Appendix B. The new time
s and the deviations (y, ue, ue, ve, vh) from the lasing steady state of the solitary laser
(N0

ph, ρ
0
e, ρ

0
h,W

0
e ,W

0
h ) are introduced by

s ≡ √
γωt′, Nph = N0

ph(1 + y), (3.32a)

ρe/h = ρ0e/h +
√
γωg−1ue/h, We/h = W 0

e/h + γωg−1ve/h. (3.32b)

Inserting this ansatz into the set of dynamical equations (3.9) and (3.12c)–(3.12f), yields

ẏ = (1 + y)(ue + uh) +
2K

2κτin

1√
γω

√

1 + y cos(Ψ), (3.33a)

Ψ̇ = − δω√
γω

+
α

2
(ue + uh)−

K

2κτin

1√
γω

1√
1 + y

sin(Ψ), (3.33b)

ω2u̇e = −rwN
0
phy −

[√
γω
(
t−1
e ue + rwN

0
ph(ue + uh)(1 + y) + ueρ

0
h + uhρ

0
e

)

+γg−1ω2ueuh

]

, (3.33c)

ω2u̇h = −rwN
0
phy −

[√
γω
(
t−1
h uh + rwN

0
ph(ue + uh)(1 + y) + ueρ

0
h + uhρ

0
e

)

+γg−1ω2ueuh

]

, (3.33d)

ωv̇e = t−1
e ue − c

√
γ(vhW

0
e + veW

0
h ) + cγ3/2g−1ωvevh, (3.33e)

ωv̇h = t−1
h uh − c

√
γ(vhW

0
e + veW

0
h ) + cγ3/2g−1ωvevh, (3.33f)

where the contributions of the scattering rates are taken into account by the dimension-
less carrier lifetimes te/h = (sine/h+soutr/h)

−1) in the QD levels. From the scaling laws (3.32),

it follows that the scattering rates s
in/out
e/h (We,Wh) depend only in order O(γ) upon the

deviations ve/h from the steady states of the reservoir densities W 0
e/h. Thus, it follows

from (3.33e) and (3.33f) that up to order O(
√
γ), ve and vh follow passively the devia-

tions ue and uh of the steady states of the QD occupation probabilities ρ0e and ρ0h. Taking
into account only contributions up to O(

√
γ) in the Eqs. (3.33), the dynamical equations

of ve and vh decouple, and only equations (3.33a)–(3.33d) have to be examined. Further,
the leading order problem may be simplified by choosing

ω2 ≡ 2rwN
0
ph. (3.34)

A study of the dynamical equations for the solitary laser reveals that
√

2γrwN0
ph is

proportional to its RO frequency (measured in units of time t′) [LUE11]. Thus, by
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3.6. Asymptotic approximations

introducing s =
√
γωt′, time was indeed rescaled with respect to the time scale of the

ROs. The reduced equations then read

ẏ = (1 + y)(ue + uh) +
2K

2κτin

1√
γω

√

1 + y cos(Ψ), (3.35a)

Ψ̇ = − δω√
γω

+
α

2
(ue + uh)−

K

2κτin

1√
γω

1√
1 + y

sin(Ψ), (3.35b)

u̇e = −y

2
− bue −

√
γ
[ω

2
(ue + uh)(1 + y) + ω−1(ueρ

0
h + uhρ

0
e)
]

+O(γ), (3.35c)

u̇h = −y

2
− auh −

√
γ
[ω

2
(ue + uh)(1 + y) + ω−1(ueρ

0
h + uhρ

0
e)
]

+O(γ), (3.35d)

where we have introduced

b ≡ √
γω−1t−1

e =
√
γω−1(sine + soute ) and a ≡ √

γω−1t−1
h =

√
γω−1(sinh + south ), (3.36)

which express the impact of the scattering rates onto the dynamics of the QD laser.
In Table 3.1 values of ω−1, b, and a are given for the three different sets of scattering
rates of Table 2.1 as obtained for a low pump current J = 1.5Jth and for a high pump
current J = 3.5Jth, respectively. The limit of very fast scattering rates a and b diverge
(a, b → ∞), because ω remains O(1) and te/h → 0.

Table 3.1.: Values of the parameters ω−1, b, and a for the three sets of scattering rates introduced in
Table 2.1 as obtained for a low pump current of J = 1.5Jth and a high pump current of J = 3.5Jth,
respectively. Jth is the dimensionless pump rate at lasing threshold.

set J/Jth ω−1 b a

slow rates
1.5 1.35188 0.251138 0.987608
3.5 2.88049 1.106390 3.08090

reference rates
1.5 1.64994 1.0476 26.7352
3.5 4.03402 5.43577 85.3158

fast rates
1.5 3.11534 11.9771 30.1707
3.5 7.07921 45.1732 87.9423

In the following sections, different analytic limits of the reduced problem (3.35) are
discussed that permit to find analytic expression for the saddle-node and Hopf bifurcation
lines for the set of reference rates as well as for the slow rates. First, a sequence of
problems is derived that is ordered in powers of the order parameter γ. Starting from the
equations obtained in the lowest order, these problems have to be solved subsequently.
Therefore, at first, scaling laws for the steady states of the dynamical variables y, Ψ,
ue, and uh with respect to γ have to be derived from their steady state relations. Then,
the different scalings of b and a with respect to γ in the limit of the reference and of the
slow rates are taken into account (see Table 3.1). For the solitary laser, these limits have
already been discussed in [LUE11]. For the injection problem, additionally, K and δω
have to be scaled with respect to γ. Therefore, we note that for reference, slow, and in
the limit of very fast rates RO damping and RO frequency scale like O(γ) and O(

√
γ),
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3. Quantum dot laser under optical injection

respectively, as discussed in Section 2.5 (see Table 2.4). This suggest that ∆νinj and K
have to scale like O(γ) to obtain a good analytical approximation for a Hopf bifurcation,
in which the injection undamps the relaxation oscillations as it is the case for the upper
supercritical Hopf line close to the ZH1 point (cf. Fig. 3.2). This is referred to as
weak injection in the following. In Section 3.5, it was discussed that the ZH2-point, at
which the Hopf bifurcation line becomes supercritical for negative detuning, appears for
α & 0.5 at a considerably higher injection strength than the ZH1-point. This suggests
to study also a case in which ∆νinj and K scale like O(

√
γ). This is denoted as strong

injection in the following.
The main results of the next sections are analytic expressions for the saddle-node and

Hopf bifurcation lines in the (k̃, δω)-plane in the limits of weak and strong injection.
Further, formulas are derived for the ZH1-point and the critical injection strength,
below which no Hopf bifurcation can occurs. The most important analytic results are
summarized in Table 3.2. For reference, slow, and in the limit of very fast scattering
rates the same analytic expressions are obtained. Only the RO damping ΓRO and the
RO frequency ωRO frequency change for each set of scattering rates (see Table 2.4).

It is possible to skip the next rather technical sections and to continue directly with
Section 3.9, where the bifurcation lines obtained by numerical path continuation are
compared with their analytical approximations.

66



3.6.
A

sy
m

p
totic

ap
p
rox

im
ation

s

Table 3.2.: Analytic expressions for the frequency detuning of the saddle-node (δωsn
± ) and the Hopf (δωH) bifurcation lines as well as for the zero-Hopf

point for positive detuning (k̃ZH,1, δωZH,1) and the critical Hopf point (k̃H,c, δωH,c) in a plane spanned by injection strength k̃ and frequency input
detuning δω. Further, the frequency of the limit cycle born in the Hopf bifurcation ωH is listed. The expressions are written with respect to
dimensionless time t′ ≡ 2κt. They are valid for the reference, the slow, and the limit of very fast scattering rates. For these rates RO frequency ωRO

and RO damping ΓRO may be found in Table 2.4.

Type of strong Injection weak injection

bifurcation line/point k̃ = O(
√
γ) and δω = O(

√
γ) k̃ = O(γ) and δω = O(γ)

saddle-node δωsn
± = ±k̃

√
1 + α2 δωsn

± = ±k̃
√
1 + α2

Hopf δωH = ± k̃
2

∣
∣2k̃2+(ωRO)2(1−α2)

∣
∣

(

k̃2[k̃2+(ωRO)2]+(1+α2)
(ωRO)4

4

)1/2 δωH = 4αΓRO

1+α2 ± |α2−1|√
1+α2

√

k̃2 − 4(ΓRO)2

1+α2

zero-Hopf point (k̃ZH,1, δωZH,1) = (0, 0) (k̃ZH,1, δωZH,1) = ΓRO

α

√
1 + α2

(
1,
√
1 + α2

)

critical Hopf point (k̃H,c, δωH,c) = (0, 0) (k̃H,c, δωH,c) =
2ΓRO√
1+α2

(

1, 2α√
1+α2

)

Hopf frequency ωH =
√

(ωRO)2 + k̃2 ωH = ωRO
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3. Quantum dot laser under optical injection

3.7. Derivation of saddle-node and Hopf lines for

strong injection

In this section, we concentrate on the derivation of the saddle-node and Hopf bifur-
cation lines for strong injection. Especially, we aim to find an analytic expression of
the supercritical part of the Hopf line for negative detuning close to the ZH2-point. In
Section 3.3.3, it was already discussed that the two zero-Hopf (ZH) points (see Fig. 3.3)
act as organizing centers of the bifurcation diagram [WIE99, NIZ01, WIE05, WIE06,
ERN10b, KEL12a]. Therefore, it is crucial that the analytic approximations match best
in their vicinities. The exact values of detuning δω and injection strength K of these
points can be obtained from the numerical path continuation, which then permits to
find the best scaling of δω and K with respect to γ. For the reference rates, a moderate
pump current of J/Jth = 1.5 as well as moderate α = 2.0, the ZH2-point is located at
(KZH,2,∆νZH,2

inj ) = (0.6075,−3.832GHz ), which suggest the scalings

k ≡ K

2κτin

1√
γω

, ∆ ≡ δω√
γω

, (3.37)

where k and ∆ are O(1)-quantities7. These scalings correspond to the limit of strong
injection of Table 3.2. The small parameter of this section is ǫ ≡ √

γ. Inserting the scal-
ing laws (3.37) into the reduced dynamical equations (3.35), yields the set of equations
that is discussed in this section

ẏ = (1 + y)(ue + uh) + 2k
√

1 + y cos(Ψ), (3.38a)

Ψ̇ = −∆+
α

2
(ue + uh)−

k√
1 + y

sin(Ψ), (3.38b)

u̇e = −y

2
− bue − ǫ

ω

2
(ue + uh)(1 + y)

− ǫω−1(ρ0euh + ρ0hue) +O(ǫ2), (3.38c)

u̇h = −y

2
− auh − ǫ

ω

2
(ue + uh)(1 + y)

− ǫω−1(ρ0hue + ρ0euh) +O(ǫ2). (3.38d)

At first, the most general case, where a and b are O(1), is discussed. It permits to
calculate the steady states, and additionally a parametric expression for the saddle-node
lines in the (k̃, δω)-plane may be obtained. But to obtain explicit expressions for saddle-
node and Hopf lines, the problem has to be further simplified by introducing scalings
for a and b that are appropriate for reference and slow rates, respectively.

7For the special case mentioned above, we obtain (kZH,2,∆ZH,2) = (1.83,−1.74).
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3.7. Derivation of saddle-node and Hopf lines for strong injection

3.7.1. General case: a = O(1) and b = O(1)

Equating to zero the right hands sides of Eqs. (3.38), the following steady state equations
are obtained in lowest order (O(1))

k cos(Ψ) = −u+

√

1 + y, (3.39a)

k sin(Ψ) = (αu+ −∆)
√

1 + y, (3.39b)

0 = −y

2
− bue, (3.39c)

0 = −y

2
− auh, (3.39d)

where we have introduced u+ ≡ (ue+uh)/2, which plays the role of the inversion in this
section. Adding the square of (3.39a) to the square of (3.39b) leads to

k2 = (1 + y)
[
u2
+ + (αu+ −∆)2

]
, (3.40)

which corresponds to Eq. (3.25) obtained from the full set of equations (3.17). Solving
Eq. (3.40) for u+, we obtain two branches of solutions

u+ =
1

1 + α2

(

∆α±
√

(1 + α2)k2

1 + y
−∆2

)

. (3.41)

Plus and minus branch correspond to two different steady states of the dynamical equa-
tions (3.38). Their stability depends on the bifurcation parameters k and ∆ and on y.
Within the phase-locking tongue the minus branch is stable. This can be seen as follows:
above threshold, the deviation of the inversion ρinv (see Eq. (2.5)) from its steady state
value for the solitary laser, i.e., from ρ0inv = 0, is given by 2u+. This deviation u+ is
smaller for the minus branch than for the plus branch yielding a more efficient carrier
suppression and a higher photon number. Equations (3.41) correspond to the expres-
sions (3.26) for the steady states of the inversion ρinv that was obtained from the full set
of equations (3.17).

Equation (3.41) permits real solutions within the phase-locking tongue, where the
term under the square-root is positive, i.e.,

∣
∣
∣
∣
∣

k
√
1 + α2

√
1 + y

∣
∣
∣
∣
∣
≤ ∆.

A pair of solutions is created in a saddle-node bifurcation at

∆sn
± ≡ ±k

√

1 + α2

1 + y
, (3.42)

where plus and minus branch correspond to the locking boundary for positive and neg-
ative detuning ∆, respectively. From Eq. (3.41), we see that the inversion along the
saddle-node lines is given by

usn
+ ≡ α∆sn

±
1 + α2

= ± kα
√

(1 + y)(1 + α)
. (3.43)
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3. Quantum dot laser under optical injection

Equations (3.42) and (3.43) correspond to the expressions (3.22) and (3.27) that were
obtained from the full system of equations.

The generic unlocking scenario is the following: within the locking tongue a stable
focus represented by the minus branch of Eq. (3.41) and an unstable focus given by the
plus branch of this equation coexist and annihilate at the saddle-node lines, where the
square-root of Eq. (3.41) vanishes (cf. Fig. 3.3). Note that for positive detuning and
k’s larger than the injection strength of the ZH1-point, the stable fixed point has been
already destabilized in the supercritical Hopf bifurcation, and two unstable fixed-points
annihilate in a subcritical saddle-node bifurcation.

Equations (3.39c) and (3.39d) permit to express y in terms of u+

y = −cabu+, with cab ≡
4ab

a+ b
, (3.44)

where the constant cab > 0 describes the impact of the scattering rates. Substituting
Eq. (3.44) into Eq. (3.40), yields k2 = k2(u+), which reads

k2 = (1− cabu+)
[
u2
+ + (αu+ −∆)2

]
. (3.45)

For the special case of zero detuning (∆ = 0), Eq. (3.40) simplifies as

k2 = (1− cabu+)u
2
+(1 + α2), (3.46)

which permits the solutions

u2
+ = 0 ∧ u+ = c−1

ab > 0. (3.47)

To find out more about the physical interpretation of these solutions, we have to study
the steady states of the solitary laser (see Eqs. (3.39) for k = 0). From Eq. (3.39a), we
find

u+ = 0 and y 6= −1 ∨ y = −1 and u+ 6= 0.

The solution with u+ = 0 implies ue = −uh, from which we obtain the equality −bue =
aue with the help of Eqs. (3.39c) and (3.39d). Since a, b > 0, this means that the
double root u+ = 0 corresponds to the lasing fixed point of the solitary laser, where
the deviations ue, uh, and y from its lasing steady state are zero (see the definitions of
Eqs. (3.32)). For y = −1, we find from Eqs. (3.39c) and (3.39d)

ue =
b

2
and uh =

a

2
,

which yields u+ = c−1
ab . This solution corresponds to the non-lasing steady state with zero

photon number and an inversion ρinv that deviates from its clamping-value above lasing
threshold ρ0inv = 0, because ue and uh differ from zero. From u+ = 0 and u+ = c−1

ab at
k = 0, a Z-shaped branch of solutions emerges in the (k,u+)-plane as well as in the (k,y)-
plane. These branches are depicted in Figs 3.13(a) and (b), respectively. Figure 3.13(a)
depicts the inversion u+ as a function of k as obtained from Eq. (3.45) (read dashed
line), and Fig. 3.13(b) shows the deviation y from the steady state photon number of
the solitary laser N0

ph as obtained from Eq. (3.44) (red dashed line).
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3.7. Derivation of saddle-node and Hopf lines for strong injection

For finite ∆, the double root at u+ = 0 (y=0) unfolds, and u+ = c−1
ab (y = −1)

remains the only possible solution for k = 0. The solutions of u+ and y for finite
∆ = 0.2 are depicted by blue solid lines in Figs. 3.13(a) and (b), respectively. They
exhibit two limit-points, i.e., saddle-node bifurcation points, which are depicted by open
black circles labeled by SN1 and SN2. The coexistence of fixed points between SN1

and SN2, i.e., the hysteresis of the steady state curve, does not necessarily mean that
multistability of stable fixed points is observed. Usually, only the branch with the lower
inversion and thus the higher photon number (lower branch in Fig. 3.13(a) and upper
branch in Fig. 3.13(b)) is stable. An example for bistability between the upper and lower
branch was discussed in Section 3.4.
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k

−0.4
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−0.1

0.0
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u
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k

−1.0
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1.0

y

SN1

SN2

∆ = 0

∆ = 0.2

Figure 3.13.: Z-shaped and S-shaped branches of steady states obtained for ∆ = 0 (dashed red lines) and
∆ = 0.2 (solid blue lines), respectively. Open black circles labeled by SN1 and SN2 mark limit-points
(saddle-node bifurcation points). (a): Deviation from steady state of the inversion of the solitary
laser u+ = u+(k) as obtained from Eq. (3.45) (b): Deviation from the steady state of the photon
number of the solitary laser y = y(k) as obtained from Eqs. (3.45) and (3.44) for zero detuning ∆ = 0
(dashed, red line). Parameters a = 2, b = 1, and α = 2.

The turning points SN1 and SN2 of the solid blue steady state curves in Figs. 3.13
obtained for finite ∆ are determined by the condition

dk2

du+

∣
∣
∣
LP

= F (∆, u+) = 0, (3.48)

where the right hand side is given by

F (∆, u+) ≡ −cab
[
u2
+ + (αu+ −∆)2

]
+ 2(1− cabu+) [u+ + α(αu+ −∆)] , (3.49)

and |LP expresses that the derivative is taken at the saddle-node points SN1 and SN2.
The saddle-node condition (3.48) yields a quadratic equation in αu+ −∆. Solving this
equation for αu+ −∆ for fixed u+ and then extracting ∆ = ∆(u+), yields the detuning
at the saddle-node lines as a function of u+, which reads

∆sn
± (u+) ≡ (2u+ − c−1

ab )α±
√

cabu+(2− 3cabu+) + (cabu+ − 1)2α2. (3.50)
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3. Quantum dot laser under optical injection

Together with Eq. (3.45) for ksn ≡ k(u+,∆
sn
± (u+)), a parametric solution for the saddle-

node lines in the (k,∆)-plane is obtained.

Stability analysis

Linearizing equations (3.38) around the steady states described by Eqs. (3.39), the fol-
lowing characteristic equation is obtained for the growth rate λ in lowest order (O(1)),

det







u+ − λ −2(1 + y)(αu+ −∆) 1 + y 1 + y
αu+−∆
2(1+y)

u+ − λ α/2 α/2

−1/2 0 −b− λ 0
−1/2 0 0 −a− λ






= 0. (3.51)

Here, the steady state relations (3.39a) and (3.39b) have been used to eliminate the
trigonometric functions. Expanding the determinant, the characteristic equation reads

0 = λ4 + λ3 [a+ b− 2u+] + λ2
[
1 + y + (αu+ −∆)2 + u2

+ − 2u+(a+ b) + ab
]

+ λ

[

(1 + y)
(

(a+b)
2

+ α∆− (1 + α2)u+

)

+(a+ b)
(
(αu+ −∆)2 + u2

+

)
− 2abu+

]

(3.52)

− (1 + y)(a+ b)

2

(
u+(1 + α2)− α∆

)
+ ab

(
u2
+ + (αu+ −∆)2

)
. (3.53)

This fourth order equation is too complex to be solved directly, but it provides a common
vantage point for the limits of the reference and the slow rates, which are discussed in
the next subsections.

3.7.2. Reference rates: limit a = O(ǫ−1) and b = O(ǫ)

The set of reference rates is characterized by fast holes and much slower electrons (cf.
Table 3.1), which may be expressed by the following scaling of a and b

a = ǫ−1a−1 and b = ǫb1, (3.54)

where a−1 and b1 are O(1)-quantities. Inserting these scalings into the steady state
relations of Eqs. (3.38) (cf. Eqs. (3.39)), yields up to O(ǫ)

k cos(Ψ) = −u+

√

1 + y, (3.55a)

k sin(Ψ) = (αu+ −∆)
√

1 + y, (3.55b)

0 = −y

2
− ǫb1ue − ǫ

ω

2
(ue + uh)(1 + y)− ǫω−1(ρ0euh + ρ0hue), (3.55c)

0 = −y

2
− ǫ−1a−1uh − ǫ

ω

2
(ue + uh)(1 + y)− ǫω−1(ρ0hue + ρ0euh). (3.55d)

The scaling of y, Ψ, ue, and uh can now be determined by balancing as many terms
as possible in each of Eqs. (3.85). This procedure is known as principle of dominant
balance [HIN95, BEN10]. By balancing both sides of Eqs. (3.55a) and (3.55b), we find
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3.7. Derivation of saddle-node and Hopf lines for strong injection

that u+ = (ue+uh)/2 = O(1). Thus, either ue or uh have to be O(1). Assuming ue to be
O(1), and then balancing Eq. (3.55c) reveals that y = O(ǫ), which implies uh = O(ǫ2)
from Eq. (3.55d). If we assume uh = O(1) instead of ue = O(1), we would find from
Eq. (3.55d) that y = O(ǫ−1) and ue = O(ǫ−2) holds. This would not permit to balance
the leading order (O(ǫ−2)) in Eqs. (3.55a) and (3.55b). Concluding, the following scaling
laws for y, ue, uh, and u+ are obtained for the reference rates

y = ǫY +O(ǫ2), ue = ue +O(ǫ), uh = ǫ2Uh,2 +O(ǫ3),

Ψ = Ψ0 +O(ǫ), and u+ =
ue

2
+O(ǫ), (3.56)

where Y , Ψ0, and Uh,2 are O(1)-quantities. As we will see in the following subsection,
the lowest order approximation for the characteristic equation, which is O(ǫ−1) for the
reference rates, is already a polynomial of order three, and the O(1)-problem is to com-
plex to be solved analytically. It is therefore sufficient to discuss the limit of the reference
rates of the equations that were derived from the lowest order approximations (3.39) of
the steady states of the general problem (with a = O(1) and b = O(1)). (This yields the
same results as neglecting the terms of order O(ǫ) in the steady state relations (3.85).)

Thus, also the general characteristic equation (3.53) may be studied in the limit of
the reference rates, i.e., for the scaling of a and b given by Eq. (3.54). For the sub-
sequent calculation, the expression for k2(u+,∆) of Eq. (3.40) is useful. Inserting the
scalings (3.56) of the dynamical variables into Eq. (3.40), it simplifies as

k2 =
(ue

2

)2

+
(

α
ue

2
−∆

)2

. (3.57)

The expression (3.41) for the steady state of u+ simplifies in lowest order to an expression
for ue/2

ue

2
=

1

1 + α2

(

∆α±
√

(1 + α2)k2 −∆2
)

, (3.58)

and the explicit expression (3.42) for the saddle-node lines now reads

∆sn
± = ±k

√
1 + α2. (3.59)

Furthermore, the expression (3.43) for u+ along the saddle-node lines remains the same
with u+ replaced by ue/2

(ue

2

)sn

≡ α∆sn
±

1 + α2
= ± kα√

1 + α2
. (3.60)

Stability analysis

Inserting the appropriate scalings of a and b (Eq. (3.54)) and of the dynamical variables
(Eq. (3.56)) in the characteristic equation (3.53), its lowest order approximation reads

O(ǫ−1) : 0 = λ3 + T1λ
2 + T2λ+ T3, (3.61)
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3. Quantum dot laser under optical injection

where the coefficients are given by

T1 = −2
(ue

2

)

,

T2 =
1

2
+
(ue

2

)2

+
(

α
ue

2
−∆

)2

=
(
ωref
s

)2
+ k2,

T3 = −
(
ωref
s

)2
[ue

2
(1 + α2)− α∆

]

. (3.62)

To simplify the equation for T2, the relation (3.57) has been used, and, in addition, the
RO frequency of the solitary laser ωref

s ≡ 1/
√
2 (see [LUE11]) has been introduced. The

Routh-Hurwitz condition [Pip85] for a stable steady state allows one to determine the
bifurcation points from the coefficients T1, T2, and T3 without calculating the eigenvalues
λ directly. It reads for a polynomial of order three

T1T2 − T3 > 0, T1 > 0, and T3 > 0. (3.63)

A steady state can exchange its stability either through a saddle-node bifurcation or a
Hopf bifurcation. Since a saddle-node bifurcation is characterized by a zero of a single
real eigenvalue, we directly find from Eq. (3.61) that it satisfies the condition

T3 = 0. (3.64)

In a Hopf bifurcation, a pair of complex conjugate eigenvalues crosses the imaginary
axis. By inserting the ansatz λ = ±iωH,s into the characteristic equation (3.61) and
subsequently separating real- and imaginary parts, we obtain the conditions

−T1ω
2
H,s + C3 = 0 ∧ ωH,s(∓ω2

H,s ± T2) = 0. (3.65a)

The second condition implies ωH,s = 0 or

ω2
H,s = T2 > 0. (3.66)

This yields together with the first of Eqs. (3.65a) the conditions for a Hopf bifurcation

T1T2 − T3 = 0 and T2 > 0. (3.67)

Of special interest are bifurcations of stable steady states, because these can be observed
experimentally. In the notation of [WIE99] that was already discussed in Section 3.3,
bifurcations of stable objects are called supercritical, while bifurcations, in which no
attractors are created, are called subcritical. For a supercritical saddle-node bifurcation,
it can be seen from Eq. (3.63) that in addition to the saddle-node-condition (3.64) the
conditions

T1T2 − T3 > 0 and T1 > 0 (3.68)

have to be fulfilled. Further, for a supercritical Hopf bifurcation, it has to be required
that

T1 > 0 and T3 > 0 (3.69)

hold in addition to the Hopf conditions (3.67).
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3.7. Derivation of saddle-node and Hopf lines for strong injection

Equation (3.66) has an interesting interpretation from a physical point of view. The
coefficient T2 equals the square of the frequency ωref

H,s of the limit-cycle created in the
Hopf-bifurcation, i.e.,

ωref
H,s ≡

√

(ωref
s )2 + k2 =

√

1

2
+ k2. (3.70)

In units of the dimensionless time t′ = 2κt, the frequency of the Hopf bifurcation reads

ωref
H ≡

√

(ωref)2 + k2 =
√

γrwN0
ph + k̃2 =

{

ωref for k̃ → 0

k̃ for γ → 0,
(3.71)

where ωref =
√

γrwN0
ph is the RO frequency of the solitary laser with respect to time t′

(see Table 2.4). Eventually, in units of physical time and injection strength K, Eq. (3.70)
reads

ωref
H,t ≡

√

(
ωref
RO

)2
+

(
K

τin

)2

= 2κ

√

γrwN0
ph +

(
K

2κτin

)2

=

{

ωref
RO for K → 0

K
τin

for γ → 0.
(3.72)

The RO frequency ωref
RO = 2κ

√

γrwN0
ph scales like

√
γ. Thus, the Hopf frequency ωref

H,t is

dominated by the second term that is linear in K if K becomes O(1). In contrast, for
small K = O(

√
γ), the first term under the square-root of Eq. (3.72) dominates, and the

Hopf frequency is close to the RO frequency ωref
RO of the solitary laser. Thus, it scales

with the square-root of the pump current J

ωref
H,t ≈ ωref

RO ≈ 2κ
√

γg(J − Jth). (3.73)

In the last approximation, the expression (2.26) for N0
ph and the gain-clamping above

threshold ρ0inv = 0 were used. Figure 3.14 depicts the frequency of the limit cycle born
in the upper supercritical Hopf bifurcation, which emerges from the ZH1 point (see
for example Fig. 3.6(b)). The black solid line depicts the Hopf frequency calculated
numerically from the eigenvalues of the system, and the blue dashed line denotes its
analytic approximation of Eq. (3.73). As described by formula (3.73), for low K, the Hopf
bifurcation undamps the ROs, i.e., the Hopf frequency ωref

H,t is close to the RO frequency
of the solitary laser ωref

RO, but for high K the Hopf frequency ωref
H,t increases linearly

with K. This permits to drastically enhance the cutoff frequency of the laser under
direct modulation, and thus to increase the modulation bandwidth. The relation (3.70)
is well-known for QW lasers and was studied theoretically and verified experimentally
in [SIM95, ERN10b]. Further, the linear dependence of ωref

H,t on K for high injection
strengths (see Eq. (3.72)) was employed to use a semiconductor laser under optical
injection as a source for electronic microwave transmission [SEO01]. In simulation,
frequencies over six times the RO frequency were proven to be transmitted effectively
[CHA07].
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Figure 3.14: Frequency ωref

H,t of the
limit-cycle created in the supercriti-
cal Hopf bifurcation for positive de-
tuning as obtained from the numer-
ically calculated eigenvalues (black
solid line) and from the analytic
approximation of Eq. (3.73) (blue
dashed line), respectively. The RO
frequency of the solitary laser is la-
beled by ωref

RO. Parameters: refer-
ence rates, J = 2.5jth, α = 3, and
other Parameters as in Table 2.3.

Saddle-node lines

Employing the Routh-Hurwitz condition for a saddle-node bifurcation, i.e., T3 = 0 (see
Eq. (3.64)), the following parametric expression of the detuning at the saddle-node lines
∆sn

± (ue/2) ≡ ∆(ue/2) are obtained employing the coefficient T3 of Eq. (3.62)

∆sn
±

(ue

2

)

= −α−1ue

2
(1 + α2). (3.74)

Here, the detuning depends parametrically on the inversion ue/2. Inserting this into the

expression (3.57) for (ksn)2 ≡
(
k
(
ue/2,∆

sn
±
(
ue

2

)))2
, yields

ksn
(ue

2

)

=

√
ue

2

(ue

2
+ α−1 + 2α

)

, (3.75)

where k was assumed to be positive. As a quick consistency check, the saddle-node
condition (3.48) for the general case a = O(1) and b = O(1) can be analyzed in the
limit of the reference rates by assuming the scalings of Eqs. (3.54) for a and b, and the
scalings of Eqs. (3.56) for u+ and y. For the constant cab defined in Eq. (3.44), this yields
the relation cab = 4ǫa1 +O(ǫ2), and the lowest order approximation of the saddle-node
condition (3.48) reads

O(1) :
dk2

d(ue/2)

∣
∣
∣
LP

= 2
[ue

2
(1 + α2)− α∆

]

= 0, (3.76)

which may be also obtained by deriving Eq. (3.57) with respect to ue/2. Comparing
dk2/d(ue/2) (see Eq. (3.57)) to the coefficient T3 (Eq. (3.62)), we find that T3 is anti-
proportional to the derivative of k2 with respect to the inversion ue/2

T3 = −1

4

dk2

d(ue/2)
.

Thus, it can be seen that the zeros of T3 correspond to saddle-node bifurcation points
of the dynamical equations, which is the Routh-Hurwitz criterion of Eq. (3.64).

By inserting the expression (3.58) for ue/2 into the expression of T3 of Eq. (3.62) and
then employing the limit-point condition (3.64), the explicit expressions (3.59) for the

76



3.7. Derivation of saddle-node and Hopf lines for strong injection

saddle-node lines are retrieved. Thus, the parametric expressions of Eqs. (3.50) and
(3.46) yield, in the limit of the reference rates, the same approximation of the saddle-
node lines as the explicit expression (3.42), which is valid for small k.

Hopf lines

A parametric solution for the Hopf lines in the (k,∆)-plane may be obtained by solving
the first of the Hopf conditions (3.67), which reads

T1T2 − T3 = −2
ue

2
(ωref

s )2 + k2 + (ωref
s )2

[ue

2
(1 + α2)− α∆

]

= 0 (3.77)

for ∆H ≡ ∆(ue/2, k). This yields

∆H

(ue

2
, k
)

= α−1ue

2

(

α2 − 1− 2k2

(ωref
s )2

)

= −α−1ue

2

(
1 + 4k2 − α2

)
. (3.78)

Inserting ∆H into the expression for k2
H ≡ k2(ue/2,∆H) (Eq. (3.57)), and solving for k,

we obtain four solutions, of which the two

kH

(ue

2

)

≡
(
ωref
s

)2

2
√
2




α2
(
ue

2

)−2 (
ωref
s

)2

±α
(
ue

2

)−2
(

α2
(
ωref
s

)4 − 8
(
ue

2

)2
[(
ωref
s

)2
+ 2

(
ue

2

)2
])1/2

− 4





1/2

=
1

4
√
2

[

α
(ue

2

)−2
(

α

2
±
√

α2

4
− 8

(ue

2

)2
[
1

2
+ 2

(ue

2

)2
])

− 4

]1/2

(3.79)

permit non-negative injection strengths at the Hopf line kH and are thus physically
relevant. Equations (3.79) and (3.78) yield the solutions for the Hopf lines in parametric
form. For supercritical Hopf lines, additionally the conditions (3.69) have to be fulfilled.
It can be seen from Eqs. (3.62) that the first conditions T1 > 0 reads ue/2 < 0, and the
second condition T3 > 0 implies the restriction (ue/2)(1 + α2)− α∆H < 0.

Furthermore, explicit expressions for the detunings at the Hopf lines ∆H = ∆(k) as
functions of k may be obtained by inserting the expressions (3.58) for ue/2 into the Hopf
condition (3.77) and solving for ∆, which yields

∆H(k) = ±k

2

∣
∣2k2 + (ωref

s )2(1− α2)
∣
∣

(

k2
[

k2 + (ωref
s )2

]

+ (1 + α2)
[
(ωref

s )
2

2

]2
)1/2

(3.80)

= ±k

∣
∣1 + 4k2 − α2

∣
∣

√

α2 + (1 + 4k2)2
.

The above equation describes the same approximation of the Hopf lines than the para-
metric expressions (3.79) and (3.78). In terms of time t′, the Hopf condition expresses
as

δωref
H (k̃) ≡ ± k̃

2

∣
∣2k̃2 + (ωref)2(1− α2)

∣
∣

(

k̃2
[

k̃2 + (ωref)2
]

+ (1 + α2)
(ωref)

4

4

)1/2
. (3.81)
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3. Quantum dot laser under optical injection

Exactly the same expression was obtained by Gavrielides et al. in [GAV97a] for the rate
equation model of a conventional class B semiconductor laser discussed in Section 2.5.18.

Codimension-2 zero-Hopf point

The approximations for the saddle-node (Eq. (3.59)) and Hopf lines (Eq. (3.80)) only
describe one codimension-2 zero-Hopf point, i.e., a tangency of a saddle-node with a Hopf
line, which is located at the origin of the (k,∆)-plane. This can be seen by inserting the
expression (3.60) for the inversion at the saddle-node lines into the Hopf condition (3.77).
The second term of the Hopf condition then vanishes, and it simplifies as

∆ZH
(
ωref
H,s

)2
(kZH)2 = 0 ⇔ ∆ZH = 0 for ωref

H,s 6= 0. (3.82)

From the expression (3.59) for the detuning at the saddle-node lines, it then follows that
∆ZH = 0 implies kZH = 0. Thus, the zero-Hopf point for positive detuning (ZH1-point
in Fig. 3.2) shifts to the origin of the (k̃, δω)-plane

(k̃ZH,1, δωZH,1) ≡ (0, 0). (3.83)

3.7.3. Slow rates: limit a = O(ǫ) and b = O(ǫ)

For the set of slow scattering rates introduced in Section 2.2, the carrier exchange be-
tween carrier reservoir and QD levels is mediated by relatively small Coulomb scattering
rates, which results in long carrier lifetimes te and th in the QD levels. Since the en-
ergy spacings between QD and QW (∆Ee and ∆Eh) are similar for electrons and holes,
similar carrier lifetimes are obtained, which translate into comparable values for a and
b defined in equations (3.36) (see Table 3.1). This is reflected by the scalings

a = ǫa1 and b = ǫb1, (3.84)

where a1 and b1 are O(1). Inserting these scalings into the steady state relations of
Eqs. (3.38), yields up to O(ǫ)

k cos(Ψ) = −u+

√

1 + y, (3.85a)

k sin(Ψ) = (αu+ −∆)
√

1 + y, (3.85b)

0 = −y

2
− ǫb1ue − ǫ

ω

2
(ue + uh)(1 + y)− ǫω−1(ρ0euh + ρ0hue), (3.85c)

0 = −y

2
− ǫa1uh − ǫ

ω

2
(ue + uh)(1 + y)− ǫω−1(ρ0hue + ρ0euh). (3.85d)

Balancing both sides of Eqs. (3.85a) and (3.85b), it can be seen that u+ = (ue + uh)/2
is O(1), and from Eqs. (3.85c) and (3.85d), it follows that both, ue and uh, are O(1),
which implies y = O(ǫ). Concluding, the following scaling laws for y, ue,uh, Ψ, and u+

are obtained for the slow rates

y = ǫY +O(ǫ2), ue,h = ue,h +O(ǫ), Ψ = Ψ0 +O(ǫ), and u+ = u+ +O(ǫ), (3.86)

8To see this, note that in Ref. [GAV97a] the RO frequency is given by ωRO =
√
2ǫP , where in the

notation of Section 2.5.1 ǫ = γQW, and P = rQWN0
ph is the pump parameter (see Eq. (2.23a)).

Further, the α-factor was denoted by b in Ref. [GAV97a].
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3.7. Derivation of saddle-node and Hopf lines for strong injection

where Y and Ψ0 are O(1). Again, the lowest order approximation of the characteristic
polynomial, which is now O(1), permits to obtain expressions for the saddle-node and
Hopf bifurcation lines, and the next higher order problem is already to complex to
solve. It is therefore sufficient to discuss the limit of the slow rates of the equations
that were derived from the lowest order approximations (3.39) of the steady states of
the general problem with a = O(1) and b = O(1). (This yields the same results as
neglecting the terms of order O(ǫ) in the steady state relations (3.85).) The expressions
derived from the steady states are the same as in the limit of the reference rates if
ue/2 is replaced by u+. Specifically, in the following the steady state relations for k2 =
k2(u+,∆) of Eq. (3.57) and for u+ = u+(k,∆) (Eq. (3.58)) are needed. Furthermore,
note that the explicit expression (3.42) for the detuning at the saddle-node lines remains
valid and the expression for the inversion at the saddle-node lines (u+)

sn is the same as
expression (3.60) for

(
ue

2

)sn
.

Stability analysis

Inserting the scalings for a and b of Eqs. (3.84) and the scalings of the dynamical variables
(Eqs. (3.86)) in the general characteristic equation (3.53), its lowest order approximation
reads

O(1) : λ
[
λ3 + T1λ

2 + T2λ+ T3

]
= 0. (3.87)

This implies that either λ = 0 or

λ3 + T1λ
2 + T2λ+ T3 = 0 (3.88)

holds. The coefficients of the characteristic polynomial are given by

T1 = −2u+,

T2 = 1 + (u+)
2 + (αu+ −∆)2 =

(
ωS
s

)2
+ k2,

T3 = −
(
ωS
s

)2 [
u+(1 + α2)− α∆

]
. (3.89)

A comparison of the coefficients (Eqs. (3.88)) of the characteristic polynomial in the
limit of the slow rates with the expressions for the coefficients obtained for the set of
reference rates in Eqs. (3.62) reveals that they have exactly the same form if ue/2 is
replaced by u+, and ωref

s is replaced by the RO frequency of the solitary laser for the
slow rates ωS

s . The latter is given by ωS
s ≡ 1 [LUE11]. Thus, the expression derived from

the characteristic polynomial in the limit of the reference rates in the previous section
remains valid for the slow rates. In the following, only the most important expressions
for the frequency of the limit-cycle born in the Hopf bifurcation ωS

H,s and for the Hopf-
bifurcation line in the (k,∆)-plane are discussed. From the coefficient T2 in Eq. (3.89),
the frequency of the Hopf bifurcation is obtained

ωS
H,s ≡

√

T2 =

√

(ωS
s )

2 + k2 =
√
1 + k2. (3.90)

In units of the dimensionless time t′ = 2κt normalized to the photon lifetime, it reads

ωS
H ≡

√

(ωS)2 + k̃2 =
√

2γrwN0
ph + k̃2 =

{

ωS for k̃ → 0

k̃ for γ → 0,
(3.91)

79



3. Quantum dot laser under optical injection

where ωS =
√

2γrwN0
ph is the RO frequency of the solitary laser with respect to time t′

(see Table 2.4). Eventually, in units of the physical time t and injection strength K, the
RO frequency is given by

ωS
H,t ≡

√

(ωS
RO)

2
+

(
K

τin

)2

= 2κ

√

2γrwN0
ph +

(
K

2κτin

)2

=

{

ωS
RO for K → 0

K
τin

for γ → 0,
(3.92)

where ωS
RO = 2κ

√

2γrwN0
ph is the RO frequency with respect to the physical time t.

From Eq. (3.81), we see that expressing the Hopf lines with respect to time t′ yields

δωS
H(k̃) ≡ ± k̃

2

∣
∣2k̃2 + (ωS)2(1− α2)

∣
∣

(

k̃2
[

k̃2 + (ωS)2
]

+ (1 + α2) (ω
S)4

4

)1/2
, (3.93)

where δωS
H denotes the frequency detuning at the Hopf lines.

3.7.4. Very fast rates: strong coupling between QDs and carrier
reservoir

In this subsection, at first, the reduced dynamical equations (2.43) derived in the limit
of vanishing carrier lifetimes te,h → 0 are extended to model the optical injection. Then,
the steady states and the linearization of these dynamical equations are discussed, and,
eventually, analytical expression for saddle-node and Hopf bifurcations are derived in
the limit of strong injection.

In the limit of very fast rates, the optical equations (3.12a) and (3.12b) are the same
as for the full set of equations (3.12). Thus, extended by the terms modeling the optical
injection the dynamical equations (2.43) read

R′ = ρinvR + k̃ cos(Ψ), (3.94a)

Ψ′ = −δω + αρinv −
k̃

R
sin(Ψ), (3.94b)

ρ′e =
γ

1 + ze

[
J − rph(ρe + ρh − 1)R2 − ρeρh − cWeWh

]
, (3.94c)

where the rescaled inversion ρinv defined in Eq. (2.5) was used to simplify the equations.

Steady states

Equating to zero the right hand sides of equations (3.94), the following steady state
relations are obtained

ρinvR = −k̃ cos(Ψ), (3.95a)

αρinv − δω =
k̃

R
sin(Ψ), (3.95b)

0 = J − rph(ρe + ρh − 1)R2 − ρeρh − cWeWh. (3.95c)
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3.7. Derivation of saddle-node and Hopf lines for strong injection

Since the field equations for the reduced dynamical equations (3.94) are the same as for
the full set of equations (3.12), also the steady state relations (3.95a) and (3.95b) are
the same as for the full set of equations (see Eqs. (3.17a) and (3.17b)). This is why the
ellipse equation for the injection strength k̃ = k̃(ρinv, δω) (Eq. (3.25)), for the steady
state of the inversion ρinv = ρinv(k̃, δω) (Eq. (3.26)), and the explicit expression for the
saddle-node lines in the (k̃, δω)-plane (Eq. (3.22)) remain unchanged.

Linearization

Linearizing the system of equations (3.94), the following characteristic equation for the
growth rate σ is obtained

det






ρinv − σ −(ρinvα− δω)R gR
2
cz

1
R
(ρinvα− δω) ρinv − σ αg

2
cz

−γ
2rphR

1+ze

(
2ρinv+g

g

)

0 −γ2Γ1 − σ




 = 0, (3.96)

where ze and cz are given by Eqs. (2.44) and (2.50), respectively. Expanding the char-
acteristic equation, yields a third order polynomial in the growth rate σ

σ3 + T1σ
2 + T2σ + T3 = 0, (3.97a)

T1 = 2(γΓ1 − ρinv), (3.97b)

T2 = ρ2inv + (αρinv − δω)2 + γ
[
ω2
1/2 + 2ρinv

(
ω2
1/2 − 2Γ1

)]

=

(

k̃

R

)2

+ γ
[
ω2
1/2 + 2ρinv

(
ω2
1/2 − 2Γ1

)]
, (3.97c)

T3 = γ
[
ρ2inv + (αρinv − δω)2 − ω2

1/2(1 + 2ρinv)
(
ρinv(1 + α2)− αδω

)]

= γ





(

k̃

R

)2

− ω2
1/2(1 + 2ρinv)

(
ρinv(1 + α2)− αδω

)



 , (3.97d)

where Γ1 and ω1/2 denote the first order contribution of the RO damping rate and the√
γ contribution of the RO frequency ω1/2, respectively. They are defined as

Γ1 ≡
1

2

[
rphR

2

(1 + ze)(1 + zh)

(
2 + zh + ze + ρh(1 + zh) + ρe(1 + ze)
+c (Wezh(1 + ze) +Whze(1 + zh))

)]

, (3.98a)

ω1/2 ≡
√

rphR2
cz

1 + ze
. (3.98b)

Damping rate Γ1 and frequency ω1/2 are equal to Γvf
1 and ωvf

1/2 obtained for the solitary

QD laser (see Eqs. (2.51) if the steady states values R, ρb, and Wb of the laser under
injection are replaced by the steady state values R0 = 1, ρ0b , and W 0

b of the solitary
laser. Further, in the second lines of Eqs. (3.97c) and (3.97c), the ellipse equation for
k̃2 = ρ2inv + (αρinv − δω)2 (see Eq. (3.25)) was used to reveal the dependence of T2 and
T3 on k̃.

The characteristic equation (3.97) is too complicated to directly derive explicit ex-
pressions for the Hopf bifurcation lines. Therefore, in the following, approximations for
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3. Quantum dot laser under optical injection

the saddle-node and Hopf lines are derived by scaling the injection parameters δω, k̃,
as well as the steady states of the dynamical variables R, Ψ, and ρe with respect to the
small parameter γ in the limit of strong injection.

Saddle-node and Hopf lines in the limit of strong injection

Strong injection implies that k̃ and δω scale like
√
γ (cf. Table 3.2). This scaling is

motivated by the scaling of the RO frequency of the solitary laser, which is likewise
proportional to ǫ =

√
γ as discussed in Section 3.7.4. Inserting the scalings

k̃ = ǫk̃1 and δω = ǫδω1 (3.99)

into the steady state relations (3.95), we see from Eq. (3.95a) that the product of ρinv
and R scales like ǫ, which is fulfilled by the choice ρinv = O(ǫ) and R = O(1). The
scaling of the inversion ρinv = [g(ρe + ρh − 1)− 1] /2 implies that the deviations of ρe
and ρh from their steady state values for the solitary laser ρ0e and ρ0h are at least O(ǫ)
small. This, in turns, yields that the deviations of We and Wh from their steady state
values for the solitary laser W 0

e and W 0
h are of order O(ǫ), which can be seen from the

relations (2.41). Summing up, the following scaling laws were derived

R = R0 +O(ǫ), Ψ = Ψ0 +O(ǫ), ρinv = ǫρinv,1 +O(ǫ2),

ρe,h = ρ0e,h +O(ǫ), We,h = W 0
e,h +O(ǫ, (3.100)

where R0, Ψ0, and ρinv,1 are O(1). Lowest order approximations of the saddle-node and
Hopf bifurcation lines may be obtained by inserting the scaling laws of Eqs. (3.99) and
(3.100) into the characteristic equations (3.97). The coefficients then simplify in lowest
order as

T1 = −ǫ2ρinv,1, (3.101a)

T2 = ǫ2





(

k̃1
R0

)2

+ ω2
1/2



 , (3.101b)

T3 = −ǫ3ω2
1/2

(
ρinv,1(1 + α2)− αδω1

)
. (3.101c)

The characteristic equation may then be balanced by assuming the scaling

σ = ǫσ1 +O(ǫ2) (3.102)

for the growth rate σ. Inserting Eq. (3.102) into the characteristic equation (3.97), it
reads in lowest order (O(ǫ3))

σ3
1 + T1σ

2
1 + T2σ1 + T3 = 0

with the coefficients

T1 = −2ρinv,1, (3.103a)

T2 = ω2
1/2 +

(

k̃1
R0

)2

, (3.103b)

T3 = −ω2
1/2

(
ρinv,1(1 + α2)− αδω1

)
. (3.103c)
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3.7. Derivation of saddle-node and Hopf lines for strong injection

Note that the expressions (3.103) have exactly the same form as the coefficients of the
characteristic polynomial for the set of reference rates (Eqs. (3.62)) if ρinv is replaced by
ue/2, (k̃1/R0) is replaced by k, and ω1/2 is replaced by ωref

s . Thus, the same expressions
for the saddle-node and Hopf lines are obtained as in Subsection 3.7.2.

Specifically, from Eq. (3.103b), the frequency of the limit cycle created in the Hopf
bifurcation (with respect to time t′ = 2κt) is given by

ωvf
H ≡ ǫ

√

T2 =



ǫ2ω2
1/2 +

(

k̃

R0

)2




1/2

≈
√

(ωvf)2 + k̃2 =

{

ωvf for k̃ → 0

k̃ for γ → 0,
(3.104)

where ǫω1/2 has been approximated by the RO frequency of the solitary laser ωvf (see
Eq. (2.52)), and R0 has been replaced by its steady state value for the solitary laser
R0 = 1. Eventually, in terms of physical time t, the Hopf frequency ωvf

H,t is approximated
by

ωvf
H,t ≈ 2κ

√

(
ωvf
RO

)2
+

(
K

τin

)2

=

{

ωvf
RO for K → 0

K
τin

for γ → 0,
(3.105)

where ωvf
RO denotes the RO frequency of the solitary laser defined in Eq. (2.53b).

Further, applying the Routh-Hurwitz condition (3.64) for a saddle-node bifurcation,
i.e., equating T3 = 0 from Eq. (3.103c) to zero, the following approximations for the
saddle-node lines in the (k̃, δω)-plane are obtained

δωsn
± = ± k̃

√
1 + α2

R0
≈ ±k̃

√
1 + α2. (3.106)

From equation (3.80), it can be seen that the Hopf lines in the (k̃, δω)-plane read

δωvf
H (k̃, α) ≡ ± k̃

2R0

|2(k̃/R0)
2 + ǫ2ω2

1/2(1− α2)|
√

k̃2((k̃/R0)2 + ǫ2ω2
1/2) + (R0)

2 (1 + α2)(ǫ2ω2
1/2/2)

2
(3.107a)

≈ ± k̃

2

∣
∣2k̃2 + (ωvf)2(1− α2)

∣
∣

(

k̃2
[

k̃2 + (ωvf)2
]

+ (1 + α2)
(ωvf)

4

4

)1/2
. (3.107b)

In the approximations of Eqs. (3.106) and (3.107b), ǫω1/2 and R0 have again been re-
placed by ωvf and R0 = 1.

3.7.5. Comparison to numerical path continuation

In this concluding subsection, the analytic approximations for the saddle-node and Hopf
bifurcation lines are compared to those obtained from the numerical path continuation.
Figure 3.15 depicts saddle-node and Hopf bifurcation lines in the (K,∆νinj)-plane for
the reference rates (upper row), the slow rates (middle row), and the very fast rates
(lower row), respectively. The left column shows the full bifurcation diagram, while the
right column depicts detail magnifications close to the zero-Hopf point ZH1 for positive

83



3. Quantum dot laser under optical injection
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Figure 3.15.: Left column: Saddle-node (gray) and Hopf lines (green and labeled by H1 and H2) from
path continuation and their analytic approximations in a plane spanned by injection strength K and
frequency detuning ∆νinj for reference rates (upper row), slow rates (middle row), and very fast rates
(lower row), respectively. Super- and subcritical bifurcation lines are denoted by solid thick and thin
dashed lines, respectively. Codimension-2 zero-Hopf (fold-Hopf) points (ZH1 and ZH2) and cusp
points (C) are labeled by green diamonds and gray circles, respectively. Analytic expressions:
Blue solid lines denote parametric expressions of Eqs. (3.45) and (3.50) for saddle-node lines. Thick
solid and thin dashed red Hopf lines are obtained by Eq. (3.81) (reference rates), Eq. (3.93) (slow
rates), and Eq. (3.107b) (very fast rates), respectively. Thick and thin dash-dotted black lines denote
supercritical and subcritical saddle-node lines obtained by Eq. (3.59) (reference and slow rates), and
Eq. (3.106) (very fast rates), respectively. The supercritical red Hopf and black dash-dotted saddle-
node lines were obtained with Routh-Hurwitz criteria of Eq. (3.69) and Eq. (3.68), respectively. Right
column: Blowups of the left column close to ZH1-points. Parameters: α = 0.9, J = 1.5Jth, and
other parameters as in Table 2.3.
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3.8. Hopf bifurcation lines for weak injection

detuning. Green lines labeled by H1 and H2 and gray lines denote numerically calculated
Hopf and saddle-node bifurcation lines, respectively. Further, super- and subcritical
bifurcations are denoted by thick solid and thin dashed lines, respectively. The blue
lines in Figs. 3.15(a)–(d) denote the parametric solutions for the saddle-node lines given
by Eqs. (3.45) and (3.50). Here, super- and subcritical parts are not distinguished. The
black dash-dotted lines mark the approximations for the saddle-node lines obtained in
the limit of reference and slow rates (see Eq. (3.59)) as well as for the very fast rates
(see Eq. (3.106)). Here, supercritical lines have been identified by employing the Routh-
Hurwitz criterion of Eq. (3.68). Furthermore, red lines denote the analytic expressions
for the Hopf lines for reference, slow, and very fast rates as obtained from Eq. (3.81),
Eq. (3.93), and Eq. (3.107b), respectively. Super- and subcritical parts of the Hopf lines
have been distinguished by the Routh-Hurwitz criterion of Eq. (3.69).

The analytic expressions for the Hopf lines show good agreement with the numerical
results for large injection strengths, but deviate for small values of K. In these approx-
imations the zero-Hopf point for positive detuning labeled by ZH1 shifts to the origin
(see Eq. (3.83)). This is why the H1 line remains supercritical down to K = 0. Better
analytic expression for the saddle-node lines for low injection strength are obtained in
the next Section by assuming a weaker scaling of K and ∆νinj with respect to γ. The
explicit analytic approximations for the saddle-node lines (black dash-dotted line) match
well for small values of K, but deviate considerably for high values of K. Further, no
explicit expression is found for the saddle-node line connecting the two cusp points (C).
This is the reason why no explicit expression for the ZH2-point was obtained. However,
an intersection of the H2 line with the parametric expression for the saddle-node line
(solid blue line) exists, but it is hard to find an explicit analytic expression, because a
fourth order problem for the injection strength at the zero-Hopf point has to be solved.

The lowest order approximations for the Hopf lines (see Eqs. (3.81), (3.93), and
(3.107b)) do not depend on the damping of the ROs. Since, for high injection strengths,
they approximate well the Hopf lines obtained numerically, it may be concluded that
the Hopf lines are mainly determined by the injection strength and the α-factor in this
regime. Therefore, the frequency of the limit cycle created in the Hopf bifurcation be-
comes proportional to the injection strength for high K (see Eqs. (3.71), (3.91), and
(3.105)). Since the analytic expressions for the Hopf lines do not depend on the RO
damping, they are also independent on the details of the band structure that determines
the scattering rates, i.e., the lowest order approximations for the Hopf lines are indepen-
dent of a and b. The RO damping – and thus the details of the band structure – become
important in the regime of low injection strengths, which will be discussed in the next
section.

3.8. Hopf bifurcation lines for weak injection

In the previous section, it was discussed that under the assumption of strong injection,
i.e., K = O(

√
γ) and ∆νinj = O(

√
γ), the zero Hopf point ZH1 for positive detuning

shifts to the origin of the (K,∆νinj)-plane. Therefore, in this section, the weaker scaling
K = O(γ) and ∆νinj = O(γ) is discussed, which permits to find a better analytical
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3. Quantum dot laser under optical injection

approximation for the ZH1 point, and to determine a critical injection strength, below
which no Hopf bifurcation can occur.

To take into account the weaker scaling of K and ∆νinj with respect to γ, a rescaled
injection strength k1 and a rescaled frequency detuning ∆1, which are both O(1), are
introduced by

ǫk1 ≡
K

2κτin

1√
γω

and ǫ∆1 ≡
δω√
γω

. (3.108)

Inserting Eqs. (3.108) into the reduced dynamical equations (3.35), the latter express as
follows

ẏ = (1 + y)(ue + uh) + 2ǫk1
√

1 + y cos(Ψ), (3.109a)

Ψ̇ = −ǫ∆1 +
α

2
(ue + uh)− ǫk1

1√
1 + y

sin(Ψ), (3.109b)

u̇e = −y

2
− bue − ǫ

ω

2
(ue + uh)(1 + y)− ǫω−1(ρ0euh + ρ0hue) +O(ǫ2), (3.109c)

u̇h = −y

2
− auh − ǫ

ω

2
(ue + uh)(1 + y)− ǫω−1(ρ0hue + ρ0euh) +O(ǫ2), (3.109d)

where the small parameter ǫ =
√
γ was introduced. Firstly, the steady states and the

linearization of Eqs. (3.109) are calculated without any assumptions on the scalings of
the rates a and b. Thus, in the general case as before in the case of strong injection, the
general formulation of the problem yields a common basis for the limits of the reference
and the slow rates that are discussed in the next subsections.

Steady states

Equating to zero the right hand sides of Eqs. (3.109), the following steady state relations
are obtained, which are valid up to O(ǫ),

ǫk1 cos(Ψ) = −u+

√

1 + y, (3.110a)

ǫk1 sin(Ψ) = (αu+ − ǫ∆1)
√

1 + y, (3.110b)

0 = −y

2
− bue − ǫ

ω

2
(ue + uh)(1 + y)− ǫω−1(ρ0euh + ρ0hue), (3.110c)

0 = −y

2
− auh − ǫ

ω

2
(ue + uh)(1 + y)− ǫω−1(ρ0hue + ρ0euh), (3.110d)

where

u+ =
ue + uh

2
(3.111)

has been introduced, which plays the role of the inversion in this section.

By adding the square of Eq. (3.110a) to the square of Eq. (3.110b), an ellipse equation
permitting to express k1 in terms of u+ is obtained

ǫ2k2
1 =

(
u2
+ + (αu+ − ǫ∆1)

2
)
(1 + y). (3.112)
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3.8. Hopf bifurcation lines for weak injection

Further, an explicit expression for the line of saddle-node bifurcations bordering the
locking tongue is retrieved by inserting Eq. (3.110a) into Eq. (3.110b) and employing
the trigonometric relations of Eqs. 3.20

∆1 = ±k1

√

1 + α2

1 + y
sin
(
Ψ+ arctan(α)

)
, (3.113)

which has solutions for
∣
∣∆1

∣
∣ ≤

∣
∣
∣
∣
∣
k1

√

1 + α2

1 + y

∣
∣
∣
∣
∣
.

Pairs of solutions are created in saddle-node bifurcations at

∆sn
1,± ≡ ±k1

√

1 + α2

1 + y
. (3.114)

Linearization

Linearizing the system (3.109) and taking advantage of the steady state relations (3.110a)
and (3.110b)) to eliminate the trigonometric terms, the following characteristic equation
for the growth rate λ is obtained

det



















u+ − λ −2(1 + y)(u+α−∆1ǫ) 1 + y 1 + y
αu+−ǫ∆1

2(1+y)
u+ − λ α/2 α/2

[
−1/2
−ǫωu+

]

0







−b

−ǫ

[
ω−1ρ0h

+ω
2
(1 + y)

]

−λ







−ǫ

[
ω−1ρ0e

+ω
2
(1 + y))

]

[
−1/2
−ǫωu+

]

0 −ǫ

[
ω−1ρ0h

+ω
2
(1 + y)

]







−a

−ǫ

[
ω−1ρ0e

+ω
2
(1 + y)

]

−λ

























= 0.

(3.115)
The characteristic equation expands as follows

λ4 + λ3
[
a+ b− 2u+ + ǫ

(
ω−1(ρ0e + ρ0h) + ω(1 + y)

)]

+ λ2

[
1 + y + ab− 2(a+ b)u+ + u2

+ + (ǫ∆1 − αu+)
2

+ǫ
[
ω
2
(a+ b)(1 + y) + ω−1(aρ0h + bρ0e)− 2ω−1u+(ρ

0
h + ρ0e)

]

]

+ λ








(1 + y)
(

(a+b)
2

− u+ − α(u+α− ǫ∆1)
)

− 2abu+ + (a+ b)u2
+

+2(a+ b)(u+α− ǫ∆1)
2

+ǫ

[
(u+α− ǫ∆1)

2 (2ω−1(ρ0e + ρ0h) + 2ω)− 2u+ω
−1(bρ0e + aρ0h)

+ω−1(ρ0e + ρ0h)u
2
+ − (1 + y)

(
ωu2

+ + 2α(u+α− ǫ∆1)u+ω
)

]








+
u+

2
(1 + α2) (a(2bu+ − 1− y)− y(1 + y))

+ ǫ

[
ω−1

(
u2
+(1 + α2)(bρ0e + aρ0h)

)
+ α∆1

2
((a+ b)(1 + y)(−4abu+))

−ω
2

(
(1 + α2)(1 + y)(a+ b)u2

+

)

]

+ ǫ2
[
−2ω−1∆1u+α(bρ

0
e + aρoh) + ab∆2

1

]
= 0. (3.116)
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3. Quantum dot laser under optical injection

3.8.1. General rates: a = O(1) and b = O(1)

So far, the two lowest order problems for the eigenvalues (3.124) were derived without
any assumptions on the scaling of a, b, and of the dynamical variables. Now, it is assumed
that the rates a and b are O(1)-quantities. This permits to derive simple scaling laws
for the steady states of y, Ψ, ue, and uh from Eqs. (3.110) as it has been done for strong
injection in Subsection 3.7.2.

Steady states

With the assumption that Ψ is an O(1)-quantity, ue or uh have to scale like O(ǫ) to
balance Eqs. (3.110a) and (3.110b). From the carrier equations (3.110c) and (3.110d)
then follows that uh scales like ue, and y has to scale in leading order like ǫ. Summing
up, this yields the scalings

y = ǫY+O(ǫ2), Ψ = Ψ0+O(ǫ), ue/h = 0+ǫUe/h+O(ǫ2), and u+ = ǫU++O(ǫ2), (3.117)

where Y , Ψ0, Ue/h, and U+ are O(1). Inserting these scalings into the general steady
state relations (3.110), the following relations are obtained, which are valid up to O(ǫ),

k1 cos(Ψ0) = −U+, (3.118a)

k1 sin(Ψ0) = αU+ −∆, (3.118b)

Ue = −Y

2b
, (3.118c)

Uh = − Y

2a
. (3.118d)

The ellipse equation (3.112) for k2
1 simplifies as

k2
1 = U2

+ + (αU+ −∆)2, (3.119)

and the frequency detuning along the lines of saddle-node bifurcations (Eq. (3.114)) now
reads

∆sn
1,± = ±k1

√
1 + α2. (3.120)

Equations (3.119) and (3.120) correspond to the expressions (3.25) and (3.22) that were
derived from the full set of dynamical equations.

For the subsequent analysis, it is convenient to derive from Eq. (3.119) an expression
of U+ in terms of k1 and ∆1, which corresponds to the expression (3.26) for the steady
states of the inversion ρinv of the full set of dynamical equations,

U+ =
1

1 + α2

(

∆1α±
√

(1 + α2)k2
1 −∆2

1

)

. (3.121)

Again, plus and minus in the above equation correspond to different branches of fixed
points. Within the phase-locking tongue ∆2

1 < (1 + α2)k2
1 holds, and the square-root in

Eq. (3.121) remains real.
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3.8. Hopf bifurcation lines for weak injection

Linearization

Inserting the scalings for the steady states of the dynamical variables of Eqs. (3.126) and
taking into account only terms up to O(ǫ), the characteristic equation (3.116) simplifies
as

λ

[

λ3 + λ2(a+ b) + λ(1 + ab) +
(a+ b)

2

]

+ ǫ








λ3 [ω−1(ρ0e + ρ0h)− 2U+ + ω]
+λ2

[
ω
2
(a+ b)− 2U+(a+ b) + ω−1(bρ0e + aρ0h) + Y

]

+λ
[
(a+b)

2
Y − U+(1 + 2ab+ α2) + α∆1

]

− (a+b)
2

[U+(1 + α2)− α∆1]







= 0. (3.122)

Further, assuming the scaling

λ = λ0 + ǫλ1 (3.123)

for the eigenvalues and inserting this ansatz into the characteristic equation (3.122),
yields the following two problems in O(1) and O(ǫ), respectively,

O(1) : λ0

[

λ3
0 + λ2

0(a+ b) + λ0(1 + ab) +
(a+ b)

2

]

= 0, (3.124a)

O(ǫ) : λ1

[
(a+ b)

2
+ 2(1 + ab)λ0 + 3(a+ b)λ2

0 + 4λ3
0

]

+λ3
0

[
ω−1(ρ0e + ρ0h)− 2U+ + ω

]

+λ2
0

[ω

2
(a+ b)− 2U+(a+ b) + ω−1(bρ0e + aρ0h) + Y

]

+λ0

[
(a+ b)

2
Y − U+

(
1 + 2ab+ α2

)
+ α∆1)

]

−(a+ b)

2

[
U+(1 + α2)− α∆1)

]
= 0. (3.124b)

The above problems reveal that the ansatz (3.123) for the eigenvalues λ permits to
balance more than three terms in each of the two lowest order problems allowing complex
solutions for λ0 and λ1, which in turns permits to find Hopf bifurcation lines. Even the
two lowest order problems (3.124a) and (3.124b) are hard to solve directly. This is why
in the next two subsections special scalings for the rates a and b are assumed to derive
analytical limits for the set of reference and the set of slow rates, respectively.

3.8.2. Reference rates: limit a = O(ǫ−1) and b = O(ǫ1)

As already discussed in Subsection 3.7.2, for strong injection in the limit of the reference
rates, the decay of holes is much faster than the decay of the electrons, which motivates
the following scalings for a and b

a = ǫ−1a−1 and b = ǫb1, (3.125)
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3. Quantum dot laser under optical injection

where a−1 and b are O(1). Next, the resulting scalings have to be determined for
y, Ψ, and ue/h from the steady state relations (3.110), or from the steady relation of
the previous subsection (see Eqs. (3.118)). Assuming Ψ = O(1), it can be seen from
Eqs. (3.118a) and (3.118b) that to balance the injection terms either ue = O(ǫ) or
uh = O(ǫ). Choosing ue = O(ǫ), we see from Eq. (3.118c) that y = O(ǫ2), which in
terms implies uh = O(ǫ3) from Eq. (3.118d). Summing up, the following scaling laws
are obtained for y, Ψ, ue/h, and u+ = (ue + uh)/2

y = ǫ2Y2 +O(ǫ3), Ψ = Ψ0 +O(ǫ), ue = ǫUe +O(ǫ2),

uh = ǫ3Uh,3 +O(ǫ4), u+ = ǫ
Ue

2
+O(ǫ2), (3.126)

where Y2, Ψ0, Ue, and Uh,3 are O(1). Taking into account that in this limit U+ =
Ue/2 + O(ǫ2) holds, equation (3.121) for the inversion U+ reads in the limit of the
reference rates

Ue

2
=

1

1 + α2

(

∆1α±
√

(1 + α2)k2
1 −∆2

1

)

. (3.127)

Stability analysis

Restricting our analysis to the first two orders, which are O(ǫ−1) and O(1), it suffices to
study Eq. (3.128) instead of the more general expansion (3.116). Inserting the scaling
laws for a and b of Eqs. (3.125) and the scalings of the steady states of the dynamical
variables of Eqs. (3.124a) into the characteristic equation (3.124a), the first two order
problems for the zeros and the first order contributions λ0 and λ1 of the growth rate λ
read

O(ǫ−1) : λ0

[

λ2
0 +

1

2

]

= 0, (3.128a)

O(1) : λ1

[
1

2
+ 3λ2

0

]

a−1 + λ4
0

+λ2
0

[

1 + a−1

(

b1 +
ω

2
− 2

Ue

2
+ ω−1ρ0h

)]

−a−1

2

[
Ue

2
(1 + α2)− α∆1

]

= 0. (3.128b)

The lowest order problem (3.128a) admits three solutions

λr
0 = 0 ∧ (λc

0)
2 = −1

2
, (3.129)

one of them is real (λr
0) and two are purely imaginary λc

0. Thus, in leading order, the
dynamical equations are conservative, and the RO damping is introduced by the higher
order terms [LUE11].

The first order contribution λr
1 of the real eigenvalue is obtained by inserting λr

0 into
Eq. (3.128b)

λr
1 =

[
Ue

2

(
1 + α2

)
− α∆1

]

, (3.130)
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and the complex conjugate eigenvalues express as

λc
1 = −Γref

1 +
1

2

[
Ue

2
(1− α2) + α∆1

]

, (3.131)

where Γref
1 is the O(ǫ) contribution to the RO damping of the solitary laser, which is

defined by

Γref
1 ≡ 1

2a−1

[
1

2
+ a−1(b1 +

ω

2
+ ω−1ρ0h)

]

. (3.132)

Summing up, by taking into account contributions up to the first order in ǫ, the real
eigenvalue λr and the pair of complex conjugate eigenvalues λc are given by

λr ≡ λr
0 + ǫλr

1 = ǫ

[
Ue

2

(
1 + α2

)
− α∆1

]

, (3.133a)

λc ≡ λc
0 + ǫλc

1 = ±iωref
0 + ǫ

(

−Γref
1 +

1

2

[
Ue

2
(1− α2) + α∆1

])

, (3.133b)

where we have introduced the RO frequency of the solitary laser ωref
s = 1/

√
2. Now,

the stability of the two fixed points, which are given by the plus ((Ue/2)+) and the
minus branch ((Ue/2)−) of the inversion (see Eq. (3.127)), respectively, can be studied.
Inserting Eq. (3.127) into the expressions (3.133) for the eigenvalues, we obtain for the
plus branch

(λr)+ ≡ +ǫ
√

(1 + α2)k2
1 −∆2

1, (3.134a)

(λc)+ ≡ ±iωref
s + ǫ

(

−Γref
1 +

1

(1 + α2)

[

2α∆1 +
(1− α2)

2

√

(1 + α2)k2
1 −∆2

1

])

,

(3.134b)

and, for the minus branch, we get the following eigenvalues

(λr)− ≡ −ǫ
√

(1 + α2)k2
1 −∆2

1, (3.135a)

(λc)− ≡ ±iωref
s + ǫ

(

−Γref
1 +

1

(1 + α2)

[

2α∆1 −
(1− α2)

2

√

(1 + α2)k2
1 −∆2

1

])

,

(3.135b)

where the notation (λr,c)± ≡ λr,c
(
(Ue/2)±

)
was introduced.

RO frequency and damping of solitary laser

For the solitary laser (k1 = 0 and ∆1 = 0), the leading order contribution of the real
eigenvalue vanishes, i.e., from Eqs. (3.134a) and (3.135a) we obtain (λr)± = 0. Further,
from the expressions for the complex conjugate eigenvalues (λc)± of Eqs. (3.134b) and
(3.135b), we see that for the solitary laser the terms in the rectangular brackets vanish,
and their real parts are simply given by −ǫΓref

1 . From the imaginary parts of the complex
conjugate eigenvalues, we retrieve the RO frequency ωref

s = 1/
√
2. Thus, in terms of the

dimensionless time t′ ≡ (2κ)−1t, the expressions (2.29) for RO frequency ωref =
√
γωωref

s

and damping RO damping Γref = γωΓref
1 are retrieved that were already discussed in

Subsection 2.5.3 (cf. Table 2.4).
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3. Quantum dot laser under optical injection

Saddle-node bifurcation lines

A saddle-node bifurcation occurs at a zero of the real eigenvalue. Along the saddle-node
lines, both fixed points collide and the square roots in Eqs. (3.134a) and (3.135a) vanish.
From (1+α2)k2

1 −∆2
1 = 0, we retrieve the explicit expression (3.42) for the detuning ∆1

along the saddle-node lines.

3.8.3. Slow rates: limit a = O(ǫ) and b = O(ǫ)

As already discussed in Subsection 3.7.3 in the limit of the slow rates, a and b are small
compared to one, which motivates the scalings

a = ǫa1, and b = ǫb1, (3.136)

where a1 and b1 are O(1). To find the scalings of y, Ψ, ue, and uh in this limit, the
steady state relations (3.118) are considered in the limit that b and a are O(ǫ) small.
The scalings of ue/h and y remain the same, and from the carrier equations (3.118c) and
(3.118d), it can be seen that y has to be O(ǫ2). Summing up, the following scaling laws
are obtained for the dynamical variables and u+ = (ue + uh)/2

y = ǫ2Y2+O(ǫ3), Ψ = Ψ0+O(ǫ), ue/h = ǫUe/h+O(ǫ2), and u+ = ǫU++O(ǫ2), (3.137)

where Y2, Ψ0, Ue/h, and U+ are O(1).

Steady states

The steady state relations (3.118a) and (3.118b) are still valid, because only the scaling
of y has changed, and the equations are independent of y. This is why also the rela-
tion (3.121) for U+ in terms of k1 and ∆1 as well as the expression for ∆sn

1,± = ∆1(k1,∆1)
(Eq. (3.42)) remain unchanged. The steady state relations for the carriers that are valid
up to order O(ǫ) now express as follows

Ue = − Y2

2b1
and Uh = − Y2

2a1
.

Stability analysis

Restricting the linear stability analysis again to the two lowest orders in γ, it is suffi-
cient to consider the first two order problems (3.124a) and (3.124b) of the characteristic
equation (3.122) in the limit that a and b are O(ǫ) small. They simplify as

O(1) : λ2
0

[
1 + λ2

0

]
= 0, (3.138a)

O(ǫ) : λ0(4λ
2
0 + 2)λ1

+λ3
0

[
a1 + b1 + ω−1(ρ0e + ρ0h)− 2U+ + ω

]

+λ0

[
(a1 + b1)

2
− U+ − α(U+α−∆1)

]

= 0. (3.138b)
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The leading order problem (3.138a) admits a double real root (λr
0) and two complex

conjugate roots (λc
0)

(λr
0)

2 = 0 ∧ λc
0 = ±i. (3.139)

Thus, in leading order, the equation are conservative as in the case of the reference
rates. Inserting the real eigenvalue λr

0 into the O(ǫ) problem (3.138b) does not yield new
informations, but inserting the complex conjugate eigenvalues λc

0 provides the solution

2λc
1 = −

[
a1 + b1 + ω−1(ρ0e + ρ0h)− 2U+ + ω

]

+
(a1 + b1)

2
− U+ − α(U+α−∆1)

⇔ λc
1 = −ΓS +

1

2

[
U+(1− α2) + α∆1

]
, (3.140)

where the gain-clamping ρ0e + ρ0h = 1+ g−1 of the solitary laser has been used in the last
equality. Further, the first order contribution to the damping rate of the solitary laser
was introduced as

ΓS
1 ≡ ΓS,QW

1 +
1

2

[
(a1 + b1)

2
+ ω−1g−1

]

, with ΓS,QW
1 ≡ 1

2
(ω−1 + ω). (3.141)

Further, the complex conjugate eigenvalues express as

λc = λc
0 + ǫλc

1 = ±iωS
s + ǫ

(

−ΓS
1 +

1

2

[
U+(1− α2) + α∆1

]
)

, (3.142)

where ωS
s = 1 is the RO frequency of the solitary laser. Next, the stability of the two

fixed points, which are given by the plus ((U+)+) and the minus branch ((U+)−) of
the inversion, respectively, (see Eq. (3.121)) is studied. Inserting Eq. (3.121) into the
expressions (3.142) for the eigenvalues, we obtain for plus and minus branches:

(λc)+ = ±iωS
s + ǫ

(

−ΓS
1 +

1

(1 + α2)

[

2α∆1 +
(1− α2)

2

√

(1 + α2)k2
1 −∆2

1

])

, (3.143a)

(λc)− = ±iωS
s + ǫ

(

−ΓS
1 +

1

(1 + α2)

[

2α∆1 −
(1− α2)

2

√

(1 + α2)k2
1 −∆2

1

])

, (3.143b)

where the notation (λc)± ≡ λc
(
(U+)±

)
was used.

RO frequency and damping of solitary laser

For the solitary laser (k1 = 0 and ∆1 = 0), the terms in the rectangular brackets of
Eqs. (3.143) vanish, and the real parts of the complex conjugate eigenvalues are simply
given by −ǫΓS

1. Further, the RO frequency ωS
s is retrieved from their imaginary parts.

Thus, with respect to dimensionless time t′ ≡ (2κ)−1t, the expressions (2.31) for RO
frequency ωS =

√
γωωS

s and damping RO damping ΓS = γωΓS
1 are obtained that were

already discussed in Subsection 2.5.4 (cf. Table 2.4).
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3. Quantum dot laser under optical injection

3.8.4. Very fast rates

In this subsection, expressions for the saddle-node and Hopf bifurcation lines are derived
in the limit of vanishing carrier lifetimes in the QD levels. In this limit, the characteristic
polynomial for the linearized dynamical equations of the laser under optical injection
was already derived in Subsection 3.7.4 (see Eq. (3.97)).

Here, approximations of this equation in the limit of weak injection are studied. Weak
injection implies that k̃ and δω scale like γ (cf. Table 3.2). Inserting the scalings

k̃ = γk̃1 and δω = γδω1 (3.144)

into the steady state relations (3.95) (where k̃1 and δω1 are O(1)), we see from Eq. (3.95a)
that under the assumption Ψ = O(1) the product of ρinv and R scales like γ, which is
fulfilled by the choice ρinv = O(γ) and R = O(1). Further, ρinv = O(γ) implies that also
the deviations of ρe and ρh from their steady state values of the solitary laser ρ0e and
ρ0h are at least O(γ) small (cf. Eq. (3.26)). This, in turns, yields that the deviations of
We and Wh from their steady state values for the solitary laser W 0

e and W 0
h are of order

O(γ), which can be seen from the relations (2.41). Summing up, the following scaling
laws have been derived

R = R0 +O(γ), Ψ = Ψ0 +O(γ), ρinv = γρinv,1 +O(γ2),

ρe,h = ρ0e,h +O(γ), We,h = W 0
e,h +O(γ). (3.145)

Inserting the scalings (3.145) into the expression for the inversion ρinv = ρinv(k̃, δω) of
Eq. Eq. (3.26), we obtain

ρinv,1 ≡
1

1 + α2

(

δω1α±
√

(1 + α2)k̃2
1

(R0)
2 − δω2

1

)

, (3.146)

where plus and minus signs again denote two different fixed points.
Lowest order approximations of the saddle-node and Hopf bifurcation lines may be

obtained by inserting the scaling laws of Eqs. (3.144) and (3.145) into the characteristic
equations (3.97). In lowest order, its coefficients T1, T2, and T3 then simplify to

T1 = 2γ(Γ1 − ρinv,1), (3.147a)

T2 = γ(ω1/2)
2, (3.147b)

T3 = −γ2(ω1/2)
2
(
ρinv,1(1 + α2)− αδω1

)
. (3.147c)

Saddle-node bifurcation lines

By inserting Eq. (3.146) into the Routh-Hurwitz condition for a saddle-node bifurcation
T3 = 0 (see Eq. (3.64)), the explicit expression for the saddle-node lines of Eq. (3.22) is
retrieved, which reads

δωsn
± = ± k̃

√
1 + α2

R0

≈ ±k̃
√
1 + α2, (3.148)

where in the last approximation R0 was replaced by the steady state R0 = 1 of the
solitary laser.
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3.8. Hopf bifurcation lines for weak injection

Hopf bifurcation lines

Noting that the frequency of the limit cycle created in the Hopf bifurcation with respect
to the dimensionless time t′ = 2κt is given by ωvf

H =
√
T2, yields

ωvf
H ≡

√

γ
(
ω1/2

)2 ≈ ωvf , (3.149)

where in the last approximation
√
γω1/2 has been approximated by the RO frequency of

the solitary laser ωvf (see Eq. (2.52)) and Table 2.4. Thus, in the limit of weak injection
and in lowest order approximation the frequency of the limit cycle created in the Hopf
bifurcation is given by the RO frequency of the solitary laser, i.e., the Hopf bifurcation
undamps the ROs. This is the low injection limit k̃ → 0 of expression (3.105) obtained
under the assumption of strong injection.

Evaluating the first of the Routh-Hurwitz conditions for a Hopf bifurcation T1T2−T3 =
0 (cf. Eqs. (3.67)), the following condition is obtained in lowest order, which is O(γ2),
from the coefficients of Eqs. (3.147)

− Γ1 +
1

2

[
ρinv,1(1− α2) + αδω1

]
= 0. (3.150)

Inserting the expressions (3.146) for ρinv,1 into the above equations, the Hopf condition
reads

− Γ1 +
1

(1 + α2)

[

2αδω1 ±
(1− α2)

2

√

(1 + α2)k̃2
1 − δω2

1

]

= 0. (3.151)

Approximating γΓ1 by the damping rate Γvf of the solitary laser (see Eq. (2.52)), and
then rewriting Eq. (3.152) in terms of injection strength k̃ and detuning δω, yields the
following expression for the Hopf lines

− Γvf +
1

(1 + α2)

[

2αδω ± (1− α2)

2

√

(1 + α2)k̃2 − δω2

]

= 0. (3.152)

3.8.5. Saddle-node and Hopf bifurcation lines

So far, we have discussed the reference, and the slow rates as well as the limit of very
fast scattering rates, separately. Now, we derive analytical expressions for the saddle-
node bifurcation lines limiting the locking tongue, the Hopf bifurcation line for positive
detuning, and the critical injection strength, below which no Hopf bifurcation may occur,
which are valid for all three sets of rates.

A common expression for the saddle-node bifurcation lines in the (k̃,δω)-plane is ob-
tained by rewriting equation (3.42) that is valid in the limit of the reference and the
slow rates in terms of k̃ and δω, which yields

δω±
sn = ±k̃

√
1 + α2. (3.153)

The above expression was previously obtained in the limit of the very fast rates in
equation (3.148).
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3. Quantum dot laser under optical injection

To find a common expression for the Hopf bifurcation lines, we note that the expres-
sions for the complex conjugate pair of eigenvalues (λc)± have the same form for the
reference rates and the slow rates (compare Eqs. (3.134b) and (3.135b) to Eqs. (3.143)).
In terms of the dimensionless time t′ = (2κ)−1t, the complex conjugate eigenvalues
(σc)± ≡ √

γω(λc)± may be expressed as

(σc)+ ≡ −Γeff
+ ± iωRO and (σc)− ≡ −Γeff

− ± iωRO, (3.154)

where the terms
(
Γeff
)

± ≡ ΓRO − 1

(1 + α2)

[

αδω ± (1− α2)

2

√

(1 + α2)k̃2 − δω2

]

, (3.155)

have been introduced. Plus and minus signs again denote the different fixed points.
Physically, the second term on the right hand side of the above equation describes how
the RO damping of the solitary laser ΓRO is modified by the injection, thus,

(
Γeff
)

±
plays the role of an effective RO damping. The dependence of this effective damping
on the frequency detuning inside the phase-locking tongue is discussed in detail in Sec-
tion 3.10. Here, we concentrate on the Hopf bifurcation lines. A Hopf bifurcation occurs
for
(
Γeff
)

± = 0, when the injection expressed by the term in rectangular brackets on

the right hand side of Eq. (3.155) is strong enough to compensate the RO damping ΓRO

of the solitary laser. Equations (3.152) describing the Hopf conditions in the limit of
very fast scattering rates have the same form than the formulas (3.155) for

(
Γeff
)

±. This
permits to conclude that close to the Hopf bifurcation lines the effective damping rate
for the very fast rates may also be described by Eqs. (3.155). RO damping ΓRO and RO
frequency ωRO for reference, slow, and very fast rates are summarized in Table 2.4. To
simplify notation, only the minus branch is considered in the following. As discussed in
Subsection 3.8.2, it corresponds to the fixed point with the lower inversion that is stable
within the locking tongue, i.e., to the stable focus. However, for both branches the same
expression for the detuning at the Hopf lines δω = δωH(k̃, α) is obtained.

Solving the Hopf condition
(
Γeff
)

− = 0 for δω, yields

δωH(k̃, α) =
1

1 + α2

[

4αΓRO ±
√

(α2 − 1)2(1 + α2)

(

k̃2 − 4(ΓRO)2

1 + α2

)]

=
4αΓRO

1 + α2
± |α2 − 1|√

1 + α2

√

k̃2 − 4(ΓRO)2

1 + α2
. (3.156)

The Hopf line has two branches, which coincide for α = 1. Inverting Eq. (3.156), the
feedback strength at the Hopf bifurcation line k̃H = k̃H(δω, α) may be expressed in terms
of frequency detuning δω and α-factor as

k̃H(δω, α) =
1

∣
∣α2 − 1

∣
∣

[

(1 + α2)4
(
ΓRO

)2 − 2αΓROδω + (1 + α2)δω2
] 1

2
. (3.157)

Exactly the same expression was obtained by Gavrielides et al. in Ref. [GAV97a] for
the standard rate equation model for a conventional class B laser9 (see also [ERN10b]

9To compare expression (3.157) with the one obtained in Ref. [GAV97a], note that for the QW rate
equation model the RO damping is given by ΓRO = ǫ(1 + 2P )/2, where ǫ = γQW and P = rQWN0

ph

is the pump parameter (see Eq. (2.23a)). Further, the α-factor was denoted by b in Ref. [GAV97a].

96



3.8. Hopf bifurcation lines for weak injection

for a comprehensive review). The model for the solitary QW laser was discussed in
Section 2.5.1.

To obtain real detunings δωH , we have to impose that the term under the square root
in the last line of Eq. (3.156) remains positive, which yields a critical feedback strength,
below which no Hopf instability may occur

k̃H,c ≡
2ΓRO

√
1 + α2

. (3.158)

The position of the critical Hopf point in the (k̃,δω)-plane can be obtained by inserting
Eq. (3.158) into Eq. (3.156), which yields

(k̃H,c, δωH,c) ≡
2ΓRO

√
1 + α2

(

1,
2α√
1 + α2

)

, (3.159)

where δωH,c denotes the frequency detuning at this point. Physically, the existence of a
boundary, below which no Hopf bifurcation can occur, may be explained as follows: for
low injection strengths, the system is effectively one dimensional, and its phase-locking
dynamics may be described by the Adler’s type phase equation (3.12b) only. Thus,
there cannot be a Hopf bifurcation, and the locking boundaries are given by saddle-node
bifurcations. However, for higher injection strengths, changes in the photon number and
the inversion become more prominent, which renders higher dimensional bifurcations
possible [KEL12a]. For instance, Hopf bifurcations become possible for k̃ ≥ k̃H,c. From
Eqs. (3.154), it can be seen that in lowest order approximation the frequency of the
Hopf bifurcation is given by the RO frequency of the solitary laser, showing that close
to k̃H,c the Hopf bifurcation undamps the ROs. Therefore, it does make sense that
k̃H,c increases linearly with the RO damping. Further, the critical injection strength
increases for α → 0+, which yields a dynamically more stable laser. This can be seen
from Figs. 3.6(a) and (b), which depict bifurcation diagrams in the (k̃, δω)-plane10 for
small α = 0.9 and for large α = 3.2, respectively. For α > 1 the lower branch of the
Hopf bifurcation is supercritical, and bends towards zero detuning. The bending of the
supercritical Hopf line increases with the α-factor, which in terms provokes a decrease
of k̃H,c.

The expression (3.158) for k̃H,c corresponds up to the factor of 2 to the critical feedback
strength, below which the QD laser subject to optical feedback from a distant mirror
cannot be destabilized in a Hopf bifurcation [OTT11, GLO12]. This is a first hint
to the dynamical similarities of a semiconductor laser under optical injection and a
semiconductor laser subject to optical feedback that are further employed in Chapter 4.

Recently, Kelleher et al. proposed in Ref. [KEL12a] a novel method to determine the
RO damping ΓRO of a single-mode, semiconductor, class B QW laser by taking advan-
tage of expression (3.158) for the critical feedback strengths k̃H,c. At first, the authors
determined experimentally the critical injection strengths k̃H,c. Then, they determined
the frequency detunings δωsn

± of the phase-locking boundary. At this injection level, the
locking boundary is of saddle-node form, and thus given by Eq. (3.153). Inserting the

10Injection strength K and frequency detuning ∆νinj may be expressed k̃ and δω as K = 2κτink̃ and
∆νinj = κδω/π.
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3. Quantum dot laser under optical injection

expression (3.158) for k̃H,c into Eq. (3.153) and then solving for ΓRO, yields a simple
expression of the RO damping in terms of the frequency detuning at the saddle-node
lines

ΓRO =
1

2

∣
∣δωsn

± (k̃H,c)
∣
∣. (3.160)

Thus, the RO damping of the solitary laser may be determined by subjecting the laser
to external optical injection.

3.8.6. Codimension-2 zero-Hopf point

In this subsection, an expression for the zero-Hopf point for positive detuning, i.e, the
ZH1-point in Fig. 3.2, is derived. A zero-Hopf point occurs at a tangency of a Hopf
line with a saddle-node line [KUZ95]. Therefore, the injection strengths k̃ZH, at which
a zero-Hopf point occurs, may be found by inserting expression (3.153) into the Hopf
condition

(
Γeff
)

− = 0 (see Eq. (3.155)). The term under the square-root in Eq. (3.155)

then vanishes, and solving for k̃, yields

k̃ZH ≡ ΓRO

α

√
1 + α2, (3.161)

where k̃ZH was assumed to be positive. Inserting Eq. (3.161) back into the expres-
sion (3.153) for the detuning at the saddle-node lines, yields δωZH

± = ±k̃ZH
√
1 + α2.

Only the plus branch fulfills the Hopf condition
(
Γeff
)

− = 0, which yields the ZH1 point
for positive detuning

(k̃ZH,1, δωZH,1) ≡ ΓRO

α

√
1 + α2

(

1,
√
1 + α2

)

. (3.162)

Figure 3.16(a) depicts the critical injection strengths KH,c ≡ 2κτink̃H,c of Eq. (3.159)
(blue solid line) and the injection strength of the ZH1 point KZH,1 = 2κτink̃

ZH,1 of
Eq. (3.162) (red dashed line) as functions of the α-factor obtained for the reference
rates. For α = 1, the critical Hopf point and the zero Hopf point coincide. For α > 1,
the critical injection strength is lower than the injection strength of the ZH1-point,
which can be attributed to the bending of the supercritical part of the Hopf line towards
zero detuning (see Fig. 3.6(b)). Both, KH,c and KZH,1, decrease for increasing α.

From the results of the numerical path continuation plotted in Fig. 3.6(a) it can be
seen that for α < 1 the upper branch of the Hopf line emerging from the ZH1 point is
supercritical, and the lower branch is subcritical. Since the critical Hopf point is located
at the lower branch, the lowest injection strength, above which the lasing fixed point
may be destabilized in a Hopf bifurcation, is for α < 1 given by KZH,1. In the analytical
approximation of Eq. (3.162), KZH,1 diverges for α → 0+, which is not observed in the
numerical path continuation. The reason is that for small values of the α-factor KZH,1 is
too large to justify the assumption of weak injection K = O(γ), and the approximation
therefore becomes inaccurate (see blue shaded areas in Figs. 3.16(a) and (b)).

Figure 3.16(b) depicts the frequency detuning of the critical Hopf point ∆νH,c
inj ≡

κδωH,c/π (blue solid line) and the frequency detuning of the zero-Hopf point ∆νZH,1
inj ≡
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3.8. Hopf bifurcation lines for weak injection

approximation K small
breaks down

Figure 3.16.: (a): Critical injection strength, below which now Hopf bifurcation can occur KH,c (solid
blue line), and injection strength of zero-Hopf point for positive detuning KZH,1 as a function of

the α-factor. (b): Frequency detunings at Hopf line for KH,c denoted by ∆νH,c
inj (solid blue line)

and frequency detuning at zero-Hopf point labeled by ∆νZH,1
inj (red dashed line) as a function of

α. Blue shaded areas denote α-values at which the analytic approximation for the zero-Hopf point
(Eq. (3.162)) breaks down. (c) and (d): Same as (a) and (b), but for fixed α = 2.0 and variable
pump current J (normalized to the threshold value of the solitary laser Jth). Parameters: reference
rates. (a) and (b): J = 1.5Jth. (c) and (d): α = 2. Other parameters as in Table 2.3.
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3. Quantum dot laser under optical injection

κδωZH,1/π (red dashed line) as functions of the α-factor. Both coincide for α = 1. For
larger values of the α-factor, ∆νZH,1

inj increases nearly linearly with α. In contrast, ∆νH,c
inj

decreases, which again reflects the progressive bending of the Hopf line towards zero
detuning.

Figures 3.16(c) and (d) depict KH,c (blue solid line) and KZH,1 (red dashed line) as

well as ∆νH,c
inj (blue solid line) and ∆νZH,1

inj (red dashed line) for α = 2 as functions of the
pump current J , which is normalized to the threshold current Jth. From Eqs. (3.159)
and Eqs. (3.162), it can be seen that all four quantities depend linearly on ΓRO, which
explains their nearly linear increase with the pump current. Thus, both, the ZH1 and
the critical Hopf point shift with the pump current to higher values of K and ∆νinj. This
yields an increase of the phase-locking region, where stable cw operation of the laser is
observed and agrees well with the numerical results of Subsection 3.3.3 (cf. Fig. 3.8).

3.8.7. "Matching" of asymptotic expansions for Hopf lines

To complete the analytic discussion, this subsection points out that the analytical ex-
pression (3.81) for the Hopf bifurcation lines for strong injection (K = O(

√
γ) and

∆νinj = O(
√
γ)) that was derived in Section 3.8.5, and the expression (3.156) for the

Hopf bifurcation lines derived in this section under the assumption of weak injection
(K = O(γ) and ∆νinj = O(γ)) have a common limit.

Under the assumption of strong injection, k̃ scales like the RO frequency ωRO =
O(

√
γ). Taking the limit of weak injection thus means to study the Hopf bifurcation

lines of Eq. (3.81) in the limit k̃/ωRO → 0+, which yields

δωH(k̃) = ± k̃

2

∣
∣2k̃2 + (ωRO)2(1− α2)

∣
∣

(

k̃2
[

k̃2 + (ωRO)2
]

+ (1 + α2) (ω
RO)4

4

)1/2

k̃

ωRO→0+

−→ ±k̃

(
α2 − 1√
α2 + 1

)

.

(3.163)
Further, under the assumption of weak injection k̃ scales like the RO damping ΓRO =
O(γ), and the limit of strong injection is performed by assuming ΓRO/k̃ → 0+. The
Hopf bifurcation lines of Eq. (3.156) simplify as

δωH(k̃) =
4αΓRO

1 + α2
± |α2 − 1|√

1 + α2

√

k̃2 − 4(ΓRO)2

1 + α2

ΓRO

k̃
→0+

−→ ±k̃

(
α2 − 1√
α2 + 1

)

. (3.164)

Both, Eq. (3.163) and Eq. (3.164), yield the same limiting expression. Furthermore,
since the injection strength and detuning for the ZH1 point (Eq. (3.162)) as well as for
the critical Hopf point (Eq. (3.159)) scale linearly with ΓRO, both tend to the origin of
the (k̃,δω)-plane in the limit of strong injection. This matches well with the observation
that under the assumption of strong injection the zero-Hopf point is located at the origin
of the (k̃,δω)-plane (cf. Eq. (3.83)). Eventually, the expressions for the frequency of the
limit cycle born in the Hopf bifurcation (see Eq. (3.71)) simplifies in the limit of weak
injection (k̃/ωRO → 0) to the expression ωH = ωRO obtained for weak injection (see
Table 3.2).

100



3.9. Comparison to numerical path continuation

3.9. Comparison to numerical path continuation

The asymptotic approximations for saddle-node and Hopf bifurcation lines as well as
for the zero-Hopf and critical Hopf points (see Table 3.2) derived in the last sections
are now compared to the results from the numerical path continuation. Figure 3.17
depicts saddle-node and Hopf bifurcation lines in the (K,∆νinj)-plane for the reference
rates (upper row), the slow rates (middle row), and the very fast rates (lower row),
respectively. The left column shows the full bifurcation diagram, while the right column
depicts detail magnifications close to the zero-Hopf point for positive detuning, which is
labeled by ZH1. Green and gray lines denote numerically calculated Hopf and saddle-
node bifurcation lines, respectively, and super- and subcritical lines are denoted by
thick solid and thin dashed lines, respectively. The black dash-dotted lines mark the
approximations for the saddle-node lines given by Eq. (3.153). Figure 3.17 corresponds
to Fig. 3.15 discussed in Subsection 3.7.5, with the difference that now the Hopf lines
for small K close to the ZH1 point are approximated by the analytical expressions of
Eqs. (3.156) (thick solid red lines), which were obtained under the assumption of weak
injection. In the left panel of Fig. 3.17, only supercritical parts of the analytical Hopf
lines are depicted for clarity. In the blowups of the right panel of Fig. 3.17, in addition,
the subcritical parts of the Hopf lines are depicted by thin dashed red lines. For high K,
the analytical expressions for the Hopf lines of Eq. (3.81), Eq. (3.93), and Eq. (3.107b),
have been used, which were obtained for reference, slow, and very fast rates, respectively,
under the assumption of strong injection. The different approximations for the Hopf lines
were matched at their intersection points.

The limit of weak injection permits to obtain expressions for the ZH1 point (see
Eq. (3.162)) (red diamonds) as well as for the critical Hopf point (see Eq. (3.159))
(vertical dashed red lines in blowups of the right column of Fig. 3.17). The good corre-
spondence of the numerically calculated zero-Hopf points (green diamonds) and critical
Hopf points with their analytical approximations permits to conclude that for low in-
jection strengths, the RO damping ΓRO is an important parameter, because both, the
ZH1-point and the critical Hopf point, scale linearly with ΓRO. The RO damping ΓRO is
in turns crucially influenced by the band structure as discussed in Subsections 3.8.2 and
3.8.3. Thus, for low injection, the special Coulomb scattering dynamics of QD lasers
strongly influences the locking region.

The small mismatch of the numerically calculated ZH1 points and their analytical
approximations mainly results from the deviations of the analytical approximations of
the saddle-node lines (black dash-dotted lines) from the numerical saddle-node lines (gray
lines). Since the injection strengths of the ZH1-points KZH,1 increases linearly with ΓRO,
the mismatch increases from the very fast (Fig. 3.17(f)) over the slow (Fig. 3.17(d)) to
the reference rates (Fig. 3.17(b)). For the same reason, the injection strengths of the
critical Hopf point KH,c decreases from reference, over slow to the very fast rates, which
can be seen by comparing the red vertical dashed lines labeled KH,c in Figs. 3.17(b),
(d), and (f), respectively.
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blowups close to ZH1reference rates

slow rates

very fast rates

Figure 3.17.: Left column: Saddle-node (gray) and Hopf lines (green) from numerical path continuation
and their complete analytical approximations that are valid for strong and weak injection (black
dash-dotted lines denote saddle-node and red lines denote Hopf bifurcations, respectively) in a plane
spanned by injection strength K and frequency detuning ∆νinj for reference rates (upper row), slow
rates (middle row), and very fast rates (lower row), respectively. Super- and subcritical bifurcation
lines are denoted by solid thick and thin dashed lines, respectively. For clarity, only supercritical parts
of analytical Hopf lines are shown. Numerical and analytical codimension-2 zero-Hopf (fold-Hopf)
points are labeled by green and red diamonds, respectively. Right column: Blowups close to upper
zero-Hopf point labeled ZH1 in (a), (d), and (d). Here, also the subcritcal parts of the analytical
Hopf lines are depicted by thin dashed red lines. Parameters: α = 0.9, J = 1.5Jth, and other
parameters as in Table 2.3.
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3.10. Effective damping

In this section, it is discussed how the optical injection influences the effective damping
within the phase-locking tongue. Therefore, the injection strength is fixed to its value
for the critical Hopf point K = KK,c, and the frequency detuning ∆νinj is varied between
the two v-shaped saddle-node bifurcation lines emerging from the origin of the K,∆νinj-
plane. Figure 3.18 depicts the numerically calculated saddle-node and Hopf bifurcation
lines and their analytical approximations in the (K,∆νinj)-plane for the reference rates
and for weak injection (see Fig. 3.17(b)). The injection strengths of the numerically
calculated critical Hopf point K = Knum

H,c and its analytical approximation of Eq. (3.158)
K = KH,c are indicated by a vertical dashed green line and a vertical dashed red line, re-
spectively. At first, the turn-on dynamics of the laser under optical injection is discussed

critical Hopf 

critical Hopf 

(a)

(b)

(c)
(d)

(e)

H

Figure 3.18.: Numerically calculated saddle-node and Hopf bifurcation lines and their analytical ap-
proximations in the (K,∆νinj)-plane as in Fig. 3.17(b). The injection strengths of the numerically
calculated critical Hopf point (green dot) and its analytical approximation (red dot) are indicated by
a vertical dashed green line labeled Knum

H,c and vertical dashed red lines labeled KH,c, respectively.
Numerically calculated limit-points (saddle-node bifurcation points) (open circles) for K = Knum

H,c are
labeled by LP num

1 and LP num
2 , and their analytic approximations for K = KH,c are labeled by LP1

and LP2. Labels (a)–(e) indicate values of ∆νinj, at which time series and phase-space projections
are shown in Fig. 3.19. Parameters: reference rates, α = 2, J/Jth = 1.5, and other parameters as in
Table 2.3.

along the line K = Knum
H,c for four different values of the frequency detuning ∆νinj labeled

by (a)–(d) in Fig. 3.18. Therefore, time-series of the photon number Nph (left column)
and projections onto the complex Ẽ-plane (right column) are depicted in Fig. 3.19. Sta-
ble fixed points are denoted by dots in the phase portraits. Figure 3.19(a) depicts the
turn-on dynamics close to the saddle-node point for positive detuning LP num

1 . The turn-
on damping is strongly reduced compared to the solitary laser (gray dash-dotted lines).
At the critical Hopf point labeled by a green dot in Fig. 3.18, the RO damping ΓRO is
compensated by the injection and the trajectory decays to a stable limit cycle, which is
indicated by a black dashed line in the phase space projection of Fig. 3.19(b). Going
from the critical Hopf point down to negative values of the detuning ∆νinj, the effective
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3. Quantum dot laser under optical injection

(a)

(b)

(c)

(d)

Figure 3.19.: Time series of the photon number Nph (normalized to the steady state value of the solitary
laser N0

ph) for injection strength of the numerically calculated critical Hopf point K = Knum
H,c (left

column) and projections of the trajectory onto a plane spanned by the components Ẽx and Ẽy of

the complex field amplitude Ẽ (right column). Stable steady states are denoted by dots in the
phase space projections. Gray dash-dotted lines in (a) and (c) indicate the turn-on of the solitary
laser (K = 0). (a): Turn-on close to saddle-node line for positive detuning ∆νinj = 0.95GHz . (b):

Turn-on close to critical Hopf point for ∆νZH,1
inj = 0.85GHz . The black dashed line denoted the stable

limit cycle. (c): Turn-on for maximal effective RO damping at ∆νinj = −0.74GHz . (d): Turn-on
close to saddle-node line for negative detuning ∆νinj = −0.74GHz . The black dashed lines depict the
stable limit cycle beyond the saddle-node line for ∆νinj = −0.77GHz . Parameters: reference rates,
α = 2.0, J = 1.5Jth, K = KH,c, and other parameters as in Table 2.3.
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3.10. Effective damping

damping increases and eventually reaches a maximum at the point labeled by (c) in
Fig. 3.18. From Fig. 3.19(c), it can be seen that this yields a stronger RO damping in
the time trace of Nph and a deformation of the trajectory in phase space compared to the
solitary laser (gray dash-dotted line). Eventually, in Fig. 3.19(d), the turn-on process
close to the saddle node point for negative detuning (LP num

2 ) is depicted (see label (d)
in Fig. 3.18). The turn-on damping is decreased with respect to Fig. 3.19(c), but it is
still higher than for the solitary laser. Time series and phase space projection reveal the
ghost of the limit cycle, which is born in a saddle-node infinite period bifurcation at the
saddle-node line. The limit cycle close to the saddle-node line (see label (e) in Fig. 3.18)
is depicted by black dashed lines in Fig. 3.19(d).

Next, we discuss the expression for the effective turn-on damping
(
Γeff
)

− given by

Eq. (3.155). To derive an expression for Γeff at the saddle-node lines, Eq. (3.155) is
rewritten as

(
Γeff
)

−
δω 6=0
= ΓRO − αδω

1 + α2

[

1± (1− α2)

2αδω

√

(1 + α2)k̃2 − δω2

]

, (3.165)

where δω 6= 0 was assumed in the equality. At the saddle-node bifurcation lines, the
square root in Eq. (3.165) vanishes, and the effective damping reads

(
Γeff
)sn

− ≡ ΓRO − αδωsn,±
1 + α2

= ΓRO ∓ αk̃√
1 + α2

, (3.166)

where in the last equality the expression (3.153) for the detuning at the saddle-node lines
δωsn,± was used. The above equation reveals that the effective RO damping is smaller
than the RO damping of the solitary laser ΓRO at the upper saddle-node line, and that
it is larger at the lower saddle-node line. This is in agreement with the numerical
turn-on behavior depicted in Figs. 3.19(a) and (d), and with experimental results for
semiconductor class B QW lasers [JIN06, LAU09a, KEL12a].

However, formula (3.165) cannot explain why the turn-on damping is larger for ∆νinj =
−0.56GHz (see Fig. 3.19(c) and label (c) in Fig. 3.18) than directly at the saddle-
node line (see Fig. 3.19(d) and label (d) in Fig. 3.18). To understand this, remember
that for the reference rates, in addition to the complex conjugate eigenvalues, a third
real eigenvalue has a non-zero contribution in O(ǫ) (see Subsection 3.8.1). This real
eigenvalue influences the turn-on process, which will be discussed in the following. For
the lasing fixed point, i.e., for the stable focus, the real eigenvalue is given by (see
Eq. (3.135))

(σr)− ≡ −
√

(1 + α2)k̃2 − δω2. (3.167)

From the above equation, it can be seen that for the solitary laser (k̃ = 0 and δω = 0)
the real eigenvalue is zero, and the effective damping is thus determined only by the
RO damping ΓRO. Further, the saddle-node lines are determined by a zero of the real
eigenvalue, thus also the expressions (3.166) for the damping at the saddle-node lines
(
Γeff
)sn

− are exact. Further, we found in Subsection 3.8.3 that for the slow rates the real

eigenvalue is, also under injection, zero in O(ǫ), and the effective RO damping is thus
approximated analytically by

(
Γeff
)

−.
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3. Quantum dot laser under optical injection

However, in the case of the reference rates, the real eigenvalue influences the effective
RO damping. If this eigenvalue is much larger than the real parts of the complex
conjugate eigenvalues, the trajectory rapidly decays towards the plane spanned by the
eigenvectors of the complex conjugate eigenvalues, where it spirals towards the lasing
fixed points. The spiraling motion in the eigenspace of the complex conjugate eigenvalues
translates into the damped ROs of the time trace of Nph, and the damping is well
described by

(
Γeff
)

−. However, if the real eigenvalue has the same order of magnitude
than the real parts of the complex conjugate eigenvalues, the spiraling motion takes
place in a hyper-plane spanned by the eigenvectors of all three eigenvalues. In the time
trace of Nph, this yields the stronger turn-on damping, and the "crawling" to the lasing
fixed point observed in Fig. 3.19(c).

The frequency detunings δωint
± , at which the real eigenvalue and the real parts of the

complex conjugate eigenvalues have the same magnitude, may be calculated by equating
the absolute value of the right-hand side of Eq. (3.167) to the expression of

(
Γeff
)

− of

Eq. (3.165), which yields

δωint
± ≡ 4αΓref

1 + 9α2
± (1 + 3α2)

[

k̃2 + 9k̃2α2 − 4
(
ΓRO

)2
] 1

2
. (3.168)

Figure 3.19(c) depicts time trace and phase space projection at this point.
To see how good the analytic expressions for the eigenvalues approximate the eigen-

values of the full system, the dependence of the eigenvalues on the frequency detuning
∆νinj within the phase-locking tongue is depicted in Fig 3.20. The numerical eigenvalues
were calculated along K = Knum

H,c , i.e., along the vertical green dashed line in Fig. 3.18,
and their analytical approximations are evaluated for K = KH,c, i.e., along the vertical
red dashed line in Fig. 3.18. Figures. 3.20(a) and (b) depict real and imaginary parts of
the eigenvalues, respectively, for the reference rates, and Figs. 3.20(c) and (d) depict real
and imaginary parts of the eigenvalues for the slow rates, respectively. The eigenvalues
are depicted with respect to physical time t. Thus, the analytical expressions for the
real eigenvalue and the complex conjugate eigenvalues are given by (σ̃r)− ≡ 2κ(σr)− (see
Eq. (3.167)) and (σ̃c)− ≡ −Γeff

RO± iωref
RO with Γeff

RO ≡ 2κΓeff (see Eq. (3.154)), respectively.
Thick solid red lines and thick green dash-dotted lines denote the analytically calculated
real eigenvalues and the complex conjugate eigenvalues, respectively, while thin lines de-
note the numerically calculated eigenvalues. The full set of dynamical equations (3.12)
has five dimension. (The carrier conservation (2.9) reduces its dimensionality by one.)
Depicted are only four eigenvalues denoted by σ̃i for i ∈ {1, 2, 3, 4}, because the real
part of the fifth eigenvalue is much larger, and does not influence the damping. Ana-
lytically calculated saddle-node points (LP1 and LP2) and the critical Hopf points (H)
are denoted by black open circles red dots, respectively. The numerically calculated
saddle-node points are labeled by LP num

1 and LP num
2 , and the numerically calculated

critical Hopf points are not shown, because they nearly coincide with their analytic ap-
proximations. The analytic approximation for the width of the locking tongue, which is
given by the distance of LP1 and LP2, is larger than the numerically calculated widths
(distance between LP num

1 and LP num
2 ), because the analytically calculated critical in-

jection strengths KH,c is higher than the numerical one (see distance between vertical
dashed lines in Fig. 3.18), and the width of the locking tongue increases with K. For
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3.10. Effective damping

Figure 3.20.: Real parts (a) and imaginary parts (b) of the eigenvalues vs. detuning ∆νinj as obtained
for the reference rates. Thick lines denote the analytic approximations of the eigenvalues, while thin
lines mark the eigenvalues of the full system labeled σ̃i for i ∈ {1, 2, 3, 4}. Same colors denote same
eigenvalues. The analytically calculated critical Hopf point and limit-points (saddle-node bifurcation
points) are labeled by H and LP1 and LP2, respectively. Numerically calculated limit-points are
labeled LP num

1 and LP num
2 . Stars mark intersection points of the analytical expressions for the real

eigenvalue σ̃r and the real parts of the complex conjugate eigenvalues −Γeff
RO (see Eq. (3.168)). The

gray dashed line labeled Γref
RO marks the damping of the solitary laser. (c)–(d): Same as (a)–(b) but

for the slow set of scattering rates. Parameters: α = 2, J/Jth = 1.5, K = KH,c, and other parameters
as in Table 2.3.
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3. Quantum dot laser under optical injection

the reference and the slow rates, the analytical expression (3.165) for
(
Γeff
)

− (thick red

lines) agrees well with the real parts of the numerically calculated eigenvalues (thin red
lines). In contrast, the analytical approximations for the imaginary parts of the com-
plex conjugate eigenvalues yield only the constant RO frequencies ωref

RO and ωS
RO of the

solitary laser for reference and slow rates, respectively. They do not permit to describe
the increase of the RO frequency with the distance from the critical Hopf point (see
Fig. 3.20(b) and (d)). For the reference rates, the absolute value of the real eigenvalues
is overestimated (thick dash-dotted green line), and it is zero for the slow rates. In
Fig. 3.20(a) the points, at which real and complex conjugate eigenvalues have the same
real parts, are labeled by white stars.

In summary, for the slow rates, the effective damping of the QD laser under injection
is well described by the expression (3.165) for

(
Γeff
)

−. It reveals that the RO damping

of the solitary laser ΓRO is diminished by the injection close to the upper phase-locking
boundary and enhanced close to the lower phase-locking boundary. This is in good
agreement with earlier observations for class B QW lasers [JIN06, LAU09a, KEL12a].
Furthermore, the increase off Γeff across the locking-tongue explains why the subcritical
part of the Hopf line in Fig. 3.2 bends towards higher injection strengths. (The Hopf line
marks the points in phase-space where Γeff = 0.) For the reference rates and frequency
detunings close to the lower phase-locking boundary, the turn-on of the QD laser under
injection is additionally influenced by the real eigenvalue.

3.11. Conclusion

In the beginning of this chapter the rich dynamics of QD lasers subject to optical injec-
tion has been investigated by direct numerical integration and path continuation tech-
niques. Codimension-two zero-Hopf points have been identified as organizing centers
of the dynamics [WIE99, WIE05a, ERN10b]. Furthermore, it has been observed that
regions with complex dynamics are suppressed by small phase-amplitude coupling (low
α-factors), fast carrier exchange between the QDs and the carrier reservoir, and high-
pump currents. From Chapter 2, we know that fast carrier scattering as well as high
pump current enhance the RO damping of the laser. The asymptotic analysis of this
chapter reveals that α-factor and RO damping are the main parameters that determine
the saddle-node and Hopf lines limiting the locking tongue as well as the position of the
zero-Hopf point for positive detuning and the critical injection strength, below which no
Hopf bifurcation can occur. This explains why QD lasers with a low phase-amplitude
coupling and strongly suppressed ROs have a higher dynamical stability under optical
injection than QW lasers [ERN10a, KEL11c, PAU12].
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CHAPTER

FOUR

QUANTUM DOT LASER WITH EXTERNAL FEEDBACK

4.1. Introduction

One particularity of semiconductor lasers is their low tolerance to optical feedback, which
can be of disadvantage for technological applications. For example, to use semiconductor
lasers as transmitters in optical networks, expensive optical isolators are needed to avoid
back reflections that can lead to temporal instabilities of the lasers (coherence collapse).
However, there are also several applications that take advantage of the rich dynamics
induced by optical feedback. For instance, feedback induced chaos can be used for
secure chaos communication and chaos key distribution [FIS00, HEI02a, VIC04, ARG05,
VIK07, KIN10]. Furthermore, short optical feedback in an integrated multi-section laser
has been used to significantly improve the modulation bandwidth of a directly modulated
laser [RAD07].

Moreover, from a dynamical system point of view, semiconductor lasers subject to
optical feedback are of high interest, because the optical feedback introduces a de-
lay into the system. The delay in turn induces a high dimensionality, which results
in a rich phenomenology, ranging from multistability, bursting, intermittency, irreg-
ular intensity dropouts (low-frequency fluctuations LFFs), and fully developed chaos.
A review focusing on laser instabilities is given in [TAR98a]. Semiconductor lasers
have also been employed to demonstrate the stabilization of steady states (cw emis-
sion) or periodic oscillations (self pulsations) by non-invasive time delayed feedback
control [SCH06a, FLU07, DAH07, DAH08b, FIE08, DAH10] (see [SCH07, SCH09a]
for an overview). Further, delay synchronization of coupled lasers [HIC11], and net-
works of delay coupled lasers [DAH11b, DAH12] as well as bubbling in coupled lasers
[FLU09, FLU10] have been investigated. A recent review summarizing the dynamics
and the applications of delay coupled lasers is given in [SOR13].

QD lasers display a higher dynamical stability with respect to optical feedback [SU03,
HUY04, OBR03a, CAR06a, CAR05] than conventional QW semiconductor lasers. This
allows QD laser transmitters to operate without expensive optical isolators [CAR06a].
Furthermore, due to their increased dynamical stability, the route to chaos can be ob-
served in QD lasers more clearly. The improved performance of QDs under optical
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4. Quantum dot laser with external feedback

feedback has been linked to an increased RO damping and a reduced phase-amplitude
coupling [HUY04, OTT10, OTT12a, GLO12].

In this chapter, the QD model described in Chapter 2 is extended to take into ac-
count optical feedback from a distant reflector. Therefore, a semiclassical field equation
of Lang-Kobayashi (LK) type [LAN80b] is combined with the microscopically based ma-
terial model described in Section 2.2. The LK-model is widely used for a simplified
theoretical description of semiconductor lasers optically coupled with a distant reflector
(see [KAN05] for a review). The basic setup is sketched in Fig. 4.1. The field in the

Figure 4.1: Schematic setup of the
QD laser device with delayed opti-
cal feedback from an external mir-
ror. The electrical field amplitude E
taken at a time t− τ delayed by the
external cavity round trip time τ is
coupled back into the laser multi-
plied with the feedback strength K
and rotated by the external cavity
phase C.

laser is modeled by a single complex equation for the slowly varying field amplitude
E(t). A part of the emitted light is reflected from the distant mirror and coupled back
into the laser with feedback strength K, rotated by the feedback phase C, and delayed
by the roundtrip time of the light in the external cavity τ . Multiple reflections of the
light in the external cavity are neglected, which restricts the validity of the model to
low feedback strengths [TAR95a]. Further, the laser is treated as a point emitter with
no spatial extensions, i.e., the roundtrip time of the light in the laser τin is neglected.
Therefore, the model is only valid for delay times τ that are long compared to τin.
As a consequence, for high injection strengths and very short optical feedback, as it is
the case for integrated multi-sections devices, finite-difference traveling wave models are
better suited to obtain a quantitative agreement with experiments [KAN05, RAD07].
Further, in this LK-models the phase-amplitude coupling is modeled by a constant α-
factor. More sophisticated modeling approaches reveal that for QD lasers the α-factor is
problematic [LIN12b], because it cannot account for the independent dynamics of reso-
nant charge carries in the QDs and non-resonant charge carriers in the carrier reservoir
[MEL06, LIN12a] and eventually neglects a degree of freedom of the dynamics. It was,
however, shown that QD laser models based on a constant α-parameter still yield reliable
results as long as only the transition between stable and unstable behavior, i.e., saddle-
node and Hopf bifurcations are considered [LIN12a, LIN12b]. Further, more complex
modeling approaches reveal that the dynamics of QD lasers is rather more stable than
described by models with constant α-factor [LIN13]. In the framework of the present
simple modeling approach, this is taken into account by choosing small values of the
α-factor.
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4.2. Model

This modeling approach is, on the one hand, detailed enough to study the impact
of the band structure on the instability regions, and, on the other hand, the model is
simple enough to permit analytical insight. Thus, an expression for the critical feedback
strength, below which the laser is guaranteed to be stable is derived, which directly re-
veals the impact of the band structure and the phase amplitude coupling on the stability
of the laser.

This chapter is organized as follows. After introducing the model in Section 4.2, the
structure of basic solutions, which form the "backbone" of the dynamics are discussed
in Section 4.3. Then, the impact of the α-factor and the band structure on the dynam-
ics of the laser is studied numerically in Sections 4.4 and 4.5. As mentioned before,
the feedback tolerance of the laser is crucial for technological applications. Therefore,
in Section 4.6, an analytic formula for the first Hopf bifurcation marking the stability
boundary is derived and compared with the results of numerical simulations. In Sec-
tion 4.8, the excitability of the laser subject to feedback is discussed, and coherence
resonance close to a homoclinic bifurcation and close to a crisis of a chaotic attractor is
analyzed, before eventually summarizing in Section 4.9.

4.2. Model

Extending the microscopically based rate equation model for the solitary QD laser of
Chapter 2 by the terms modeling the delayed optical feedback, the model equations read
[OTT10, OTT11, OTT12a]

E ′(t′) =
1 + iα

2

[

g(ρe + ρh − 1)− 1
]

E(t′) + K

2κτin
e−iCE(t′ − τ), (4.1a)

ρ′e = γ
[

sine (1− ρe)− soute ρe − rw(ρe + ρh − 1)
∣
∣E
∣
∣
2 − ρeρh

]

, (4.1b)

ρ′h = γ
[

sinh (1− ρh)− south ρh − rw(ρe + ρh − 1)
∣
∣E
∣
∣
2 − ρeρh

]

, (4.1c)

W ′
e = γ

[

J − sine (1− ρe) + soute ρe − cWeWh

]

, (4.1d)

W ′
h = γ

[

J − sinh (1− ρh) + soute ρh − cWeWh

]

. (4.1e)

Here, ( · )′ denotes the derivative with respect to dimensionless time t′ ≡ 2κt, and the
optical feedback is expressed by the last term of the field equation (4.1a). This corre-
sponds to the well established Lang-Kobayashi model [LAN80b]. The light is coupled
back into the device with the dimensionless feedback strength K and the feedback phase
is given by C ≡ ωthτ , where ωth is the frequency of the solitary laser at lasing threshold.
The dimensionless external delay time is denoted by τ (see Fig. 4.1). Although being
completely determined by ωth and τ , the feedback phase C is treated as an independent
parameter since small variations of the external cavity length cause a variation of the
phase C over its full range [0, 2π] while the external roundtrip time τ is hardly affected
by these fluctuations. This is a well established procedure in the analysis of semiconduc-
tor lasers subject to optical feedback [HAE02, HEI03a, GRE09a, OTT12]. Hence, we
always consider C as a free parameter throughout this chapter. The equations for the
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4. Quantum dot laser with external feedback

subsystem of the carriers are the same as for the solitary QD laser. In its dimensionless
form, it has been introduced in Subsection 2.3. As introduced in Eq. (2.7), the time
scale separation between the subsystems of the photons and of the carriers is given by γ,
the dimensionless scattering rates are denoted by s

in/out
b (b = e for electrons and b = h

for holes), the ratio of the Einstein factors of induced and spontaneous emission is rw
and J and c denote the pump rate and the coefficient of the spontaneous emission in the
carrier reservoir, respectively. The parameter values of Table 2.3 have been used unless
stated otherwise.

4.3. External cavity modes – structure and

symmetries of basic solutions

In this section, the basic solutions of the dynamical equations (4.1) are discussed. They
organize the phase space of the system and provide a "backbone" for more complex, e.g.,
chaotic, dynamics observed in these systems [ROT07]. At first, we note that Eqs. (4.1)
are invariant under the continuous symmetry group of all rotations in the complex
plane S

1 ≡ {c̃ ∈ C with c̃ ε C|
∣
∣c̃
∣
∣ = 1}. This means that the rotation over any angle

θ = arg(c̃) of the trajectory is again a trajectory. Thus, a solution of the dynamical
equations is either S

1 invariant itself, or it is not isolated, but comes as a rotational
family parametrized by the elements of S1. Such a family of solutions

S
1 ◦
(

E , ρe, ρh,We,Wh

)t1

t0
=
{(

c̃E , ρe, ρh,We,Wh

)t1

t0

∣
∣
∣ for c ∈ S

1
}

(4.2)

is called a group orbit. It consists of all images of the trajectory starting at t0 and ending
up at t1 under all rotations of S1 [KRA00].

The S
1-symmetry is a consequence of two properties: the linearity of the field equa-

tion (4.1a) with respect to E , and the fact that only the modulus
∣
∣E
∣
∣ of the electrical

field amplitude enters into the QD carrier equations (4.1b) and (4.1c) through the pho-

ton number Nph ≡
∣
∣E
∣
∣
2

[KAN05]. The simplest solutions that are S
1 invariant are the

external cavity modes (ECMs), which are continuous wave (cw) solutions with constant
photon number N s

ph and carrier densities ρse, ρ
s
h,W

s
e ,W

s
h, and a phase φ of the electric

field amplitude E = |E|eiφ that varies linearly in time

(
E(t′), ρe(t′), ρh(t′),We(t

′),Wh(t
′)) = (

√

N s
phe

iδωst′ , ρse, ρ
s
h,W

s
e ,W

s
h), (4.3)

where the steady states of the dynamic equations (4.1) with feedback are denoted by
( · )s. Due to the slowly varying envelope approximation [HAK83a], only the slowly
varying envelope E of the full electric field

E(t) ≡ 1

2

(
E(t)eiωt + E⋆(t)e−iωt

)

is considered, where ( · )⋆ denotes the complex conjugate. As a consequence, an ECM
oscillates with the deviation δωs ≡ (2κ)−1(ω − ωth) of the lasing frequency ω from the
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4.3. External cavity modes – structure and symmetries of basic solutions

solitary laser threshold frequency ωth. Each ECM is a group orbit of the S
1-symmetry,

which means that in a projection on a hyperplane spanned by the photon number Nph

and the carrier densities it is just one point. This projection is sometimes called trace
of the ECM. That is why ECMs are often referred to as steady state solutions in the
literature. A complete discussion of the symmetries for conventional and phase conjugate
optical feedback is given in [KRA00a].

Below the lasing threshold, a "trivial" solution with E ≡ 0 is stable. At the lasing
threshold, this solution changes its stability, and ECM solutions have to be considered
[FIE08].

Inserting the ECM-ansatz of Eq. (4.3) into Eqs. (4.1), we find the following expressions
for the non-zero intensity solutions (N s

ph 6= 0)

ρsinv = −k̃ cos(δωsτ + C), (4.4a)

δωs = αρsinv − k̃ sin(δωsτ + C), (4.4b)

0 = sine (W
s
e ,W

s
h)(1− ρse)− soute (W s

e ,W
s
h)ρ

s
e − rw(ρ

s
e + ρsh − 1)N s

ph − ρseρ
s
h, (4.4c)

0 = sinh (W
s
e ,W

s
h)(1− ρsh)− south (W s

e ,W
s
h)ρ

s
h − rw(ρ

s
e + ρsh − 1)N s

ph − ρseρ
s
h, (4.4d)

0 = J − sine (W
s
e ,W

s
h)(1− ρse) + soute (W s

e ,W
s
h)ρ

s
e − cW s

eW
s
h, (4.4e)

0 = J − sinh (W
s
e ,W

s
h)(1− ρsh) + south (W s

e ,W
s
h)ρ

s
h − cW s

eW
s
h, (4.4f)

where the rescaled feedback strength k̃ ≡ K/(2κτin) has been introduced (cf. Eq. (3.13)).
Equation (4.4a) describes the impact of the feedback to the rescaled inversion ρinv =
1
2
[g(ρe + ρh − 1)− 1] (see definition in Eq. (2.5)). For the solitary laser (k̃ = 0), we

have ρ0inv = 0 and, thus, the sum of the electron and hole occupation probabilities in the
quantum dots ρ0e + ρ0h = (1 + g)/g is "clamped" to a constant value, which is the well
known effect of gain-clamping in semiconductor lasers [TAR95a] (cf. Eq. (2.25)). (Note
that the steady states of the solitary laser are marked by ( · )0.)

Taking advantage of the carrier conservation (Eq. (2.8)), we can reformulate Eq. (4.4a)
to express ρse and ρsh in terms of W s

e and W s
h

ρse =
1

2

[1 + g − 2k̃ cos(δωs + C)

g
+W s

h −W s
e

]

, (4.5a)

ρsh =
1

2

[1 + g − 2k̃ cos(δωs + C)

g
+W s

e −W s
h

]

. (4.5b)

Further, an expression for N s
ph as a function of the carrier populations can be obtained,

by inserting the sum of Eqs. (4.4c) and (4.4d) into the sum of Eqs (4.4e) and (4.4f) and
then using Eq. (4.4a) to replace the inversion ρse + ρsh − 1 = (2ρsinv + 1)/g

N s
ph =

g

rw
(
1− 2k̃ cos(δωs + C)

)
[
J − ρseρ

s
h − cW s

eW
s
h

]

≈ g

rw
(
1− 2k̃ cos(δωs + C)

)
[
J − Jth

]
, (4.6)

where we have introduced the pump current at lasing threshold Jth, which has been
defined in Eq. (2.27). Eventually, the steady states of the reservoir populations can be
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4. Quantum dot laser with external feedback

determined by inserting Eqs. (4.5) into Eqs. (4.4e) and (4.4f), and then solving self-
consistently for W s

e and W s
h. This has to be done numerically, because the scattering

rates s
in/out
e/h = s

in/out
e/h (We,Wh) are nonlinear functions of the reservoir populations We

and Wh as discussed in Section 2.2 (see also Appendix A.0.1 for fit functions of the
scattering rates).

Summing up, for given k̃ and C, at first, the frequency detunings δωs of the ECM
solutions are calculated by first inserting Eq. (4.4a) into Eq. (4.4b) and then solving
the resulting transcendental equation numerically. Together with the steady states of
W s

e and W s
h obtained by solving Eqs. (4.4e) and (4.4f) self-consistently, this permits to

calculate ρse and ρsh from Eqs. (4.5), which eventually yields N s
ph from Eq. (4.6).

In the next paragraph, expressions for the ellipse, on which the ECMs lie, and the
line, at which new pairs of ECMs are created in saddle-node bifurcations, are derived.
These expressions are in terms of δωs and ρsinv identical to the expressions that have
been derived for the LK-model. Detailed discussions of the latter can be found in the
review article of [TAR98a] or in [ROT07].

δωs,sn
−

0 δωs,sn
+

δωs

−|ρmgm
inv |

0

|ρmgm
inv |

ρ
s in
v

Figure 4.2: Ellipse of ECMs (black
dash-dotted line) in (δω,ρinv)-plane
as determined from Eqs. (4.4a) and
(4.4b). Modes and anti-Modes are
marked by filled and open dia-
monds, respectively. Pairs of ECMs
are created in saddle-node bifurca-
tions at intersection points of the el-
lipse with the blue line (Eq. (4.11))
that are marked by open circles.
The black and the red diamond
mark the lasing fixed point of the
solitary laser and the maximum-
gain mode, respectively.

By introducing the curve parameter ∆ ≡ δωsτ +C, we see that Eqs. (4.4a) and (4.4b)
are a parametric representation of a tilted ellipse in the (δω,ρinv)-plane, which is depicted
in Fig. 4.2 with a black dash-dotted line. The tilting is introduced by the argument
arctan(α) in the trigonometric functions. This situations is very similar to the one of
the injection problem1. In the latter, the two fixed points within the locking tongue
lie on an ellipse (cf. Fig. 3.12 to Fig. 4.2 and Eqs. (4.4a) and (4.4b) with Eqs. (3.17a)
and (3.17b)). The main difference is that for the feedback problem the equation for δωs

is transcendental permitting infinitely many solutions for suitable k̃, α, and τ . Further,
in the injection problem for each value of the injection strength k̃ two solutions, one
saddle and one stable node is found, while for the feedback problem only one solution
exists below a critical feedback strength k̃eff . To determine k̃eff , Eq. (4.4a) is inserted
into Eq. (4.4b)

δωs = −k̃ (α cos(δωsτ + C) + sin(δωsτ + C))

= −k̃
√
1 + α2 sin

(
δωsτ + C + arctan(α)

)
, (4.7)

1Note that ∆ corresponds to the phase Ψ in the injection problem of Chapter 3.
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4.3. External cavity modes – structure and symmetries of basic solutions

where we have used the trigonometric identities (3.20) in the second equality. The num-
ber of ECMs is given by the number of solutions of Eq. (4.7). Geometrically, solutions
of Eq. (4.7) are intersection points of the left and the right hand side of Eq. (4.7). Their
number increases with k̃, τ and α. New solutions are created pairwise if the slope of
both sides of Eq. (4.7) coincides and additionally Eq. (4.7) is fulfilled, i.e.,

df(δωs)

dδωs
= 0 ∧ f(δωs) = 0, (4.8)

where f(δωs) ≡ −k̃
√
1 + α2 sin

(
δωsτ + C + arctan(α)

)
− δωs.

Equations (4.8) are the conditions for a saddle-node bifurcation. The first condition
evaluates to

− 1

k̃eff
= cos

(
δωsτ + C + arctan(α)

)
, (4.9)

where we have defined the effective feedback strength k̃eff ≡ k̃
√
1 + α2τ mentioned above.

Equation (4.9) has solutions for k̃eff ≥ 1, and for k̃eff = 1, the first pair of ECMs is
created. The critical value k̃ = 1/(

√
1 + α2τ) decreases for increasing α, and τ , meaning

that for long delay and high α-factors, bi-stability of ECMs occurs at lower feedback
levels.

For a geometrical interpretation, it is instructive to derive a saddle-node condition
equivalent to Eq. (4.9) by taking the derivative of both sides of the first line of Eq. (4.7)
with respect to δωs

− 1

k̃τ
= cos(δωsτ + C)− α sin(δωsτ + C). (4.10)

Replacing the trigonometric functions in the above equation with the help of Eqs. (4.4a)
and (4.4b), we obtain an explicit expressions for the line in the (δω,ρinv)-plane, along
which the saddle-node bifurcations take place

ρsinv(δω
s) =

1 + αδωsτ

τ(1 + α2)
. (4.11)

Further, a representation of the ellipse of ECMs may be obtained by adding the square
of Eq. (4.4a) to the square of Eq. (4.4b)

k̃2 = (ρsinv)
2 + (αρinv − δωs)2. (4.12)

Geometrically, ECMs are created in mode-, anti-mode pairs at intersection points (open
circles in Fig. 4.2) of the ellipse (4.12) with the line (4.11) (blue line in Fig. 4.2), which
are given by

(δωs,sn
± , ρs,sninv,±) =



±1

τ

√

k̃2
eff − 1,

1± α
√

k̃2
eff − 1

τ(1 + α2)



 . (4.13)

The anti-modes (saddles) are always unstable due to destructive interference of the laser
light with the back-coupled light, while the stability of the modes (nodes) has to be
determined by a linear stability analysis. Modes and anti-modes are marked by full and
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4. Quantum dot laser with external feedback

open diamonds in Fig. 4.2, respectively. Note that the ellipse of ECMs (black dash-
dotted line) in Fig. 4.2 is obtained by varying the curve parameter ∆ = δωsτ + C in
Eqs. (4.4a) and (4.4b), while the frequency detuning δωs of modes and anti-modes is
obtained for fixed feedback phase C, fixed injection strength k̃, and fixed delay time τ
by solving the transcendental Eq. (4.7).

The most stable ECM is the maximum gain-mode (filled red diamond in Fig. 4.2)
[LEV95], which profits most from the feedback and thus has the lowest inversion. From
Eq. (4.4a), we see that it is given by the condition C + δωsτ = 0, which yields

(δωs,mgm, ρs,mgm
inv ) = −(αk̃, k̃), and Cmgm = −αk̃τ. (4.14)

Next, an expression for the saddle-node lines in the (C, k̃)-plane is derived, which
provides us with a graphical interpretation of the number of existing ECMs (see Fig. 4.3).
Therefore, we note that the saddle-node condition (4.9) implies

1

3 3

5

77

9
11

(a) (b)

Figure 4.3.: Honey-comb structure of the branches of saddle-node lines (C+
sn, C

−
sn) in the (C,k̃)-plane

for small α = 1 (a) and large α = 3 (b). Numbers give the number of ECMs in each comb. The cusp
point (Ccsp,k̃csp) is marked by a gray dot. Parameters: τ = 30, and other parameters as in Table 2.3.

sin
(
δωsτ + C + arctan(α)

)
= ±

√

k̃2
eff − 1

k̃eff
, and (4.15a)

δωsτ + C + arctan(α) = ± arccos

(

− 1

k̃eff

)

+ 2nπ, (4.15b)

where the sign in both equations is the same and n ∈ Z. Inserting Eq. (4.15a) into the
second line of the equality (4.4b), we obtain an expression for δωs as a function of k̃
that we use to eliminate δωs in Eq. (4.15b). Then, solving Eq. (4.15b) for C, provides
us with the branches of saddle-node lines C±

sn(k̃) in the (C,k̃)-plane

C±
sn(k̃) = ±

[√

k̃2
eff(k̃)− 1 + arccos

(

− 1

k̃eff(k̃)

)]

− arctan(α) + 2nπ. (4.16)
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Figure 4.3 depicts the honey-comb structure of the branches of saddle-node lines C+
sn

(blue lines) and C−
sn (green lines) in the (C, k̃)-plane for small α = 1 (Fig. 4.3(a)) and

large α = 3 (Fig. 4.3(b)) and τ = 30. For low values of k̃, only the ECM that can be
continued out of the solution for the solitary laser exists. Each time one of the saddle-
node lines is crossed by varying k̃ or C, a mode- anti-mode pair is created. Numbers
in Fig. 4.3 denote the number of ECMs in each honey-comb. The lowest point of the
saddle-node curve is a cusp point, where C+

sn and C−
sn intersect and annihilate (gray dot

in Figs. 4.3). This bifurcation point is given by

(Ccsp, k̃csp) =

(

π − arctan(α) + 2nπ,
1

τ
√
1 + α2

)

. (4.17)

4.4. Numerical stability analysis

In this section, we analyze the stability of the ECM solutions (4.3) of the dynamical
equations (4.1) and compare our findings with direct numerical simulations as well as
results from numerical path continuation methods. For the latter, the S

1-symmetry of
the ECMs has to be resolved. Otherwise, the members of the family of solutions with
different phases

{φ = δωst+ φ0 | φ0 ∈ [0, 2π]} (4.18)

cannot be distinguished, which is called φ-indeterminacy [HAE02, WOL02]. Further, it
is convenient to treat the ECMs, which are rotating waves with time-dependent phases,
as fixed points. Therefore, a transformation to a rotating frame is performed

Φ : C → C E 7→ Ee−ibt =
√

N s
phe

i(δωs−b)t+φ0 , for b ∈ R, (4.19)

where we have inserted the ECM-ansatz (4.3) in the last equality. Now, it can be seen
from Eq. (4.19) that by choosing b = δωs, the ECMs lose their time dependence. Fur-
thermore, the φ-indeterminacy can then be resolved by fixing the phase φ0. A convenient
choice is φ0 = 0 mod 2π, which implies that the ECMs are real. In Cartesian coordi-
nates Ẽ ≡ Ee−ibt = x + iy that are well suited for the numerical implementation, the
transformed field equation (4.1a) reads

x′ =
1

2

[

g
[
ρe + ρh − 1

]
− 1
]

x+ by − α

2

[

g
[
ρe + ρh − 1

]
− 1
]

y

+ k cos
(
C + bτ

)
x(t′ − τ) + k sin

(
C + bτ

)
y(t′ − τ),

y′ =
1

2

[

g
[
ρe + ρh − 1

]
− 1
]

y − bx+
α

2

[

g
[
ρe + ρh − 1

]
− 1
]

x

− k sin
(
C + bτ

)
x(t′ − τ) + k cos

(
C + bτ

)
y(t′ − τ).

(4.20)

The choice of φ0 = 0 mod 2π discussed above, which allows one to break the φ-
indeterminacy, corresponds in Cartesian coordinates to the condition y(t) = y(t− τ) =
ys = 0. Now, one can calculate the ECM solutions as fixed points of Eqs. (4.20) together
with the carrier equations (4.1b)–(4.1e) and the additional condition ys = 0. To resolve
the symmetry of solutions with a periodic modulated photon number, i.e., of limit-cycles
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4. Quantum dot laser with external feedback

created in Hopf bifurcations, other conditions have to be imposed. These are discussed
in detail in [HAE02]. For the numerical path continuation, the packages DDE-Biftool
[ENG02] and KNUT [SZA09] are used.

In this section, we study the most simple bifurcation scenario that is obtained for a
small α-factor of α = 0.9 and a short external cavity with a length of 2.4 cm , which
corresponds to a delay time of τ = 16. This yields an interesting configuration from an
experimental point of view, because QD lasers seem to have a smaller phase-amplitude
coupling than QW lasers [NEW99a].

Integrated devices consist in the simplest case of an actively pumped, inverted section
and a short passive phase-tuning section. They are of experimental interest, because
they permit, for example, to strongly enhance the cutoff frequency under small signal
modulation [RAD07]. We study the short-cavity regime as introduced by Schunk and
Petermann [SCH89h]. The authors define an external cavity as short if the product of
the RO frequency and the delay time τ is considerably less than unity. Further, this
choice of parameters yields the most simple bifurcation scenario, which will be studied in
this section before analyzing the more complex bifurcation scenarios observed for larger
α-factors in the next sections with the help of path continuation techniques. Since the

Figure 4.4: Real parts of the Flo-
quet exponents Re(σ) (solid blue
lines) of the ECM that can be fol-
lowed out of the solitary laser so-
lution in dependence of the feed-
back strength k̃. The horizontal
(black) line corresponds to the triv-
ial Floquet-multiplier (Goldstone
mode). The vertical red dash-
dotted line indicates the feedback
strength k̃H , at which the first su-
percritical Hopf bifurcation occurs.
Parameters: α = 0.9, τ = 16,
C = π, other parameters as in Ta-
ble 2.3. Modified from [OTT12].

optical equation (4.1a) for the electrical field amplitude is a delay differential equations,
each mode has infinitely many eigenvalues. Their real parts rise from minus infinity
with increasing feedback strength. In Fig. 4.4, the real parts of the eigenvalues of the
first ECM (the one that can be followed out of the solution for the solitary laser) are
plotted over the feedback strength k̃. The transcendental characteristic equation has
been solved numerically. At a critical feedback strength k̃H = 0.041 (red dash-dotted
lines in Fig. 4.4 and in Fig. 4.5), the leading eigenvalue crosses the real axis and the mode
becomes unstable in a supercritical Hopf bifurcation leading to a more complex solution
with periodically modulated photon number. In the short cavity regime for τ = 16 and
for small α = 0.9, the laser displays only one instability region in dependence of the
feedback strength k̃, which will be discussed in the following.

In the upper panel of Fig. 4.5, the bifurcation diagram of Nph as a function of k̃ is
plotted with red dots. Here, we plot the local extrema of Nph for each value of k̃ after
transients died out. Additionally, the photon population N s

ph of the stable parts of the
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4.4. Numerical stability analysis

first and the second ECM given by Eq. (4.6) are indicated by filled circles. The middle

Figure 4.5: Upper panel: Bifurca-
tion diagram of the photon num-
ber Nph (red points) in dependence

of the rescaled feedback strength k̃.
Filled circles are steady state values
of Nph of the stable ECMs. Mid-
dle and lower panel: Frequency
deviations δωs and carrier inversion
Ninv of the ECMs in dependence
of k̃. Stable and unstable ECMs
are indicated by filled and open cir-
cles, respectively. Vertical black
dashed lines labeled (a) to (f) mark
k̃-values, at which time series and
phase space projections are shown
in Fig. 4.6 and Fig. 4.7, respectively.
The feedback strength of the first
supercritical Hopf bifurcation is la-
beled k̃H (vertical red dash-dotted
line). Parameters: Reference rates,
J = 2Jth, α = 0.9, τ = 16, C =
π, and other parameters as in Ta-
ble 2.3. Modified from [OTT12].

panel shows the frequency deviations δωs of the ECMs and in the lower panel the carrier
inversion ρinv of the ECMs is plotted as a function of k̃. Stable modes are indicated by
filled and unstable modes by open circles. Vertical black dashed lines labeled by (a) to
(f) indicate k̃-values, at which time series and phase space projections are presented in
Fig. 4.6 and Fig. 4.7, respectively.

In Fig. 4.7, the trajectory (red solid line) is projected onto a plane spanned by the
frequency deviations and the carrier inversion. In this projection, the ECMs appear
as points. For more complex solutions with non-constant frequency δωs, we plot the
frequency deviations averaged over one external cavity round trip time τ given by (φ−
φτ )/τ . The ECMs lie on the ellipse described by Eq. (4.12) (black dashed line in Fig. 4.7).
On the blue dash-dotted line in Fig. 4.7, saddle-node bifurcations take place (Eq. (4.11)).
Note that the saddle-node line and the ellipse of the ECM are plotted as functions of the
curve parameter ∆ = δωsτ + C, while the ECMs and the trajectories of more complex
solutions are only plotted for the fixed value C = π of the feedback phase. For this value
of C, the saddle-node bifurcation takes place at a feedback strength k̃ = 0.08955 (see
Fig. 4.5 middle and lower panel). Also in Fig. 4.7, stable ECMs are indicated by filled
circles. The filling color corresponds to the color-code of the stable modes in Fig. 4.5
and Fig. 4.6. Unstable ECMs, modes as well as anti-modes, are indicated by gray open
circles.

At k̃ = 0, the first ECM is stable. With increasing k̃, its frequency and its carrier
inversion shift. This is why in Fig. 4.7(a), the ECM is not located at the origin (see also
black dashed line labeled (a) in Fig. 4.5). At k̃H = 0.0041 (red dash-dotted line in Fig. 4.4
and Fig. 4.5), the first ECM becomes unstable in a super-critical Hopf bifurcation. The
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Figure 4.6.: Time series for selected values of the rescaled feedback strength k̃. Feedback strengths in
(a) to (f) correspond to black dashed lines labeled (a) to (f) in Fig. 4.5. In (e), the time between
two consecutive pulse packages is labeled by TISI. Parameters: Reference rates, J = 2Jth, α = 0.9,
τ = 16, C = π, other parameters as in Table 2.3. Modified from [OTT12].

Figure 4.7.: Phase space projections of the trajectory (red solid line) onto planes spanned by the fre-
quency deviation δωs and the inversion ρinv for selected values of the rescaled feedback strength k̃.
The stable and unstable ECMs are indicated by filled circles and open gray circles, respectively. The
color code of the stable ECMs is the same as in Fig. 4.5. The ECMs lie on the ellipse given by
Eq. (4.12) (black dashed line). The blue dash-dotted line is the saddle-node line (Eq. (4.11)). Figures
(a) to (f) correspond to black dashed lines labeled (a) to (f) in Fig. 4.5. Parameters: Reference
rates, J = 2Jth, k = 0.9, τ = 16, C = π, and other parameters as in Table 2.3. Modified from
[OTT12].
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time series displays self-sustained intensity pulsations (see Fig. 4.6(b)) with the frequency
of the ROs, as it is expected for higher pump-currents [LYT97]. The bifurcation diagram
for k̃ > k̃H shows two branches that scale like the square root of the distance from the
bifurcation point (Fig. 4.5 upper panel). This is the signature of a Hopf bifurcation
[KUZ95]. In phase space, the intensity pulsations correspond to a periodic motion on
a delay-induced limit cycle. The Hopf bifurcation is followed by a cascade of period-
doubling bifurcations leading to chaos. In Fig. 4.6(b) (black dashed line (b) in Fig. 4.5),
we see the time series after the first bifurcation of this cascade has taken place. The
time series now consists of two oscillations with slightly different peak heights. The
corresponding phase space projection in Fig. 4.7(b) depicts a motion on a two-fold limit
cycle. For increasing k̃, the system becomes chaotic. The small chaotic region is followed
by a large periodic window ranging from k̃ = 0.051 to k̃ = 0.082. For larger k̃-values,
the laser becomes chaotic again. The chaotic region is interrupted by small windows of
frequency locking. Time series and phase-space projection of such a frequency locked
solution is depicted in Fig. 4.6(c) and Fig. 4.7(c), respectively (black dashed line (c) in
Fig. 4.5). The time series depicts regular intensity pulsations with the RO frequency.
In the phase space projection, we note that the attractor has become larger: indeed the
trajectory does not only surround the unstable first ECM, as it did at the beginning of
the bifurcation cascade (Fig. 4.7(b)), instead it already starts to wind around the point
in the phase space, where a new pair of ECMs appears at higher values of k̃ [KRA02b].
The winding in the phase space corresponds to the damped ROs in the time series. In
Fig. 4.6(d) and Fig. 4.7(d), we see a time series and a phase space projection in the
chaotic region near the end of the bifurcation cascade (dashed line (f) in Fig. 4.5). The
time series displays irregular pulse packages. The underlying frequency is again the one
of the ROs. In the phase space projection, we recognize the winding mechanism from
Fig. 4.7(c).

At k̃ = 0.0895, the time series in Fig. 4.6(e) shows strictly regular pulse packages
(black dashed line (e) in Fig. 4.5). The long "tail" of the pulse packages in the time
series (Fig. 4.6(e)) corresponds to the winding around the point, where the saddle-
node bifurcation will take place. At the end of the pulse packages, the trajectory is
re-injected into the high gain region (ρinv > 0.1). A similar re-injection mechanism has
previously been observed experimentally and studied theoretically for QW lasers in the
short cavity regime [HEI01a, HEI03a, TAB04] and for QW lasers with phase-conjugate
feedback [VIR11]. Note that the pulse packages studied by [HEI01a, HEI03a] differ in
two ways from the pulse packages described in this paper: At first, their modulation
frequency is the external cavity roundtrip time, which can be attributed to the much
lower pump current in their studies as discussed in [LYT97]. Second, the pulse packages
studied by [HEI01a, HEI03a] are slightly irregular and thus their trajectory does not
close up in the phase space to form a limit cycle. We presume that the second difference
is due to the higher α-factor of α = 5.0 the authors use in their numerical studies.
We only find strictly regular pulse packages for α < 1 in the short cavity regime. At
k̃ = 0.08955, a pair of ECMs is created in a saddle-node bifurcation. We can see from
Fig. 4.5 (middle and lower panel) that the second ECM mode is stable upon creation, but
with the chosen initial conditions its basin of attraction is only accessible for the system
after a global bifurcation at k̃hom = 0.096 that we are going to discuss in the following.
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The time between two consecutive pulse packages TISI (see its definition in Fig. 4.6(e))
scales logarithmically with the distance from the bifurcation point k̃hom = 0.096, which
is depicted in Fig. 4.8 [OTT10]. This behavior is typical for a homoclinic bifurcation of
limit cycles with a negative saddle quantity [KUZ95, HIZ08]. The saddle quantity for a
saddle-focus is defined as σ0 ≡ σs+Re(σu,±), where σs is the positive real eigenvalue and
Re(σu,±) are the real parts of the complex conjugate leading eigenvalues, respectively.
A negative σ0 results in the birth of a unique stable limit cycle from a homoclinic orbit.
Indeed, we find σ0 to be negative near k̃hom. The unique limit cycle is the one that is
plotted in Fig. 4.7(e) for k̃ = 0.095.
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Figure 4.8: Scaling of the inter-spike inter-
val time TISI as a function of the feedback
strength k̃ close to the homoclinic bifurcation
at k̃ = k̃hom. Parameters: Reference rates,
K = 0.227, α = 0.9, C = π, τ = 16, J = 2Jth,
and other parameters as in Table 2.3. Modi-
fied from [OTT10].

For k̃ slightly smaller than k̃hom, we find a small range of bistability between the unique
limit-cycle and the second ECM mode. For k̃ larger than k̃hom, the laser performs stable
continuous wave emission, as we can see from the time series in Fig. 4.6(f) for k̃ = 0.098.
The phase-space projection (Fig. 4.7(f)) reveals that now the second ECM is stable (see
also black dashed line (g) in Fig. 4.5). In Section 4.8 the excitability of the system near
this homoclinic bifurcation will be discussed.

4.4.1. Impact of α-factor on bifurcation scenario

In this section, the impact of the α-factor on the bifurcation scenario is discussed and
path continuation techniques are employed to study branches of solutions with time-
periodic photon-number, i.e, limit-cycles born in Hopf bifurcations of ECMs.

Therefore, a relatively large α-factor (α = 3) is contrasted with small α = 0.9 as
discussed in the previous section in order to point out the advantages of a small α
that QD lasers are supposed to have [NEW99a]. Figure 4.9 shows the one-parameter
bifurcation diagrams of the photon number Nph (normalized to 2ANQD

a ) versus the
bifurcation parameter K for α = 0.9 in (a) and (c) and α = 3 in (b) and (d). In
the upper panel (direct numerical integration), local extrema of the photon number are
plotted for each K after transients have died out. The differences between gray and black
points in Fig. 4.9(a) and (b) result from different choices of the initial conditions in the
numerical simulations. The results depicted in gray correspond to solutions, where those
values of the photon number and carrier densities were used as initial condition on the
delay interval that have been calculated for the lower feedback strength of the previous
simulation (upsweep of K). Experimentally, this could be realized by increasing the

122



4.4. Numerical stability analysis

Figure 4.9.: One-parameter bifurcation diagrams of the photon number Nph (normalized to 2ANQD
a )

vs. feedback strength K for direct numerical integration (a), (b), and path continuation with DDE-

Biftool and KNUT (c), (d). In the upper panels maxima and minima of the photon density N
min/max
ph

(normalized to 2ANQD
a ) are plotted, in the lower panels only maxima Nmax

ph are shown. The α-factor
is set to α = 0.9 (left column) and to α = 3 (right column). In (a), (b) gray points indicate
results for an upsweep of K, and black points result from downsweep of K. In (c) and (d) Hopf,
saddle-node, torus, and period doubling bifurcation points are denoted by dots, squares, stars, and
triangles, respectively. Stable solutions are printed as solid lines, unstable solutions as dashed lines.
Vertical dashed lines facilitate comparison. Parameters: Reference rates, C = π, τ = 16, J = 2.5Jth,
and other parameters as in Table 2.3. From [GLO12].
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reflectivity of a mirror while the pump current is not switched off. In the same sense,
the black points represent the decrease of the feedback strength from K = 1 to K = 0
(downsweep of K). By distinguishing these two ways of stepwise changing the feedback
strength, it is possible to identify hysteresis effects.

The lower panel of Fig. 4.9 shows the bifurcations of the steady state solutions cal-
culated with path continuation methods. For clarity, we plot only the maxima of the
photon number Nmax

ph (normalized to 2ANQD
a ). Solid and dashed lines denote stable and

unstable ECMs, respectively. Vertical dashed lines facilitate the comparison of Hopf
(circles) and saddle-node bifurcation points (squares) in Fig. 4.9(b) and (d) with the bi-
furcation diagrams in Fig. 4.9(a) and (c). Exemplarily, we discuss the periodic solution
that emerges from the Hopf bifurcation of the first ECM for α = 0.9 and α = 3. Period-
doubling and torus bifurcations of these periodic solutions are marked with triangles
and stars, respectively.

At first, we note that there exist fewer ECMs for α = 0.9 compared to α = 3 if K
is increased as predicted by the transcendental Eq. (4.7). Secondly, one observes that
the solitary solution is initially stable for small values of K before it is destabilized in
a Hopf bifurcation (circle). The emerging periodic solution can be clearly identified in
the diagrams obtained by direct integration (Fig. 4.9(a), (b)) as well as in the results
of path continuation in Fig. 4.9(c) and (d). In Fig. 4.9 (c) and (d), one observes that
the periodic solution created in the Hopf bifurcation of the first ECM vanishes in a
Hopf bifurcation of the unstable branch (antimode) of the subsequent ECM. These
bifurcation bridges between two consecutive ECMs lead to high-frequency oscillations
with the frequency difference of both solutions that were also observed experimentally
[TAG94]. The bifurcation bridges were suspected for some time by Tager and Petermann
[TAG93, TAG94], and later their existence was shown analytically in [ERN00]. Further,
their parameter dependence was studied in detail with the help of path continuation
techniques in [HAE02]. In the latter paper, the authors suspected that the existence of
bifurcation bridges is generic as new modes and anti-modes appear, which is supported
by our results.

Focussing on the bifurcation of the ECMs (steady states), it can be seen from Fig. 4.9
(c) and (d) that the next mode- antimode pair of ECMs is born in a saddle-node bifurca-
tion. The stable upper branch, i.e., the mode is again destabilized in a Hopf bifurcation.
In general, we note that all the upper branches emerging from a saddle-node bifurcation
point are initially stable, and then are destabilized for higher feedback strength K in
Hopf bifurcations. The clear difference of upsweep (gray) and downsweep (black) of K
in Fig. 4.9 (a) and (b) can be explained directly with the use of the results of the path
continuation. For increasing K, each upper ECM branch becomes unstable in a Hopf
bifurcation, and the emerging periodic orbit bifurcates via period doubling. When the
next pair of ECMs is created in the saddle-node bifurcation, the periodic solution that
emerge from the previous ECM does not reach the attractor of the new ECM directly,
but needs a further increase of K to do so. Instead, for decreasing K the ECM vanishes
in a saddle-node bifurcation and the laser directly jumps to the only stable solution that
exists, i.e., a periodic orbit or a chaotic attractor. The consequence of this bistability of
a periodic orbit (or chaotic attractor) and an ECM is that the existence of a stable ECM
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4.5. Two-parameter bifurcation diagrams: impact of α-factor and band structure

does not necessarily imply that the laser will operate in the cw regime in an experimental
setup. This strongly depends on the experimental implementation of the feedback.

4.5. Two-parameter bifurcation diagrams: impact of

α-factor and band structure

Now, the bifurcations of the ECMs in the
(
C,K

)
-plane are studied, and the impact of the

band structure and of the α-factor on these bifurcations are discussed. Therefore, the sets
of fast, reference, and slow scattering rates as introduced in Section 2.2 (see Table 2.1) as
well as a small α-factor of α = 0.9 and a larger α-factor of α = 3 are discussed. Numerical
path continuation techniques are used to trace the bifurcation lines. The upper panel

Figure 4.10.: Two-parameter bifurcation diagrams of the ECM solutions in the plane of the feedback
phase C versus feedback strength K. (a)–(c): α = 0.9, (d)–(f) α = 3. (a) and (d) correspond to
the set of fast scattering rates, (b) and (e) to reference rates, and (c) and (f) to the slow rates. Hopf
bifurcation lines are drawn as solid lines, saddle-node bifurcation lines as dashed lines. Bifurcation
lines are displayed dark when supercritical and light when subcritical. Shading marks the number of
stable ECM solutions. White indicates no stable ECM, light gray marks one stable ECM solution
and dark gray denotes bistability of two ECM solutions. Parameters: 2.5Jth and τ = 16 and other
parameters as in Table 2.3. From [GLO12].

of Fig. 4.10 shows two-parameter bifurcation diagrams for α = 0.9 calculated for the
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4. Quantum dot laser with external feedback

Figure 4.11.: Same as Fig. 4.10 for (a)-(c): J = 5Jth and (d)-(f): J = 10Jth. The α-factor is fixed at
α = 0.9 and other parameters as in Table 2.3. From [GLO12].
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4.5. Two-parameter bifurcation diagrams: impact of α-factor and band structure

implementation of fast (Fig. 4.10(a)), reference (Fig. 4.10(b)), and slow (Fig. 4.10(c))
scattering rates, respectively. The lower panel is organized identically but with larger
α = 3. Hopf and saddle-node bifurcation lines are depicted as solid and dashed lines,
respectively. The bifurcation curves are drawn dark when supercritical, and light when
subcritical. The number of stable ECMs is expressed by the shaded areas. White shading
indicates no stable ECM, light gray areas correspond to one stable ECM and dark gray
labels regions of bistability of two ECMs. The one-parameter bifurcation diagrams we
discussed before in Fig. 4.9 correspond to a vertical sections in Figs. 4.10(b) and (e)
for C = π. Beginning our analysis with the upper panel of Fig. 4.10, we note that the
solitary solution is stable for all C ∈ [−π, π] below a certain feedback strength K. (Note
the 2π-periodicity of all bifurcation lines.) The destabilization of the solitary ECM
occurs in a Hopf bifurcation for all the three QD energy structures. The important
difference between Fig. 4.10(a), (b), and (c) is the position of the destabilizing Hopf
bifurcation line with respect to the saddle-node bifurcation line.

As already discussed in Sec. 4.3, the saddle-node bifurcation lines are not affected by
changes of the QD band structure or by changes of the pump current, because they do
not depend on the carriers (see Eq. (4.16)). Hence, they exhibit the same shape in all
the three plots. However, the shape of the Hopf bifurcation lines is drastically different
for the three QD structures. In Fig. 4.10(a), the Hopf line always appears above the
saddle-node line. Therefore, we can find at least one stable ECM for all K ∈ [0, 1] and
C ∈ [−π, π]. Thus, the laser never leaves the region of stable cw emission. Figure 4.10(b)
shows a quite different situation for the case of the reference rates, where the two white
areas indicate the absence of any stable ECM. For C ∈ [π/2, π] and low K < 0.3,
the bistability region of Fig. 4.10(a) disappears, because the Hopf bifurcation line is
moved to smaller values of K. The same occurs for the Hopf line at C ∈ [π, π] and
K ∈ [0.1, 0.7]. Here, the laser is destabilized in a Hopf bifurcation before a new stable
ECM exists resulting in oscillatory and chaotic behavior of the photon number. The
highest K, for which the ECM that can be followed out of the lasing fixed point of the
solitary laser, remains stable in the full range of C is Kc = 0.1. An analytical expression
for the critical feedback strength Kc, below which the laser is guaranteed to be stable
for all C, was first suggested for the LK-model, i.e., for a single mode class B QW laser,
in [HEL90b] and it was rigorously derived afterward in [MOR92]. This critical value of
the feedback strength is given by

Kc ≡
τinΓRO√
1 + α2

, (4.21)

where ΓRO denotes the RO damping. In Section 4.6.6, the above formula will be derived
for the QD laser model for the reference and the slow set of scattering rates. It will
be shown that Kc is the feedback strength, below which no Hopf instability can occur
[OTT11].

Tuning the band structure to slower rates leads to the bifurcation diagram shown
in Fig. 4.10(c). The unstable, white regions are even larger than in Fig. 4.10(b) and
the Kc ≈ 0.06 indicates higher sensitivity to optical feedback for this QD structure.
This shift of the first Hopf line and thus of the critical feedback strength Kc from
formula (4.21) predicting a linear dependence of Kc on the RO damping ΓRO. From
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4. Quantum dot laser with external feedback

Fig. 2.6(b), we see that the RO damping decreases from high values for the fast rates
to much lower values for the slow rates with the reference rates lying in between. This
explains the decrease of Kc from fast to the slow rates.

The lower panel of Fig. 4.10 depicts the bifurcation lines for larger α = 3. In general,
the same conclusions as for the upper panel in Fig. 4.10 may be drawn. The fast
QD structure exhibits the highest critical feedback strength Kc and the most extended
regions of bistability. Both, Kc and the bistability regions decrease for the reference
and slow QD structures. The critical feedback strength Kc decreases in comparison
to small α, which is correctly described by the analytic formula (4.21). Due to the
increased number of existing ECMs for the higher α-factor, it is no longer possible to
guarantee the existence of one stable ECM for the full range of C and K for the fast rates
(Fig. 4.10(d)) as it was possible for low α = 0.9. However, for the fast QD structure the
unstable regions are minimized compared to the reference and the slow scattering rates.
Note that the existence of stable ECMs does not imply cw operation of the laser (cf.
discussion of Fig. 4.9). If there exists a stable periodic, quasiperiodic, or chaotic solution
that was created in a Hopf bifurcation of the last ECM in addition to the now stable
ECM, it crucially depends on the initial conditions in a numerical simulation, or the
implementation of the feedback in an experiment, which solution is favored by the laser.
In order to determine those areas in the

(
C,K

)
-plane where the laser is guaranteed to

be stable, the bifurcation point connecting the periodic solution with the next ECM has
to be found. This is a quite challenging task, which will not be addressed here. Hence,
it is important to stress that the light-gray shaded areas label areas in the

(
C,K

)
-plane

where it is possible to prepare the laser in the cw regime.

In the previous discussion, we observed that the band structure of the QD laser has a
large impact on its tolerance to optical feedback. So far, we have fixed the pump current
at 2.5Jth and analyzed the influence of the scattering rates on the ECM bifurcations.
Our next step is to change the pump current to a different, fixed value and compare
the bifurcation scenarios with Fig. 4.10. Note that our microscopic modeling of the
carrier density dependent scattering rates allows us to change the pump current without
adjusting any time scale parameter. Figure 4.11 shows the bifurcation diagrams for
α = 0.9 and for fast, reference, and slow scattering rates at a pump current of J = 5Jth
(upper panel) and J = 10Jth (lower panel). Here, we restrict our numerical analysis to a
small α-factor since its value for QD-lasers is expected to be relatively small [NEW99a].
However, it is noted that the general pump current dependent changes that are discussed
in the following can be observed for α = 3 as well.

Comparing the upper panel of Fig. 4.11 with the upper panel of Fig. 4.10, it may be
concluded that the Hopf bifurcation lines are shifted towards higher feedback strength K
resulting in more extended regions of stability and bistability, since the saddle-node lines
are independent of the scattering rates and, thus, of the pump current (see Eq. (4.16)).
Going to even higher currents as shown in the lower panel of Fig. 4.11, it is striking to
see that all white regions disappear as the Hopf lines shift above the saddle-node lines
for all QD structures. An explanation can again be given by discussing the nonlinear
scattering rates.

From Fig. 2.6(b), we know that increasing the pump current leads to a nearly linear
increase of the RO damping if the laser is operated high above threshold. This in terms

128



4.6. Analytical approximation of first Hopf instability

reduces the feedback sensitivity of the laser. Considering the analytical formulas for the
RO damping for the reference rates (Eq. (2.30b)) and for the slow rates (Eq. (2.33b)),
we see that the linear increase can be attributed on the one hand to an increase of
the steady state photon number N0

ph, which depends linearly on the pump current (see
Eq. (4.6)). On the other hand, the increase of the RO damping is caused by an decrease
of the carrier lifetimes. For the reference rates, the electron lifetime τe is much larger
than the one of the holes τh. This means that in Eq. (2.30b) the 1/τe-contribution to the
damping dominates the term proportional to τh, i.e, the slower carrier type (electrons),
dominates the damping and, thus, the dynamical response of the laser. From Fig. 4.10
and Fig. 4.11, we conclude that it is possible to increase the tolerance of the QD laser
to optical feedback by adjusting, both, the pump current and the band structure of the
device.

A last interesting remark concerns the shape of the first Hopf bifurcation line in all
two-parameter bifurcation diagrams investigated so far. One observes that these lines
(light and dark solid lines in Fig. 4.10 and 4.11) appear as a loop in the lower right part
of the two-parameter bifurcation diagrams. (The size of this loop drastically increases
with the pump current. Compare Fig. 4.11 upper and lower panel.) For C = π and low
feedback, two distinct Hopf bifurcation points are found in all two-parameter bifurcation
diagrams: a supercritical Hopf point for lower feedback strength and a subcritical Hopf
point for higher feedback strength. A detailed investigation of the subcritical Hopf point
reveals that it coincides with that Hopf bifurcation on the antimode of the subsequent
ECM mentioned in the previous subsection. Consequently, the bifurcation bridge that
emerges from the supercritical Hopf point disappears in this subcritical Hopf point.
If the feedback phase C is now decreased starting with C = π, the supercritical and
subcritical Hopf bifurcation points collide with each other in a generalized Hopf point.
This behavior is another indication of the connection between two subsequent ECMs
through bifurcation bridges (see Fig. 4.9(c) and (d)) that are created in a supercritical
Hopf bifurcation and vanish in a subcritical Hopf bifurcation.

In conclusion, we note that by either tuning the band structure by going from deep
QDs (slow rates) to shallow QDs (fast rates), or by increasing the pump level high
above threshold, the regions with bistability between ECMs are increased in phase space,
because the Hopf bifurcation lines shift to higher feedback strengths. In contrast, the
instability regions, where no stable ECMs exists, are decreased. For high pump currents
stable cw operation is possible for all three band structures under consideration for the
whole range of the feedback strength K and for all values of the feedback phases C.

4.6. Analytical approximation of first Hopf instability

In applications, as for example optical fiber networks, the semiconductor laser may be
perturbed by unavoidable optical feedback. It is therefore of major importance, how
much feedback the laser can tolerate without being destablized in the so called coher-
ence collapse [TKA86]. This regime of broad linewidth corresponds to the instability
regions discussed in this and the previous section. Thus, the stability boundary is
marked by the first supercritical Hopf bifurcation of the first ECM. It is therefore from
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4. Quantum dot laser with external feedback

particular interest to find an analytical expression for this stability boundary to reveal
its dependence on the laser parameters.

To obtain analytical results, we have to reduce the number of the dynamical equa-
tions (4.1). This can be done by noting that the limit γ → 0 of the dynamical equa-
tions (4.1) is singular, and we thus have to find a coordinate transformation that resolves
this singularity. For semiconductor lasers, it has proven to be useful to do this by rescal-
ing time with respect to the RO frequency. This transformation was discussed in detail
for the QD laser under optical injection in Section 3.6.1 (see also Appendix B).

The transformed set of rate equations for the phase φ of the electric field and the
deviations y, ue, uh, ve, and vh from the steady state values of the dynamical variables
of the solitary laser (see Eq. (3.32) for the definitions) read

ẏ = (ue + uh)(1 + y) + 2ǫk
√

(1 + y)(1 + y(s− sc)) cos
(
C + φ− φ(s− sc)

)
, (4.22a)

φ̇ =
α

2
(ue + uh)− ǫk

√

1 + y(s− sc)

1 + y
sin
(
C + φ− φ(s− sc)

)
, (4.22b)

u̇e = −y

2
− bue − ǫ

ω

2
(ue + uh)(1 + y)− ǫω−1(ρ0euh + ρ0hue)− ǫ4ω4g−1ueuh, (4.22c)

u̇h = −y

2
− auh − ǫ

ω

2
(ue + uh)(1 + y)− ǫω−1(ρ0hue + ρ0euh)− ǫ4ω4g−1ueuh, (4.22d)

v̇e = bue − cǫ−1ǫ(W 0
e ve + vhW

0
h ) + ǫ3cg−1vevh, (4.22e)

v̇h = auh − ǫcω−1(W 0
hvh + veW

0
e ) + ǫ3cg−1vevh, (4.22f)

where the dot denotes the differentiation with respect to the dimensionless time s ≡ ǫωt′

and

ω ≡
√

2γrwN0
ph (4.23)

is proportional to the RO frequency of the solitary laser. (Equation (4.23) is identical
to the RO frequency of the QW laser ωQW given by Eq. (2.23b).) Further, the small
parameter ǫ, the new feedback amplitude k = O(1), and the delay sc are defined as

ǫ ≡ √
γ, k ≡ k̃

ǫ2ω
, and sc ≡ ǫωτ. (4.24)

The scattering rates are expressed by the parameters a and b, which have been defined
in Eq. (3.36). Here, we have assumed that K = O(γ). This is motivated by the obser-
vation that the first Hopf instability is caused by an undamping of the RO oscillations.
Therefore, K has to be of the same order of magnitude than the damping, which is
of order γ, as we know from our analytical studies in Chapter 3 (cf. Eqs. (2.29b) and
(2.31b)). The scaling K = O(γ) corresponds to the limit of "weak injection" of the
injection problem (see Table 3.2). As it was already discussed for the injection problem
in Section 3.6.1, the parameters a and b depend on deviation from the steady states W 0

e

and W 0
h of the reservoir populations ve/b only upon O(ǫ2), which is the reason why in

lowest order the dynamical equations for ve/b (Eqs. (4.22e) and (4.22f)) decouple and we
only have to deal with Eqs. (4.22a)–(4.22f). In the following, it will be demonstrated
that valuable information can be extracted from these equations on the basis of simple
scaling assumptions.
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4.6. Analytical approximation of first Hopf instability

4.6.1. External cavity modes

The basic solutions of Eqs. (4.22a)–(4.22d) are ECMs. Analogous to the discussion in
Section 4.3, they are defined as solutions with constant deviations from the steady state
values of photon number and carrier occupation probabilities, i.e., y = ys, ue = ue,s,
uh = uh,s, and a phase that changes linearly in time

φ = φs ≡ ∆ωss (4.25)

with the frequency deviation of the ECM ∆ωs ≡ ǫωδωs from the threshold frequency
of the solitary laser. To simplify notation, the index s is omitted in the following.
Inserting the ECM ansatz into the dynamical equations (4.22a)- (4.22d), the following
set of steady state equations is obtained for y 6= 0, i.e., for the non-zero intensity (lasing)
steady state, which is valid up to O(ǫ)

0 = u+ + ǫk cos(∆), (4.26a)

∆ = C + αu+ − ǫk sin(∆), (4.26b)

0 = −y

2
− bue − ǫ

ω

2
(ue + uh)(1 + y)− ǫω−1(ρ0euh + ρ0hue), (4.26c)

0 = −y

2
− auh − ǫ

ω

2
(ue + uh)(1 + y)− ǫω−1(ρ0euh + ρ0hue), (4.26d)

where we have introduced u+ ≡ (ue + uh)/2 and ∆ ≡ C +∆ωsc. From Eqs. (4.26a) and
(4.26b), we find that ∆ satisfies the following transcendental equation

∆ = C − ǫksc (α cos(∆) + sin(∆)) , (4.27)

which implies that ∆ ≈ C as k → 0, i.e., ∆ is independent of the feedback strength k
in first approximation. From Eq. (4.26a), we also note that u+ and thus both ue and uh

are at least O(ǫ) small.

4.6.2. Stability

In this section, a linear stability analysis of the dynamical equations (4.22a) - (4.22d)
is performed. Therefore, one has to consider the eigenvalues of the linear variational
equation [KAN05]

M ≡ λ− A1

∣
∣
ECM

− A2

∣
∣
ECM

e−scλ with

A1

∣
∣
ECM

≡ ∂Gi

∂xj

∣
∣
∣
ECM

and A2

∣
∣
ECM

≡ ∂Gi

∂xj,sc

∣
∣
∣
ECM

i, j ∈ {1, . . . , 4},

where the functions Gi are the right hand sides of Eqs. (4.22a)–(4.22d). Thus, A1 is
just the Jacobien of the system without feedback. The matrix A2 takes into account
that we have to consider the delayed variables xj,sc ≡ xj(s − sc) as independent from
the variables xj, where the state vector x is given by x ≡ (y, φ, ue, uh)

⊥. The notation
|ECM means that the matrices are evaluated along the circular periodic orbits of the
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ECMs, i.e., that Eqs. (4.26a)–(4.26d) are valid. The characteristic equation detM = 0
determines the following condition for the growth rate λ

det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

[
−ǫk cos(∆)F

−λ

] [
−2ǫk(1 + y)
× sin(∆)F

]

1 + y 1 + y

ǫk sin(∆)
2(1+y)

F

[
−ǫk cos(∆)F

−λ

]

α
2

α
2

[
−1/2
−ǫωu+

]

0







−b

−ǫ

[
ω−1ρ0h

+ω
2
(1 + y)

]

−λ







−ǫ

[
ω−1ρ0e

+ω
2
(1 + y))

]

[
−1/2
−ǫωu+

]

0 −ǫ

[
ω−1ρ0h

+ω
2
(1 + y)

]







−a

−ǫ

[
ω−1ρ0e

+ω
2
(1 + y)

]

−λ







∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0,

(4.28)
where

F ≡ 1− e−λsc . (4.29)

Expanding the determinant, we obtain

λ4 + λ3
[
a+ b+ ǫ

(
1 + g−1 + ω(1 + y) + 2k cos(∆)F

)]

+ λ2

[

1 + y + ab+ ǫ
[

ω−1(aρ0h + bρ0e) + ω(1 + y)
(

2u+ + (a+b)
2

)

+ 2k cos(∆)F (a+ b)
]

+ǫ2 [2k cos(∆)F (ω−1(1 + g−1) + (1 + y)ω) + F 2k2]

]

+ λ











(1 + y) (a+b)
2

+ǫ [ωu+(1 + y)(a+ b) + kF [(1 + y) (cos(∆)− α sin(∆))− 2ab cos(∆)]]

+ǫ2kF





(2ω−1 + kF cos(∆)) cos(∆)(a+ b)
+(1 + y)

[
ω cos(∆)(a+ b) + 2u+ω

(
cos(∆)− α sin(∆)

)]

+kF sin2(∆)(a+ b)





+ǫ3 [k2F 2 (ω−1(1 + g−1) + ω(1 + y))]











+ ǫ

[

kF
(a+ b)

2
(1 + y)

(
cos(∆)− α sin(∆)

)
]

+ ǫ2kF
[
kFab+ (a+ b)(1 + y)u+ω

(
cos(∆)− α sin(∆)

)]

+ ǫ3k2F 2

[

ω−1(aρ0h + bρ0e) + ω(1 + y)
(a+ b)

2

]

= 0, (4.30)

where we haven taken advantage of the gain-clamping of the solitary laser above thresh-
old ρ0inv = 0 (cp. Eq. (4.4a)), which may be rewritten as ρ0e + ρ0h = 1 + g−1.

4.6.3. General rates: a = O(1) and b = O(1)

In this subsection, it is assumes that a and b are O(1). From the steady state equa-
tions (4.26c) and (4.26d), we see that y then is O(ǫ) small. Remembering the scalings
for ue, uh, and ∆ that were discussed in Subsection 4.6.1, we obtain the following scaling
laws for the dynamical variables

y = ǫY +O(ǫ2), and ue/h = ǫUe/h +O(ǫ2), (4.31)
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where Y and Ue/h are O(1). Further, the scaling laws for ue and uh imply that u+ scales
like u+ = ǫU+ +O(ǫ2). The ansatz

λ = λ0 + ǫλ1 + . . . (4.32)

for the scaling of the growth rate λ permits to balance enough terms in the second lowest
order problem to obtain complex growth rates. Inserting Eq. (4.32) and (4.31) into the
characteristic equation (4.30), yields the following two problems for λ0 and λ1

O(1) : λ0

[

λ3
0 + λ2

0(a+ b) + λ0(1 + ab) +
(a+ b)

2

]

= 0, (4.33a)

O(ǫ) : λ1

[
(a+ b)

2
+ 2(1 + ab)λ0 + 3(a+ b)λ2

0 + 4λ3
0

]

+ λ3
0

[
ω−1(1 + g−1) + 2F0k cos(∆) + ω

]

+ λ2
0

[ω

2
(a+ b) + ω−1(bρ0e + aρ0h) + 2k cos(∆)F0(a+ b) + Y

]

+ λ0

[
(a+ b)

2
Y + kF0

([
cos(∆)− α sin(∆)

]
+ 2ab cos(∆)

)
]

+
kF0(a+ b)

2
[cos(∆)− α sin(∆)] = 0, (4.33b)

where we have introduced
F0 ≡ 1− e−λ0sc . (4.34)

The problems (4.33) are a bit too "bulky" to be solved analytically, but simplified
problems can be derived for the reference as well as for the slow rates and will be
discussed in the following subsections.

4.6.4. Reference rates: limit a = O(ǫ−1) and b = O(ǫ1)

For the reference rates, the following scalings are assumed for a and b

a = ǫ−1a−1 and b = ǫb1, (4.35)

where a−1 and b1 are O(1). From the electron equation (4.26c), we find that y now is
O(ǫ2) small, and the hole equation indicates that uh then is O(ǫ3) small. Summing up,
we obtain the scaling laws

y = ǫ2Y2 +O(ǫ3), ue = ǫUe +O(ǫ2), and uh = ǫ3Uh,3 +O(ǫ4), (4.36)

where Y2, Ue, and Uh,3 are O(1). With the help of the scaling laws (4.35) and (4.36),
the two lowest order problems (4.33) simplify as follows

O(ǫ−1) : λ0

[

λ2
0 +

1

2

]

= 0, (4.37a)

O(1) : λ1

[
1

2
+ 3λ2

0

]

a−1 + λ4
0

+λ2
0

[

1 + a−1

(

b1 +
ω

2
+ ω−1ρ0h + 2k cos(∆)F0

)]

+
a−1kF0

2
[cos(∆)− α sin(∆)] = 0. (4.37b)
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The lowest order problem (4.37a) admits three solutions

λr
0 = 0 ∧ (λc

0)
2 = −1

2
, (4.38)

one of them is real (λr
0) and two are purely imaginary (λc

0). The first order contribution
λr
1 of the real eigenvalue is obtained by inserting λr

0 into Eq. (4.37b), which yields λr
1 = 0.

Further, the first order contribution of the complex conjugate eigenvalues is obtained by
inserting (λc

0)
2 = −1/2 into Eq. (4.37b)

λc
1 = −Γref

1 − kF0

2
[cos(∆) + α sin(∆)] . (4.39)

The eigenvalue λc
1 has two contributions: one is the damping of the solitary laser Γref

1

(see Eq. (3.132)), which may be compensated by the second term on the right hand side
of Eq. (4.39) describing the impact of the feedback.

Summing up, by taking into account contributions up to the first order in ǫ the real
eigenvalue λr and the pair of complex conjugate eigenvalues λc are given by

λr ≡ λr
0 + ǫλr

1 = 0, (4.40a)

λc ≡ λc
0 + ǫλc

1 = ±iωref
s − ǫ

(

Γref
1 +

kF0

2
[cos(∆) + α sin(∆)]

)

, (4.40b)

where we have introduced the RO frequency of the solitary laser ωref
s ≡ 1/

√
2.

4.6.5. Slow rates: limit a = O(ǫ) and b = O(ǫ)

For the slow rates, we assume the scalings

a = ǫa1 and b = ǫb1, (4.41)

where a1 and b1 are O(1). From the steady states of the carrier equations, we find that
y is O(ǫ2) small, and ∆, ue, and uh scale as discussed in Subsection 4.6.2. To sum up,
the following scaling laws are obtained for the dynamical variables

y = ǫ2Y2 +O(ǫ3), and ue/h = ǫUe/h +O(ǫ2), (4.42)

where Y2 and Ue/h are O(1). Inserting the scaling laws for the rates a and b and for the
dynamical variables into the first two lowest order problems (4.33), they simplify as

O(1) : λ2
0

[
1 + λ2

0

]
= 0, (4.43a)

O(ǫ) : λ0





2(2λ2
0 + 1)λ1

+λ2
0 [a1 + b1 + ω−1(ρ0e + ρ0h) + ω − 2kF0 cos(∆)]

+ (a1+b1)
2

+ kF0

(
cos(∆)− α sin(∆)

)



 = 0. (4.43b)

The leading order problem (4.43a) admits a double real root (λr
0) and two complex

conjugate (λc
0) roots

(λr
0)

2 = 0 and (λc
0) = ±i. (4.44)
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4.6. Analytical approximation of first Hopf instability

Thus, in leading order the equation are conservative as in the case of the reference rates.
The first order contribution of the real eigenvalues evaluates to zero λr

1 = 0, while the
first order contribution of the complex conjugate eigenvalues yields the same formula as
for the reference rates (see Eq. (4.39)) with Γref

1 replaced by ΓS
1 given by Eq. (3.141).

Summing up, we obtain the following expressions for the eigenvalues

λr ≡ λr
0 + ǫλr

1 = 0, (4.45a)

λc ≡ λc
0 + ǫλc

1 = ±iωS
s − ǫ

(

ΓS
1 +

kF0

2
[cos(∆) + α sin(∆)]

)

, (4.45b)

where we have introduced the RO frequency of the solitary laser ωS
s ≡ 1.

4.6.6. Feedback strength of first Hopf instability

In this subsection, an analytical expression is derived for the feedback strength, at which
the first Hopf bifurcation occurs. This is then compared to expression used through-
out the literature before comparing it with numerical results from the path continuation.
Therefore, we firstly reformulate the expressions for the complex conjugate pair of eigen-
values (Eqs. (4.40b) and (4.45b)) by rewriting them in terms of time t′. The complex
conjugate eigenvalues σc ≡ √

γωλc then read2

σc = ±iωRO −
(

ΓRO +
k̃F0

2
[cos(∆) + α sin(∆)]

)

(4.47a)

= −
(

ΓRO +
k̃

2

(
1− cos(ωROτ)

)√
1 + α2 cos

(
∆− arctan(α)

)

)

± i

(

ωRO − sin(ωROτ)
k̃

2

(
1− cos(ωROτ)

)√
1 + α2 cos

(
∆− arctan(α)

)

)

. (4.47b)

Frequency ωRO and damping ΓRO of the ROs are given by Eqs. (2.29) for the refer-
ence rates and by Eqs. (2.31) for the slow rates (cf. Table 2.4), and ∆ reads in these
coordinates ∆ = C + δωsτ .

A Hopf bifurcation occurs when the pair of complex conjugate eigenvalues crosses
the imaginary axis, i.e., when the real parts of these eigenvalues vanish Re(σc) = 0.
Imposing this condition on Eq. (4.47b), we obtain the following expressions for the

2Additionally to the trigonometric relation in Eqs. (3.20),

cos(x) cos(y) =
1

2
[cos(x− y) + cos(x+ y)] , sin(x) sin(y) =

1

2
[sin(x− y) + sin(x+ y)] , (4.46a)

sin2(x) =
1

2
[1− cos(2x)] . (4.46b)

are used to derive Eq. (4.47b)
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4. Quantum dot laser with external feedback

feedback strength k̃H , at which the Hopf instability occurs and for the frequency ωH of
the limit-cycle close to the Hopf point

k̃H ≡ −2ΓRO

(
1− cos(ωROτ)

)√
1 + α2 cos

(
C + δωsτ − arctan(α)

) , (4.48a)

ωH ≡ ωRO + ΓRO sin(ωROτ) = ωRO +O(γ). (4.48b)

The expression (4.48a) is the same as for the well-known LK-model describing a single
mode QW laser subject to external feedback and has been first derived by Ritter and
Haug in [RIT93]. In [LEV95], the role of the factor cos(∆− arctan(α)), which describes
the impact of the different ECMs, has been discussed. Approximations of the Hopf
line that are better suited to describe short external cavities and larger feedback rates
have been discussed by Erneux and by Wolfrum and Tuarev in [ERN95, ERN00a] and
[WOL02], respectively. Keeping in mind that ΓRO is O(γ) small, we see from Eq. (4.48b)
that the frequency of the Hopf instability is close to the RO frequency, i.e., this Hopf
bifurcation undamps the ROs.

4.6.7. Critical feedback strength

Stabilizing the feedback phase C in experiments is a difficult task, because the setup has
to be mounted on a heat sink to minimize temperature fluctuations [HEI01a]. Further,
if we want to study different ECMs, C has to be tuned, which implies that the position
of the mirror has to be varied on the sub-wavelength scale. For short delay, only view
ECMs exist. The dynamics is therefore simpler than for long delay and it is easier to
realize stable cw lasing on one ECM by tuning the feedback phase C, because larger
fluctuations, i.e., phase noise, are needed to hop from one mode to the neighboring mode
on the ellipse of ECMs (cf. Fig. 4.2). It has been demonstrated by Heil et al. that it
is experimentally possible to control the feedback phase in the short feedback regime
[HEI01, HEI03a]. Further, in integrated multi-section devices consisting of an actively
pumped, inverted section and a passive section, the phase can be controlled by applying a
current to the passive section [RAD07]. However, for long feedback and for applications,
e.g., optical fiber networks, the phase cannot be controlled, thus the stability boundary
is given by the least stable ECM. From Eq. (4.48a), we find that this is the ECM with
∆min ≡ (π + arctan(α)) mod 2π3. Assuming the "worst case" ωROτ = π mod 2π, we
obtain the following critical feedback strength, below which the laser is guaranteed to
be stable

k̃H ≤ k̃c ≡
ΓRO

√
1 + α2

. (4.49)

This is the expression (4.21) that was already employed in Section 4.5 to discuss the
impact of band structure and pump current on the stability boundary of the laser subject
to optical feedback.

In Fig. 4.12, k̃H obtained by numerical path continuation (solid black lines) is depicted
as a function of α for a long external cavity with τ = 80 (Fig. 4.12(a)) and for a short
external cavity with τ = 16 (Fig. 4.12(b)), respectively. The feedback phase has been

3Here we used Eq. (4.27) revealing that ∆ ≈ C holds for ǫ → 0.
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4.6. Analytical approximation of first Hopf instability

Figure 4.12.: First Hopf bifurcation for the feedback phase Cmin ≡ π + arctan(α) mod 2π (n ∈ Z)
in dependence of the linewidth enhancement factor α in the long cavity regime for τ = 80 (a) and
in the short cavity regime for τ = 16 (b). The black solid lines are obtained by numerical path
continuation, and the red dashed lines are analytical approximations. Parameters: Reference rates
and other parameters as in Table 2.3. Modified from [OTT12].

fixed to Cmin ≡ π+arctan(α) mod 2π, which minimizes k̃H with respect to ∆min within
the validity of the approximation ∆ = C +O(ǫ) (cf. Eq. (4.27)). The numerical results
are compared to the critical feedback strength k̃c given by Eq. (4.49) (red dashed lines).

For a long cavity, we find very good correspondence for α & 3 as depicted in Fig. 4.12(a).
For smaller values of the α-factor, the feedback strength k̃H becomes so large that the
assumption k̃H = O(γ), for which Eq. (4.49) is valid, does not hold any longer. That
is the reason why the analytic approximation underestimates k̃H for small values of α.
The same reasoning holds for the short cavity regime τ = 16 (Fig. 4.12 (b)), although
the deviations of the analytical and the numerical value for k̃H are less pronounced for
α . 3, because the feedback strength remains smaller. However, in both cases and for
all α-factors in the studied range (α ∈ [0.8, 6]), the analytical formula provides a reliable
approximation for the lower bound of k̃H , i.e., for the critical feedback strength k̃c, below
which our analysis predicts stable cw operation.

The stability condition of Eq. (4.49) was derived for the LK model by Mork et al.
in [MOR92]. As noted by the authors, Eq. (4.49) was previously suggested by Helms
and Petermann [HEL90b] as a simple analytical criterion for tolerance with respect to
optical feedback. Helms and Petermann [HEL90b] evaluated the validity of Eq. (4.49)
by analyzing numerically the stability of the minimum linewidth mode. They noted that
this approximation gives a good description of the critical feedback level as long as the
linewidth enhancement factor α is significantly larger than unity. They then proposed
an empirical law given by

k̃emp
c ≡ ΓRO

√
1 + α2

α2
. (4.50)

The minimum linewidth mode is the most stable ECM in a "thermodynamic" poten-
tial model based on neglecting power fluctuations [LEN91, TAR95a], i.e., the mini-
mum linewidth mode is the mode with the deepest potential well. It was supposed
to be the most stable ECM for quite some time [SCH88l], despite it was shown that
the minimum linewidth mode could be destabilized already at moderate values of the
feedback strength [RIT93]. The minimum linewidth mode is determined by the con-
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4. Quantum dot laser with external feedback

dition ∆mlm ≡ − arctan(α) mod 2π [LEV95] and thus differs from the maximum gain
mode ∆mgm = 0 mod 2π (cf. Eq. (4.14) ) for non-zero α-factors. Inserting ∆mlm into
Eq. (4.48a) and assuming the "worst case" ωROτ = π mod 2π, we find that the critical
feedback strength for the minimum linewidth mode is given by

k̃mlm
c ≡ ΓRO

√
1 + α2

α2 − 1
. (4.51)

The denominator in Eq. (4.51) is different from the denominator of Eq. (4.50), which
explains the numerically observed singularity as α → 1+ [HEL90b]. Both, Eqs. (4.49)
and (4.50) are used in current experimental studies of QD lasers subject to optical
feedback. Specifically, Eq. (4.51) is used in Refs. [GIO08, GRI13] and Eq. (4.50) is used
in Refs. [OBR03a, GRI08, AZO09, GRI13].

As mentioned in Section 4.4, the α-factor is a problematic quantity for QD lasers due
to their more complicated carrier dynamics, but more sophisticated modeling approaches
that take into account the polarization and thus avoid the assumptions of a constant α-
factor [LIN12a, LIN12b] reveal that the dynamics of QD lasers is even more stable than
described by models with constant α [LIN13]. In the framework of the present simplified
modeling approach, this would express in small α-factors close to unity. Therefore, using
Eq. (4.50) instead of Eq. (4.51) may lead to wrong results, especially for QD lasers.

It is instructive to study the critical feedback phase for the maximum gain mode
yielding together with the "worst case" assumption ωROτ = π mod 2π

k̃mlm
c ≡ −ΓRO < 0, (4.52)

which indicates that the maximum gain mode cannot be destabilized in a Hopf bifur-
cation. Indeed, modes with − arctan(1/α) < ∆ ≤ ∆mgm = 0 cannot be destabilized
by increasing feedback [LEV95], but they may be inaccessible to the system due to the
presence of a chaotic attractor. The laser then exhibits chaotic behavior in the form of
low frequency fluctuations [TAR95b] instead of stable cw operation on a single ECM.

4.6.8. Hopf bifurcation line in the (C,K)-plane

Next, the analytical approximation for k̃H given in Eq. (4.48a) is compared with results
from path continuation in a projection onto the plane spanned by feedback phase C and
injection strength K. Therefore, Eq. (4.48) is solved for ∆ = C + δωsτ , which yields

∆ = arctan(α)± arccos
(

− G
k̃H
eff

)

+ 2nπ, (4.53)

where we have introduced

G ≡ 2ΓROτ

1− cos
(
ωROτ

) , and k̃H
eff ≡ k̃Hτ

√
1 + α2, (4.54)

and n ∈ Z. Taking advantage that ∆ = C + O(ǫ) equals in leading order the external
cavity phase C (cf. Eq. (4.27)), the lowest order approximations for the Hopf lines in
the (C,K)-plane read

CH,approx
n (k) ≡ arctan(α)± arccos

(

−G

k̃H
eff

)

+ 2nπ.
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4.6. Analytical approximation of first Hopf instability

Further, an expression for the Hopf lines, which takes into account O(ǫ)-corrections to
Eq. (4.53) can be derived [LEV95]

CH
n (k) = arctan(α)± arccos

(−G
k̃H
eff

)

− 2αG
1 + α2

± 1− α2

1 + α2

√

(k̃H
eff)

2 − G2 + 2nπ. (4.55)

The details of the derivation are given in Appendix C.
In Figure 4.13(a) and (b), the analytic approximation of the Hopf bifurcation lines

given by Eq. (4.55) (dashed lines) is compared to numerical results obtained by path
continuation techniques (solid lines) for the reference rates and the slow rates, respec-
tively. Since the preceding discussion showed a better significance of the analytic results
for larger α and small τ , a large α-factor of α = 3 and a short delay time of τ = 16 were
chosen. For the numerical results, we distinguish between supercritical Hopf bifurcations

Figure 4.13: Comparison of the an-
alytic approximation for the first
Hopf bifurcation line (dashed) with
Hopf lines calculated by numerical
path continuation (solid) in a plane
spanned by the feedback phase C
and the feedback strength K for
the reference set of scattering rates
(a) and the slow set of scattering
rates (b). Solid black and gray
lines denote super- and subcritical
Hopf bifurcation lines, respectively.
Parameters: J = 2.5Jth, α = 3,
τ = 16, and other parameters as in
Table 2.3. From [GLO12].

of stable ECMs (modes) depicted by solid black lines and subcritical Hopf bifurcations
of unstable ECMs (anti-modes) depicted by solid light lines. For clarity, the bifurcation
lines are plotted in the truncated interval K = 2κτink̃ ∈

[
0, 0.25

]
. In the small feedback

regime K . 0.2, we find good agreement between the two bifurcation lines. For C in
the vicinity of ±π, the shape as well as the position of the analytically obtained bifurca-
tion line compares well with the numerically calculated one. The agreement of the two
curves becomes worse for C close to zero, because the critical feedback strength moves
to higher values of K. However, even in this regime, the analytical solution reproduces
the shape of supercritical, numerical solution but underestimates the feedback strength
of the Hopf bifurcation. Thus, it may be used for a conservative estimate of the feedback
strength, below which stable cw operation can be guaranteed. The good agreement of
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4. Quantum dot laser with external feedback

analytical and numerical Hopf lines reveals that the RO damping and the α-factor are
the main parameters that describe the feedback sensitivity of QD lasers.

From Eq. (2.31b), we see that even for the slow rates, which represent the band
structure with the lowest damping, the RO damping of a QD laser is higher than for
its QW counterpart. (In the next section, it will be discussed how to compare QW and
QD lasers.) This gives an explanation for the reduced feedback-sensitivity of QD lasers
compared to QW lasers [HUY04]. The formulas for the RO damping (see Eqs. (2.29b)
and (2.31b)) reveal that to control the damping and thus the feedback sensitivity one
has to control the carrier lifetimes τe/h and thus the band structure. This can be done
by tuning the material composition and the size of the QDs [BIM99].

4.7. Comparison to bifurcation scenario of quantum

well laser

In this section, we compare the dynamic response to optical feedback of a QD laser and
a QW laser. For the QD laser, the reference scattering rates (see Table 2.1) are used.
Therefore, we have to discuss how to choose the parameters of the QW laser to make it
comparable to the QD laser. Best suited for a comparison are the dynamical equations
in their dimensionless form given by Eqs. (2.19) and Eqs. (4.1) for QW and QD laser,
respectively, because they exhibit a reduced number of free parameters that has to be
discussed. A natural choice is to assume the same internal losses κ for both lasers,
which fixes the photon lifetime of the QW laser to τph = (2κ)−1. Further, we demand
that both lasers have the same steady state photon density N0

ph. From the dynamical
equations (2.19) of the QW laser, it can be seen that we still have to choose the value
of the parameter γQW = τph/τc describing the time scale separation and the value of the
pump rate P . Assuming the same time scale separation for both lasers, i.e., choosing
γQW = γ, implies τc = W−1. Further, from the steady state relations (2.21), we see
that choosing the same ratio of the Einstein factors for the induced and the spontaneous
emission for both lasers rQW = rw = W̄/W permits to determine P = N0

ph/r
QW and the

linear gain coefficient as Gn = 2W̄ .

Figure 4.14 depicts the response of a QW laser (red dashed line) and of a QD laser
(blue full line) to a rectangular current pulse (black dash-dotted line) of 6 ns width and a
peak-height of J = 2.5Jth. For the QW laser, the parameter values discussed above have
been used. The QW laser displays pronounced ROs that are weakly damped compared to
the ROs of the QD laser. This turn-on behavior is expected from experiments [KUN02]
and theoretical works [LUE09, LUE10a], which indicates that this choice of parameters
yields realistic results and is therefore well suited for a comparison of both types of
lasers.

For the QD laser, the RO damping of the slow set of scattering rates ΓS is smaller
than the damping of the reference rates Γref (see Fig. 2.6). Equation (2.31b) reveals
that the RO damping can be split into two parts ΓS = ΓQW + ’additional terms’, where

ΓQW =
√

2γrwN0
ph is the damping rate of the QW laser for the parameters chosen above,

and the additional terms are due to the special carrier scattering dynamics of QD lasers.
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Figure 4.14: Response of photon number
Nph to a rectangular current pulse J(t) of
6 ns width and J = 2.5Jth (black dash-
dotted line) for a QD laser (solid blue
line) and a QW laser (red dashed line)
without feedback (K = 0). Parameters:
For QD laser see Table 2.3 and for QW
laser γQW = γ and P = N0

ph/rw. Modi-
fied from [OTT10].

Since ΓS < Γref holds, we see that the analytic expressions for the damping correctly
describe the weaker RO damping of the QW laser observed numerically (cf. Fig 4.14)
[LUE11].

Khom

(b)

(a)

(c)

Figure 4.15: Bifurcation diagrams of lo-
cal maxima of the photon number Nph

vs. feedback strength K for a QW laser
(a) and for as QD laser (c) for step-
wise increasing K (green dots) and step-
wise decreasing K (red dots). The first
Hopf instability of QW and QD lasers
are marked by KQW

H and KQD
H (vertical

brown dashed lines), respectively. The
homoclinic bifurcation at the end of the
bifurcation cascade is labeled by Khom

(green dashed line). (b): Frequency de-
viations δωs of the ECMs of the system.
Blue solid and dashed lines mark modes
and anti-modes, respectively. Parame-
ters: α = 0.9, C = π, and J = 2.5Jth.
For QD the reference rates and the pa-
rameters of Table 2.3 were used. For QW
laser γQW = γ and P = rwN

0
ph were

used.

To further compare the dynamics of both lasers, we use bifurcation diagrams depicting
local extrema of Nph as a function of K. Figures 4.15(a) and (c) depict bifurcation
diagrams for QW and QD lasers, respectively, for a low α-factor of α = 0.9 and C = π.
For this choice of parameters, only one bifurcation cascade is found by varying K over
its whole range K ∈ [0, 1] (cf. Fig. 4.9(a)). To catch bistabilities, the feedback strength
K has been increased (green dots) and decreased (red dots) stepwise taking for each run
the last τ -interval of the previous run as initial condition. The cascade of the QD laser
has already been studied in detail in Section 4.4.

Figure 4.15(b) depicts the frequency deviations δωs of the ECMs as a functions of K.
Modes and anti-modes are denoted by solid and dashed lines, respectively. The structure
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4. Quantum dot laser with external feedback

of the solutions is the same for both lasers, because the transcendental equation (4.4b)
determining the ECMs is independent of the carrier variables and thus of the band
structure. QW and QD laser become unstable in a supercritical Hopf bifurcation at
KQW

H and KQD
H , respectively. As predicted by the analytical formula for the critical

feedback strength Kc ≡ 2κτink̃c (Eq. (4.49)), below which the laser is guaranteed to
be stable, we have KQW

H < KQD
H , because of the lower RO damping of the QW laser.

Increasing K further, both lasers undergo a period-doubling cascade evolving into chaos,
which has been studied for the QD laser in detail in [OTT10]. The cascade for the QD
laser is more compact (smaller absolute maxima of Nph for fixed K), which corresponds
to smaller sizes of the periodic orbits and the chaotic attractor in phase space. This
is due to the higher RO damping of the QD laser and its internal carrier dynamics.
Further, the K-values of the period doubling bifurcation point, the periodic windows,
and the K-values for the onset of chaos are different for both lasers, which could be
attributed either to their different linear properties, i.e., to different RO frequency and
damping, or to the more complex carrier dynamics of the QD laser. This question will
be addressed at the end of the section. Eventually, at the end of the bifurcation cascade,
the chaotic attractor collapses onto a stable periodic orbit. Both lasers now emit regular
pulse packages as those shown in Figs. 4.6(e) and 4.7(e). For both lasers, this periodic
orbit collides with the anti-mode of the 2nd ECM-pair in a homoclinic bifurcation at
Khom. This leads to stable cw operation on the 2nd ECM, which is for K > Khom the
sole attractor of the system. Our simulations reveal that Khom is independent of the
RO damping, which is the reason why the homoclinic bifurcation takes place for both
lasers at the same value of the feedback strength K. Since KQW

H < KQD
H , the range of

K-values, for which no stable ECM exists and thus no stable cw operation is possible,
is larger for the QW laser.

In the bifurcation diagrams of Fig. 4.16, the dynamics of QW (Fig. 4.16(a)) and QD
(Fig. 4.16(c)) lasers are compared for the same set of parameters used in Fig. 4.15 but
for a larger α-factor of α = 3.2. The number of ECMs (see Fig. 4.16(b)) increases with
the α-factor as discussed in Sec. 4.3 (see Eq. (4.4b)). This is the reason why now four
bifurcation cascades are observed. Blowups of the first bifurcation cascades for QW and
QD lasers are shown in Figs. 4.16(d) and (f), respectively. The magnification region
is marked by a black rectangle in Fig. 4.16(a). For this larger value of α, the lasers
return to stable cw emission at the ends of the bifurcation cascades in boundary crises
of the chaotic attractors instead of homoclinic bifurcations. (In Figs. 4.16(d)–(f) the
bifurcation points of the crises are marked by KQW

cris and KQD
cris for the QW and the QD

laser, respectively.) This results in larger bistability regions, because for up-sweeping K
(green dots) the trajectories remain trapped in the chaotic attractor up to K = KQW

cris

and K = KQD
cris for QW and QD lasers, respectively, while for down-sweeping K (red

dots) the 2nd ECMs of both lasers remain stable upon their annihilation in saddle-node
bifurcations at K = 0.115, and then the trajectories hop to the remaining attractors.
For the QW laser, the remaining attractor is a chaotic attractor, while it is a period-4
orbit for the QD laser. In contrast to the homoclinic bifurcations observed for small
α = 0.9 that were independent of the RO damping, the K-values of the crises of the
chaotic attractors increase with the RO damping. This can be seen in Figs. 4.16(d) and
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.16.: Bifurcation diagrams of local maxima of the photon number Nph vs. feedback strength
K for a QW laser (a) and a QD laser (c) for stepwise increasing K (green dots) as well as stepwise

decreasing K (red dots). The first Hopf bifurcation of QW and QD lasers are marked by KQW
H and

KQD
H (vertical brown dashed lines), respectively. The K values of the boundary crises of the chaotic

attractors marking the ends of the bifurcation cascades are denoted by KQW
cris and KQD

cris (green, dashed
lines) for the QW and the QD laser, respectively. (b): Frequency deviations δωs of the ECMs of the
system. Blue solid and dashed lines mark modes and anti-modes, respectively. (d)–(f): Blowups
of (a)–(c). The magnification region is marked by a black rectangle in (a). Parameters: α = 3.2,
C = π, and J = 2.5Jth. For QD the reference rates and the parameters of Table 2.3 were used. For
QW laser γQW = γ and P = rwN

0
ph were used.
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(f), where KQW
cris < KQD

cris . As a result, the bistability region at the end of the bifurcation
cascade is larger for the QD than for the QW laser.

Further, the injection strengths, at which the first Hopf bifurcations take place, in-
crease linearly with the RO damping as discussed in Subsection 4.6.6, i.e., KQW

H < KQD
H .

(In Figs. 4.16(d)–(f) the Hopf bifurcation points marking the beginnings of the bifur-
cation cascades are marked by vertical brown dashed lines labeled KQW

H and KQD
H for

QW and QD lasers, respectively.) Thus, for up-sweeping K the instability regions of the
bifurcation cascades [KQW

H , KQW
cris ] for the QW laser and [KQD

H , KQD
cris ] for the QD laser

span about the same range of K values.
In the last part of this section, we want to separate the effect of the linear laser param-

eters, i.e., RO frequency and damping, from the effect of the special carrier scattering
dynamics of the QD laser. Therefore, we demand the QW laser to have the same RO fre-
quency and the same damping as the QD laser additionally to the same photon lifetime
τph and photon density N0

ph, i.e., we demand that

ωRO = ωQW =
√

2γQWΓQWN0
ph, and (4.56a)

ΓRO = ΓQW =
γQW

2

(
1 + 2rQWN0

ph

)
(4.56b)

hold. Here, ωRO and ΓRO denote frequency and damping of the QD laser, respectively,
(cf. Table 2.4). From the dynamical equations describing the QW laser (Eqs. (2.19)),
we see that the time scale separation parameter γQW and rQW have to be determined
from Eqs. (4.56). (It then follows from the steady state equation (2.21) that the pump
P is given by P = N0

ph/γ
QW.) Solving Eq. (4.56a) for γQW, yields

γQW =

(
ωRO

)2

2rQWN0
ph

. (4.57)

Inserting this into Eq. (4.56b), solving for rQW, and then plugging the expression ob-
tained for rQW back into Eq. (4.57), yields

rQW =

(
ωRO

)2

2N0
ph

(
2ΓRO − (ωRO)2

) , and γQW = 2ΓRO −
(
ωRO

)2
. (4.58)

The turn-on dynamics of QW and QD laser with this choice of parameters is depicted in
Figure 4.17(a). The QW laser (red dashed line) has a smaller turn-on delay then the QD
laser (blue full line), but by superimposing both time series, we see that RO frequency
and damping of both lasers match exactly (see inset in Fig. 4.17(a)). Figure 4.17(b)
depicts bifurcation diagrams of the photon density of the QW laser (red dots) and the
QD laser (blue dots) for small α = 0.9 and C = π. The diagram thus corresponds
to Fig. 4.15. For both lasers the first Hopf bifurcation takes place at the same value
of the feedback strength KH marked by a vertical brown dash-dot-dotted line. This
was expected from the analytic expression for the feedback strength of the first Hopf
bifurcation (Eq. (4.48a)), which only depends on RO damping and α-factor. Further,
both lasers recover stable cw operation after a homoclinic bifurcation at Khom (green
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Figure 4.17: (a): Response of photon num-
ber to a rectangular current pulse J(t) of
7 ns width and height J = 2.5Jth (black
dash-dotted line) for a QD laser with the
reference set of rates (solid blue line) and
a QW laser (dashed red line) without
feedback (K = 0). The laser parameters
are such that both lasers have the RO
damping and steady state photon num-
ber (cf. Eqs. (4.58)). (b): Bifurcation
diagram of local maxima of the photon
number Nph vs. feedback strength K for
a QW laser (red dots) and a QD laser
(blue dots). The α-factor is α = 0.9 and
the feedback phase C = π. The first
Hopf instability and the homoclinic bi-
furcation at the end of the bifurcation
cascade are marked by KH and Khom,
respectively. Other Parameters: For QD
laser see Table 2.3. For QW laser P =
rQWN0

ph, and γQW and rQW are given by
Eqs. (4.58).

dash-dot-dotted line). However, the K-values of the period-doubling bifurcations leading
into chaos are different for both lasers. The QW laser is more stable than the QD laser,
because it undergoes the first period-doubling cascade into chaos at K = 0.165 compared
to K = 0.123 for the QD laser. Both lasers display large periodic windows (frequency
locking). The QW laser displays a large period-2 window ranging from K = 0.175 to
K = 0.22, while the QD laser displays several periodic windows. In the larger one, the
system undergoes two additional period-doubling bifurcations.

Summing up, we can well describe the first Hopf bifurcation point by Eq. (4.48a),
which shows that it depends only on the RO damping and the α-factor. Since the loci of
the saddle-node bifurcation lines, which are determined by the transcendental Eq. (4.7)),
do not depend on the carrier equations, we conclude that more generally spoken the
bifurcations of the ECMs depend on the internal carrier dynamics only via the RO
damping (cf. Table 2.4). However, the internal carrier dynamics directly influences
the loci of bifurcations of the periodic orbits, which are created in Hopf bifurcations
of ECMs. Thus, the special internal carrier dynamics of QD lasers, which is described
by nonlinear scattering rates in our modeling approach, determines the structure of the
bifurcation cascade.

4.8. Excitability and coherence resonance close to a

SNIPER or a homoclinic bifurcation

In this section, excitability and coherence resonance in QD lasers subject to short optical
feedback are studied in dependence of pump current and band structure. Well-known ex-
amples for excitable systems are spiking neurons [HOD48], cardiac dynamics [MUR93],
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4. Quantum dot laser with external feedback

and nonlinear chemical reactions [ZAI70]. Excitability in laser systems received consider-
able interest in the last years. It was observed experimentally [GOU07, KEL09, KEL11a]
and studied theoretically [WIE02, WIE05] in lasers with optical injection. Furthermore,
excitability was found in lasers with short optical feedback [WUE02, USH07] as well as
in lasers with a long external cavity [GIU97], and it was investigated theoretically in
lasers with saturable absorbers [DUB99, DUB99a].

An excitable optical unit may be used as optical switch that reacts only for suffi-
ciently high optical input signals and could thus be useful for all-optical-signal process-
ing [TRO08a]. Moreover, it can be used for optical telecommunication applications to
reduce noise [KRA03a]: a noisy input pulse triggers a "clean" output pulse.

The effect that an increase of the noise can lead to an increase of correlation, e.g.,
to an increase of the regularity of the spikes observed in the excitable regime, is known
as coherence resonance [HU93a, PIK97]. This effect will be discussed in detail below.
Coherence resonance was shown theoretically in QW lasers with saturable absorber
[DUB99], and it was discussed in QD lasers under optical injection [ZIE13]. Moreover,
it was studied experimentally and theoretically in lasers subject to long optical feedback
in [GIA00] and in [KRA03a], respectively, and has been investigated in semiconduc-
tor superlattices [HIZ06]. It has also been found in systems below a subcritical Hopf
bifurcation [USH05, ZAK10a, ZAK13]. The coherence resonance can be controlled by
delayed optical feedback, which has been shown for neural systems in the framework
of the FitzHugh-Nagumo model (type-II excitability) [JAN04, BAL04]. Moreover, for
type-I excitable systems, delay control of coherence resonance has been discussed in
[HIZ08b, AUS09].

4.8.1. Excitability

For a system to be excitable, three conditions have to be fulfilled [MUR93]:

i The unperturbed system is at a stable steady state.

ii An excitability threshold exists. This means that a subthreshold perturbation decays
rapidly to the stable steady state, while a superthreshold perturbation triggers a large
excursion in phase space (a spike).

iii There exists a refractory phase of duration tr, which the system needs to settle back
to the stable steady state after an excitation. During this refractory phase, the
system cannot be excited again.

In the different laser systems mentioned above, type-I excitability is found, which takes
place either close to a SNIPER bifurcation (in the laser under injection and in the laser
with saturable absorber) or close to a homoclinic bifurcation (in the laser subject to
optical feedback). Figure 4.18 depicts these two phase space configurations, where type-
I excitability is observed [KRA03a]. In Fig. 4.18(a), the two branches of the unstable
manifold of the saddle (open circle) form a smooth invariant closed curve, on which the
stable node (closed circle) lies. This is the phase portrait of an excitable system close to
a SNIPER, which occurs when the two fixed points collide and the unstable manifold of
the saddle forms a homoclinic orbit. Figure 4.18(b) depicts a phase space configuration,
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(a) (b)

perturbation
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threshold

close to 
SNIPER
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homoclinic
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Figure 4.18: The topological configu-
ration leading to type-I excitability:
close to a SNIPER bifurcation, the
two branches of the unstable mani-
fold of the saddle (open circle) form
a smooth invariant closed curve (a),
or close to a homoclinic bifurcation,
they end on the "same side" of the
attractor (filled circle) with respect
to its stable manifold (b). (c): De-
tail enlargement of (a) and (b).
The short unstable manifold of the
saddle acts as excitability thresh-
old.

where both branches of the unstable manifold of the saddle come back to the "same side"
of the stable manifold of the stable node. A homoclinic bifurcation occurs when the
upper branch of the unstable manifold of the saddle becomes parallel to the left branch
of the stable manifold forming a homoclinic loop. Both configurations have in common
that a threshold exists, which is given by the short unstable manifold of the saddle. If
the system is in the stable steady state (lasing fixed point), to excite the system, the
projection of a perturbation onto the eigendirection of the short unstable manifold (red
arrow in Fig. 4.18(c)) has to be large enough to push the trajectory above the stable
manifold of the saddle. Therefore, in parts of the literature (cf. [DUB99, DUB99a,
KRA03a]), the stable manifold of the saddle is denoted as excitability threshold.

The existence of an excitability threshold distinguishs the phase space configurations of
Fig. 4.18 from type-II excitable systems, where a clear-cut threshold is absent [GER02].
Subthreshold perturbations from the stable node decay rapidly back to this steady state,
while superthreshold perturbations lead to a large excursion of the trajectory in phase
space close to the upper branch of the unstable manifold of the saddle. Characteristic for
this type of excitability is a logarithmic scaling of the refractory time with the distance
of the bifurcation point [KUZ95], i.e., with the distance of saddle and node in phase
space. Both phase space configurations of Fig. 4.18 are topologically equivalent. They
both depict the phase portrait close to a codimension-2 bifurcation point (non-central
saddle-node homoclinic bifurcation point), which acts as an organizing center for type-I
excitability in laser systems. A detailed discussion of the bifurcation structure near this
codimension-2 bifurcation point can be found in [KRA03a, WIE07]. The configuration
of Fig. 4.18(a) is observed in injected semiconductor lasers close to the locking boundary
when Adler’s type locking occurs [ZIE13, OLE10] (see locking tongues in Chapter 3).
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However, if a homoclinic tooth is formed (see Fig. 3.5 and discussion in Section 3.3),
the phase portrait is similar to Fig. 4.18(b) with one difference: Figure 4.18(b) depicts
the most simple phase portrait for a real saddle. To describe the situation in a semicon-
ductor laser, the saddle has to be replaced by a saddle-focus. The upper branch of the
unstable manifold of the saddle-focus then winds around the lower branch (short unsta-
ble manifold) that directly connects both fixed points. The time series of trajectories
close to the upper branch of the unstable manifold then consist of a large pulse with
an oscillating tail [GOU07]. Furthermore, the homoclinic loop can be folded n-times,
which leads to n-pulse excitability [WIE02, WIE05a]. Also in semiconductor lasers with
saturable absorber [DUB99, DUB99a] and short optical feedback, the phase portrait
looks like in Fig. 4.18(b) with the saddle replaced by a saddle-focus [KRA03a].

Experimentally, the laser can be excited by spontaneous emission noise [GOU07,
KEL09, KEL11a], by short external optical pulses [WUE02], or by charge carrier vari-
ations introduced by a modulation of the pump current [GIU97]. From a dynamical
system point of view, the first two methods are a perturbation in phase space, while the
latter represents a change of the pump parameter.

It is relatively simple to realize a modulation of the pump current experimentally, but
this method has the disadvantage to shift the bifurcation lines. Thus, one has to be
careful that the modulation is short enough to avoid that the laser follows adiabatically
this change of parameters [KRA03a]. To observe coherence resonance, the strength of
the noise has to be tuned, which can be realized experimentally by superimposing broad
band Gaussian noise to a constant pump current [GIA00]. In our simulations, we vary
the strength of the spontaneous emission and expect that this method yields similar
results as applying the noise to the pump current.

To model the spontaneous emission noise, the dynamical equation (4.1a) for the slowly
varying complex field amplitude E is extended by a stochastic term. With respect to
the dimensionless time t′ = 2κt, it reads

E ′(t′) =
1 + iα

2

[

g(ρe + ρh − 1)− 1
]

E(t′) + k̃eiCE(t′ − τ) +

√

β
rsp(ρe, ρh)

2
ξ(t′), (4.59)

where ξ(t′) denotes the complex Gaussian white noise term ξ(t′), i.e.,

ξ(t′) = ξ1(t
′) + iξ2(t

′), 〈ξi(t′)〉 = 0,

〈ξi(t′)ξj(t̃′)〉 = δi,jδ(t− t̃′), for ξi(t
′) ∈ R, i ∈ {1, 2}.

The spontaneous emission is modeled by bi-molecular recombinations

rsp(ρe, ρh) ≡
ZQD

a W

κ
ρeρh, ZQD

a ≡ aLAN
QD
a , (4.60)

and the rate for the spontaneous emission rsp can be determined by calculating the
coherent interaction of a two-level system, i.e., a single QD, with all resonator modes in
the framework of the second quantization [CHO99] (see discussion in Section 3.2).

Figure 4.19(a) and (c) depict bifurcation diagrams of the local maxima of Nph versus
the feedback strength K for the reference rates, a short delay time of τ = 16, C = π, and
a pump current of J = 2Jth. The bifurcation cascade is thus the same as discussed in
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Figure 4.19.: (a): Bifurcation diagram of the local maxima of the photon number Nph versus feedback
strength K for pump current J = 2Jth (brown dots). The thick blue and the thick green line denote
the steady state photon numbers N s

ph of the stable parts of the first and the second ECM, respectively,
and the black dashed line denotes N s

ph of the unstable antimode. Insets show time traces of Nph for
fixed K. (b): Frequency deviations δωs of the ECMs. Solid and dashed lines denote stable and
unstable solutions, respectively. Hopf and limit points are denoted by red dots and open black circles,
respectively. Blue, red, and black (gray) arrows indicate the feedback strengths of the Hopf points
(KH), the homoclinic bifurcation (Khom), and the boundary crisis (Kcris), respectively. (c): Same
as (a) but for higher J = 3Jth (black dots) and J = 4Jth (gray dots). Parameters: Reference rates,
small α = 0.9, short τ = 16, C = π, and other parameters as in Table 2.3.
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Section 4.4 (cf. Fig. 4.5 (upper panel)). Insets in Fig. 4.19(a) depict time traces of Nph.
With increasing K, at first, a periodic modulation of Nph after the first Hopf bifurcation
is shown followed by a time trace within the chaotic attractor, and eventually strictly
periodic pulse packages close to the homoclinic bifurcation are depicted in the rightmost
inset.

Figure 4.19(c) depicts the bifurcation cascade for larger J = 3Jth (black dots) and for
J = 4Jth (gray dots). The bifurcation diagrams have been obtained by increasing K
stepwise using in each step the last τ -interval of the time series of the previous run as
initial condition. Figure 4.19(b) shows the frequency deviation δωs of the ECMs. Solid
and dashed lines indicate stable and unstable solutions, respectively. Initially, for low K,
only one ECM (blue line) exists, before a new pair of ECMs is created at Ksn = 0.2290
in a saddle-node bifurcation (limit point) indicated by an open black circle. The stable
2nd ECM is depicted by a green and the unstable anti-mode by a black dashed line.
The photon number N s

ph of the stable parts of the first and the 2nd ECM and of the
unstable anti-mode are plotted in Figs. 4.19(a) and (c), by thick blue, thick green, and
black dashed lines, respectively. Initially, the first ECM is stable, before it is destabilized
in a supercritical Hopf bifurcation at KH as discussed in Section 4.6.6. Since the RO
damping increases with the pump current (cf. Eq. (2.30b) and Fig. 2.6), the Hopf
bifurcation points (red dots and blue arrows) shift toward higher K-values as expected
from the analytical expression (4.48a) for KH = 2κτink̃H . For J = 2Jth (Fig. 4.19(a)),
the system evolves on a periodic orbit at the end of the bifurcation cascade, which is
destroyed in a homoclinic bifurcation at Khom = 0.2292 (brown vertical arrow).

For K > Khom, the laser emits in stable cw operation on the 2nd ECM. For pump
currents larger than J > 2.8Jth, the end of the bifurcation cascade is not marked by a
homoclinic bifurcation, but by a boundary crisis [GRE83a] of the chaotic attractor that
collides at Kcris with the saddle (anti-mode) of the pair of ECMs created at K = 0.229.
In contrast to the homoclinic bifurcation that is found to be nearly independent of the
pump current for J ∈ [Jth, 2.8Jth], the feedback strength Kcris, at which the boundary
crisis occurs, depends on the RO damping, and it increases nearly linearly with the
pump current (see dark and light arrow in Fig. 4.19(c) and formula (2.30b)). The inset
in Fig. 4.19(c) shows chaotic pulse packages close to the boundary crisis of the chaotic
attractor.

The laser system is excitable for values of the feedback strength that are slightly
larger than Khom for J < 2.8Jth and analogously for K-values slightly above Kcris for
J > 2.8. In both cases, we have a phase space configuration similar to the one depicted
in Fig. 4.18(b) with the short unstable manifold of the anti-mode acting as pertur-
bation threshold. The response of the system to a superthreshold perturbation is a
large excursion of the trajectory in phase space close to the "ghost" of the limit-cycle
that is destroyed in the homoclinic bifurcation. For the larger values of J depicted in
Fig. 4.19(c), the excursion in phase space is guided by the ruin of the chaotic attractor
that collapses at Kcris. In Figures 4.19(a) and (c), the threshold is given by the differ-
ence of the photon numbers N s

ph of the 2nd ECM (thick green line) and of the anti-mode
(black dashed line). We see that the threshold is very low for K = Khom and increases
with K. This implies that for J > 2.8, when the system restabilizes in a boundary crisis,
the threshold can be tuned by varying the pump current and with it Kcris = Kcris(J).
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For a better understanding of the difference between the excitable behavior close to
the homoclinic bifurcation for J = 2Jth as well as close to the boundary crisis for J = 3,
now, the dynamics in phase space is discussed. Figure 4.20(a)–(b) depict time series

(a) (b) (c)

(d) (e) (f)

Figure 4.20.: Subthreshold (green lines) and superthreshold (blue lines) excitations (a)–(c): Close to
a homoclinic bifurcation for K = 0.229 and J = 2Jth, and (d)–(f): Close to a boundary crisis of the
chaotic attractor for K = 0.23 and J = 3Jth. Blue and green triangles mark the starting points of the
perturbed trajectories for super- and subthreshold perturbations, respectively. Black lines denote the
steady state photon number of the unstable anti-mode of the second ECM-pair. (a) and (d): Time
series of the perturbed trajectories. (b) and (e): Projections of the trajectories onto the (Nph,We)-
plane. Green dots and black crosses indicate the position of the stable second ECM-mode and the
unstable ECM-anti-mode in phase space, respectively. (c) and (f): Blowups of (b) and (e) close to
initial points of trajectories. Parameters: Reference rates, small α = 0.9, short delay time τ = 16,
C = π, and other parameters as in Table 2.3.

and phase space projections onto the (Nph,We)-plane for K = 0.2290, i.e., just below
Khom, where the periodic orbit still exists. A subthreshold perturbation of the system
from the stable 2nd ECM, i.e, the lasing fixed point, (green line) decays rapidly back to
this steady state, while a superthreshold perturbation (blue line) yields strictly periodic
pulse package, i.e., a motion along the periodic orbit. The green and the blue triangle
denote the starting point of the trajectories and the photon number of the anti-mode is
plotted as a black line (see inset in Fig. 4.20(a)). The inter-pulse interval time TISI scales
logarithmically with the distance from the bifurcation point, i.e., TISI ∼ ln |K −Khom|,
as it is expected close to a homoclinic bifurcation [KUZ95] (cf. Fig. 4.8 and discussion in
Section 4.6.2). Note that close to a SNIPER bifurcation, TISI reveals the characteristic
scaling TISI ∼ |K− K sn|−1/2 [HIZ07], where K sn denotes the feedback strength, at which
the SNIPER bifurcation takes place.
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In the phase space projection (Fig. 4.20)(b)), it can be seen that after a power dropout
at the end of each pulse package (nearly vertical part of the trajectory), the trajectory at
first performs pronounced damped oscillations spiraling around the point in phase space,
where the 2nd pair of ECMs has been created at the nearby saddle-node bifurcation,
before it is reinjected into the high gain region during the power dropout. The position
of the 2nd ECM pair can be seen best in Figure 4.20(c) depicting a detail enlargement
of the phase space close to the center of the spiral. Mode and anti-mode are denoted by
a green dot and a black cross, respectively.

The lower panel of Fig. 4.20 depicts the excitability of the laser close to the boundary
crisis for K = 0.23, which is a little below Kcris(J = 3). A superthreshold perturbation
(blue line in Fig. 4.20(d)) yields rather regular pulse packages, although they are not
strictly periodic as the one observed close to the homoclinic bifurcation. Furthermore,
the inter-spike interval time does not obey a specific scaling law as the pulse packages
described before. From the phase space projection in Fig. 4.20(b), we see that the
trajectory has essentially the same shape observed close to the homoclinic bifurcation,
but does not close up, which yields a certain width of the chaotic attractor in phase
space. Note that these regular pulse packages are similar to those observed by Heil et al.
in a QW laser with short optical feedback [HEI01a, HEI03a]. They also correspond to
the low frequency fluctuations (LFF) found in semiconductor lasers subject to moderate
optical feedback from a long external cavity, which will be discussed in-depth below. In
comparison to the phase space configuration in Fig. 4.20(a)–(c) close to the homoclinic
bifurcation, the excitability threshold is much larger. This can be seen best in the detail
enlargements of Figs. 4.20(c) and (f) by comparing the distance of the 2nd ECM marked
by the green dot to the vertical line indicating the steady state photon number of the
anti-mode. (Please note the larger scale of the Nph-axis in Fig. 4.20(f).)

Excitability close to a homoclinic bifurcation as well as close to a boundary crisis of a
chaotic attractor was observed experimentally in [WUE02] and [USH07], respectively. In
these studies, a two-section integrated QW laser design consisting of an actively pumped
gain-section and a passive phase-tuning section was investigated. Such a device yields
very short and strong optical feedback. The lasers were excited by short external optical
pulses.

4.8.2. Coherence resonance

In this section, we show that the regularity of the pulse packages in the excitable regimes
discussed in the last section first increases with the noise strength β, reaches a maximum,
and eventually decays. This counterintuitive effect that more noise can increase the
coherence of the system is known as coherence resonance [HU93a, PIK97].

To characterize the regularity of the pulse packages quantitatively, three measures
are used in the literature [PIK97]. One measure is the correlation time of a stationary
stochastic process y that was introduced by Stratonovich [STR63] as

tcor ≡
∫

R
+
0

|Ψy(s)|ds, where Ψy ≡
1

σ2
y

〈(y(t− s)− 〈y〉)(y(t)− 〈y〉)〉, (4.61)
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where 〈 · 〉 denotes the ensemble average, the variance is given by σ2
y ≡ Ψy(0) = 〈(y(t)−

〈y〉)2〉, and the normalized autocorrelation function of y is denoted by Ψy. Using the
Wiener-Khinchin theorem, which states that power spectral density and autocorrelation
function are a Fourier-pair [GAR02, POM05a, POM07], we calculate Ψy from the en-
semble averaged power spectral density (PSD) (see Appendix D.3 for details). Here, we
take the photon number as stochastic process, i.e., y = Nph. Another measure for the
regularity of the spikes is the normalized standard deviation of the inter-spike interval
time TISI [JAN03, HIZ06, BRA09]

RT ≡
√

〈T 2
ISI〉 − 〈TISI〉2
〈TISI〉

, (4.62)

which is also known as normalized fluctuations [PIK97, BEA08]. A third measure is the
signal-to-noise ratio [HU93a], which is the ratio of the height of the power spectral peak
h and its normalized width ∆ω/ω0, where ω0 is the frequency of the peak maximum
and ∆ω is the full width at h1 ≡ e−1/2h. Figure 4.21(d) depicts tcor (red triangles,
right y-axis) and RT (blue dots, left y-axis) as functions of the noise strength β close
to the homoclinic bifurcation for K = 0.2292 and J = 2Jth. Furthermore, tcor is shown
close to the crisis of the chaotic attractor for K = 0.2314 and J = 3Jth (black stars,
right y-achsis) as well as for K = 0.24056 and J = 4Jth (gray hexagons, right y-achsis).
Figures 4.21(a)–(c) and Figs. 4.21(e)–(g) depict time traces of the system close to the
homoclinic bifurcation for J = 2Jth and close to the boundary crisis for J = 3Jth,
respectively, at β-values indicated by gray dashed vertical lines in Fig. 4.21(d). At
first, the coherence close to the homoclinic bifurcation is discussed. Generally, the time
between two excitations TISI can be decomposed into the time needed to activate the
system ta and the refractory time tr, which the system needs to settle back to the rest
state. In our system, the rest state is the stable 2nd ECM, and the refractory time is
given by the time the system needs to spiral back to the 2nd ECM after one excitation.
This means that tr is fixed by the internal dynamics of the system, while ta depends
on the noise strength β. For low values of β, the activation time ta is long compared
to tr (see Fig. 4.21(a)). Increasing β, it becomes easier for the system to overcome the
excitation threshold and the pulse packages arise more regularly (see Fig. 4.21(b)). This
is indicated by an increase of tcor and a decrease of RT . Increasing β further, pulse
packages are excited more often, but the regularity of their appearance decreases and
they are additionally deformed by the noise (see Fig. 4.21(c)). This leads to a decrease
of tcor and an increase of RT . The maximum of tcor does not coincide exactly with the
minimum of RT . This is expected, because tcor accounts for coherence in periodicity
of the pulse packages as well as coherence in amplitude fluctuations, while RT only
measures the periodicity of the pulse packages.

Higher pump currents of J = 3Jth and J = 4Jth lead to higher excitability thresholds
(see Fig. 4.19(c)). Thus, as far as coherence resonance is discussed, a maximum of the
correlation is therefore expected at a higher level of the noise. This is the reason why
the maximum of tcor shifts to higher values of the noise strength β with increasing β (see
black stars and gray hexagons in Fig. 4.21(d) for J = 3Jth and J = 4Jth, respectively).
By comparing the time traces taken at the maxima of tcor for J = 2Jth and J = 3Jth,
which are depicted in Fig. 4.21(b) and (f), respectively, two effects are prominent. On
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4. Quantum dot laser with external feedback

the one hand, the higher noise level in Fig. 4.21(f) becomes obvious, and, on the other
hand, we see that the peak heights of the pulse package are varying more strongly in
Fig. 4.21(f) than in Fig. 4.21(b), i.e., the amplitude jitter of the pulse packages is larger.
The variation of the heights of the pulse maxima is the reason why the measure RT

fails at higher values of the noise strength and has not been depicted for J = 3Jth and
J = 4Jth. For J = 3Jth and J = 4Jth, the dynamics beyond the coherence maximum is
dominated by the noise, which can be seen in Fig. 4.21(g) depicting for J = 3Jth a time
trace right to the maximum of tcor.
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Figure 4.21.: (a)–(c): Time series for J = 2Jth and K = 0.2292 for different β indicated by gray dashed
lines in (d). Central panel (d): Normalized standard deviation of inter-spike interval RT (blue dots)
for J = 2Jth and coherence time tcor versus noise strength β for J = 2Jth (red triangles), J = 3Jth
(black stars), and J = 4Jth (gray hexagons). The feedback strength is x K = 0.22920 for J = 2Jth,
K = 0.23140 for J = 3Jth and K = 0.24506 for J = 4Jth, respectively. (e)–(g): Time series for
J = 3Jth and K = 0.2314 for different β indicated by gray dashed lines in (d). Parameters: Small
α = 0.9, τ = 16, C = π, and other parameters as in Table 2.3.
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4.8. Excitability and coherence resonance close to a SNIPER or a homoclinic bifurcation

Coherence resonance has already been observed experimentally in QW lasers subject
to long external feedback by Giacomelli et al. [GIA00] close to a LFF-chaotic attractor.
The LFF regime is characterized by chaotic intensity oscillations on a short time scale
(10–100GHz ) overlayed by sudden intensity dropouts, which occur on a much longer
time scale (1–10ms ). These are known as power dropouts [FIS96] and they are chaotic
meaning that the time between power dropouts is pseudo-randomly distributed [SUK99,
FLU11a]. The LFF dynamics is deterministic and can be understood as follows [SAN94,
TAR95b, FIS96]: in between the intensity dropouts, the trajectory displays chaotic
itinerancy wandering around many attractor ruins with a general drift to the maximum
gain mode (see ellipse in Fig. 4.2). This drift leads to a power build-up. Before reaching
the maximum gain mode, it collides with an anti-mode in a crises, and a power dropout
takes place. For short feedback, we only have a few (in our case even only one) attractor
ruins formed by the chaotic saddles of the unstable modes. Thus, the time needed for
the trajectory to wander around in phase space is much shorter (0.1–10 ns ) than in the
LFF regime [HEI01a, HEI03a, TAB04]. Further, the pulse packages are more regular
than the chaotic intensity pulsation between the power dropouts observed in the LFF
regime, and for lower pump level even completely regular pulse packages are possible as
discussed above and in Section 4.4.

The small number of ECMs for short feedback is also the reason for the dependence of
the dynamics on the feedback phase C in this regime. Intuitively, this can be understood
as follows: geometrically, variations of C change the positions of the ECMs on the ellipse
in Fig. 4.2. Previous to a change in C the laser emits on the most stable ECM. After a
change in C, the lasing takes place at the ECM that is most stable for the new value of
C. For short feedback, this ECM can have a considerably different inversion ρinv, which
results in changes of the laser intensity. Further, it is also possible that for the new value
of C none of the ECMs is stable (see for example Figs. 4.7(b)-(e)), then the intensity of
the laser is periodically modulated, quasiperiodic, or even chaotic. In contrast, for long
delay, hundreds of ECMs exist on the ellipse. Thus, the ECM that is most stable after
the change in C has a similar inversion – and a similar intensity – than the ECM, on
which the laser emitted previous to the change in C.

The phase dependence in the short cavity regime permits to shift the bifurcation
cascade and, thus, the excitability region, which is located close to the homoclinic bi-
furcation at Khom for J ≤ 2.8Jth and close to the crisis of the chaotic attractor at
Kcris = Kcris(J) for J > 2.8Jth (see Fig. 4.19), into a range that is well accessible in
experiments. Further, the current dependence of Kcris permits to shift the excitability
threshold, and with it the maximum of the coherence to a noise level, which is well
accessible in experimental investigations.

4.8.3. Impact of band structure

In this subsection, the dependence of the coherence resonance on the band structure is
discussed. Therefore, we fix the pump current to J = 2Jth and keep the other parameters
as in the previous section. Figure 4.22(a) and (b) depict the correlation time tcor (red
triangles) in dependence of the noise strength β for the slow and the fast set of scattering
rates, respectively. For the slow scattering rates, the system is excitable and close to
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fast ratesfast ratesslow rates (a)  (b)

Figure 4.22.: Normalized standard deviation of inter-spike interval RT and coherence time tcor for
small α = 0.9 and short τ = 16. (a): Slow carrier scattering rates and K = 0.2292. (b): Fast carrier
scattering rates and K = 0.2610. Parameters: J = 2Jth, C = π, and other parameters as in Table 2.3.

a homoclinic bifurcation, which takes place at the same value Khom = 0.229 as for the
reference rates (cf. Fig. 4.19). This is why the coherence maximum is also found at very
small value of the noise strength β. Here, additional to tcor, the normalized standard
deviation of the inter-spike interval time RT can be used as a measure for coherence
(blue dots in Fig. 4.22(a)). In comparison to the reference rates (compare to leftmost
resonance curves in Fig. 4.21(d)), tcor and RT show a strongly broadened maximum and
minimum, respectively.

For the fast scattering rates the chaotic attractor collapses in a boundary crisis at
J = 2Jth, in contrast to the slow and the reference, where a homoclinic bifurcation takes
places. Since Kcris = 0.26 > Khom, the threshold is larger than for the slow and the
reference rates and the maximum of tcor is found at large values of the noise strength.
At these high noise strengths, it is not possible to measure RT , because of the high
amplitude variations.

4.9. Summary

In this chapter, the microscopically based rate equation model for a QD laser of Chapter 2
has been extended by a Lang-Kobayashi-type field equation to take into account delayed
optical feedback. At first, the structure of the basic rotating wave solutions, i.e., external
cavity modes (ECMs), of the dynamic equations was studied analytically, and it has then
been compared to the structure of solutions of the QD laser under injection. The ECMs
yield cw emission of the laser, and they form the "backbone" for more complex dynamics.
This has been investigated for the example of the regular pulse packages observed for
short delay times. These are the analogon of the low frequency fluctuations (LFFs) found
in the long cavity regime. In general, semiconductor lasers subject to delayed feedback
show a rich phenomenology of complex dynamics. Here, the routes to chaos and the
dependence of the instability regions on the band structure, the pump current, and the
phase-amplitude coupling have been studied in detail. As a result, it can be stated that
the stability of the laser increases with enhanced RO damping, which may in QD lasers
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be achieved by shallow QDs, i.e., a fast carrier exchange between QDs and surrounding
carrier reservoir.

From particular interest is the Hopf instability of the first ECM limiting the parameter
region, where stable cw emission of the QD laser can be guaranteed. A formula for the
first Hopf bifurcation line has been derived, and it has then been discussed for particular
ECMs. This analysis reveals that the region of stable cw emission on the one hand
increases linearly with the RO damping, and that on the other hand a small phase-
amplitude coupling is favorable for stable cw operation. A comparison with the Lang-
Kobayashi-model for a conventional QW laser has shown that this scattering dynamics
has a strong impact on the structure of the bifurcation cascades in the instability regions.

In a second part of this chapter, it has been discussed how a QD laser subject to
feedback may be employed as an excitable optical unit. At their creation in a saddle-
node bifurcations, the mode solutions of the ECM pairs are always stable. Thus, in the
regions with complex dynamics the creation of an ECM pair yields bistability between
the newly created ECM and the more complex periodic or chaotic attractor. Increasing
the feedback strength K, the periodic or chaotic attractor collapses in a homoclinic
bifurcation or a boundary crises. Little above this bifurcation, the laser is excitable,
because a superthreshold perturbation provokes an excursion of the trajectory along
the ghost of the complex attractor and coherence resonance occurs. It has been found
that the feedback strengths, at which the boundary crisis takes place, increases with the
RO damping, and thus with the pump current. This permits to shift the excitability
threshold and, consequently, the maximum of the coherence, which could facilitate an
experimental investigation of the coherence resonance.
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Mode-locked laser





CHAPTER

FIVE

MODE-LOCKED LASER

5.1. Introduction

Passively mode-locked (ML) semiconductor lasers are of broad interest as sources of
ultrashort picosecond and sub-picosecond optical pulses with high repetition rates. These
sources are, among other applications, needed for data-communication, optical clocking,
high speed optical sampling, all-optical clock recovery, and microscopy [AVR00, LEL07,
LUE11b]. Compared to actively [SCH91c] and hybrid ML lasers, they are simpler to
fabricate and to handle. However, their major drawback is their relatively large timing
jitter due to the absence of an external reference clock [LIN10c]. Since timing fluctuations
degrade the performance of the laser, a lot of efforts have been made to reduce them.
An efficient and inexpensive method for timing jitter reduction based on the use of
all-optical feedback from an external cavity is discussed in this chapter.

One basic timescale of the passively ML laser is the inter-spike interval time TISI,0,
which is the inverse of the pulse repetition frequency. The optical feedback introduces
an additional timescale into the system, namely the roundtrip time of the light in the
external cavity τ . The experimental setup we aim to model is sketched in Fig. 5.1. The
laser has an actively pumped gain section (gain) and saturable absorber (SA). A part
of the emitted light is reflected back into the laser diode from a distant mirror forming
an passive, external cavity with delay time τ . The inter-spike interval TISI, i.e., the
temporal distance of subsequent pulses, can slightly differ from the inter-spike interval
of the solitary laser TISI,0.

By measuring the radio frequency (rf)-linewidth of a passively ML quantum well lasers
as done already in 1993 by Solgaard and Lau [SOL93], it was shown that optical feedback
can have a stabilizing or a de-stabilizing effect on the laser dynamics depending on the
ratio of τ and TISI,0. Further, the authors observed a pulling of the repetition rate of the
pulses by variation of τ . Both effects have been recently observed in experiments with
quantum dot lasers [MER09, BRE10, LIN10e, LIN11d]. In addition, the dependence of
the timing jitter on the pump current and the feedback strength has been studied for a
fixed ratio of τ and TISI,0 [BRE10, LIN11f] and for variable τ [FIO11].

In contrast to the wealth of experimental results, only few theoretical works have
been published on this subject. The bifurcation scenarios of a free-running quantum dot
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5. Mode-locked laser

SA GAIN

Figure 5.1: Sketch of a linear-cavity
Fabry-Perot mode-locked two-section
laser subject to external optical feed-
back from a distant mirror. Saturable
absorber and gain section are denoted
by SA and GAIN, respectively. TISI

is the inter-spike interval time of the
laser subject to feedback with delay
time τ .

laser with optical feedback have been studied in [OTT10, OTT12, GLO12] as discussed
in detail in Chapter 4. In [MUL06] the authors study the amplitude and timing jitter
of a quantum dot ML laser subject to optical feedback with τ = 5TISI,0 (intermediate
feedback delay time). In [AVR09] the authors discuss the impact of a variation of the
ratio τ/TISI,0 on the dynamics of a ML quantum well laser for τ -values ranging from
τ ≈ 0.3TISI,0 to τ ≈ 3.1TISI,0 (short feedback delay time). They identify different
dynamical regimes of ML laser operation: main resonances are found when τ is an
integer multiple of TISI,0, higher order resonances take place when τ/TISI,0 is a rational
number, and non-resonant regimes are detected for values of τ/TISI,0 in between two
resonant regimes. The dynamics in each regime will be discussed in detail in Section 5.4
of this chapter. For a short external cavity, the impact of different ratios of τ/TISI,0 on
the pulse characteristics of a quantum dot ML laser model has recently been studied in
[SIM12a].

In the theoretical studies mentioned above, finite-difference traveling wave models
have been used. Here a delay differential equations (DDE) model for a passively mode-
locking laser is studied. This model generalizes the model of Haus [HAU75, HAU00] to
the case of large gain and loss per cavity roundtrip, which is typical for semiconductor ML
lasers. The model has been extended to take into account a quantum dot material model
[VIK06, VLA10], hybrid mode-locking [VLA10a, FIO10], and external optical injection
[REB11]. Further, for a quantum dot model with ground- and excited state lasing,
a multi-section modification of the DDE model was proposed, which permits to take
into account more symmetric cavity designs and tapered waveguides [ROS11e, ROS11d,
XU12] (see also Ref. [VLA09], where a multi-section model for a linear-cavity ML laser
was developed). The DDE model has the advantage of a strongly reduced computational
cost. On the one hand this permits us to study the regime of longer external cavities
with τ up to 70TISI,0. This is of experimental interest, because long fiber based cavities
are experimentally easier to handle than shorter external cavities consisting of external
mirrors. Thus, long fiber based cavities they are frequently considered in experiments
[SOL93, LIN10e, LIN11d, LIN11f, BRE10, FIO11, ROS12b]. On the other hand, the
DDE approach permits to study the dependence of the timing jitter on feedback strength
and delay time over the whole TISI,0-interval between two subsequent main resonances
and not only for the exact main resonances discussed in [MUL06].
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5.2. Model

The chapter is organized as follows: at first, the DDE model with optical feedback
is derived in Section 5.2. Then, the mode-locking dynamics of the free running laser is
studied in Section 5.3, before discussing in Section 5.4 the resonance structure of inter-
spike interval time TISI,0 and delay time τ for the ML laser subject to optical feedback
in the regimes of intermediate and long delays. Further, additional effects introduced by
a nonzero amplitude-phase coupling are addressed in Section 5.5. Afterward, different
methods to measure the timing jitter are discussed in Section 5.6, and the impact of
the resonances of TISI,0 and τ on the timing jitter are investigated in Section 5.7, before
concluding in Section 6.

5.2. Model

In this section the derivation of the DDE model for a model locked laser (MLL) in-
troduced in [VLA05] is reviewed, and an extension of the model that permits to study
external optical feedback is discussed. Further, the assumptions made in the derivation
of the DDE model are reviewed.

5.2.1. Derivation of the DDE model with feedback

To derive the dynamical equations we consider a standard traveling wave model for a
quantum well semiconductor laser [SCH88j, SCH90b, TRO94, BAN01]1

±∂zE±
r (t

′, z) +
1

v
∂t′E±

r (t
′, z) =

grΓr

2
(1− iαr)[nr(t

′, z)− ntr
r ]E±

r (t
′, z), (5.1a)

∂t′nr(t
′, z) = jr(t)− γrnr(t

′, z)− vgrΓr[nr(t
′, z)− ntr

r ]
∑

±

∣
∣E±

r (t
′, z)
∣
∣
2
. (5.1b)

In this model, the longitudinal spatial dependence of the electric field

E(t′, z) ≡
(

E+
r (t

′, z)e−ikz + E−
r (t

′, z)e+ikz
)

eiΩ0t′ (5.2)

is expressed as a superposition of two counter-propagating waves in slowly varying en-
velope approximation, where E+

r and E−
r denote the dimensionless slowly varying ampli-

tudes of the forward and the backward traveling waves, respectively. The field is scaled
such that nph = |E±|2 is the photon density.

The partial derivatives with respect to the (longitudinal) z-coordinate and time t′

are denoted by ∂z and ∂t′ , respectively. The index r ∈ {g, q, p} labels gain section (g),
saturable absorber (q), and passive section (p), respectively. The reference propaga-
tion constant fulfills the linear dispersion relation k ≡ Ω0/v with the (optical) carrier
frequency Ω0 and the group velocity v. The latter is assumed to be the same in all
sections. The linear gain (loss) coefficients are denoted by gr, Γr are the transverse con-
finement factors, γr are denote the relaxation rates of the carrier densities, and αr are
the linewidth enhancement factors. The carrier densities are denoted by nr, and ntr

r are

1Note that Nr, gr, v, γr, jr, and |E|2 have the following dimensions [TRO94]: [Nr] = Length−3,
[gr] = Length2, [v] = Length/Time, [γr] = Time−1, [jr] = Time−1 × Length−3,

[
|E|2

]
= Length−3.
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Figure 5.2: Sketch of the ring cavity laser with external optical feedback
used for the derivation of the DDE model. The laser consists of five
sections: a saturable absorber section (SA), a gain section (GAIN), an
external cavity (EC), a passive section (P), and a Lorentzian filter (red
bar). The field amplitudes in the saturable absorber, in the gain section,
and in the passive section are denoted by Eq, Eg and Ep, respectively.
The facets between the sections are located at zi for i = 1, . . . , 4. κ1

and κ2 are non-resonant and out-coupling losses located at z1 and z2,
respectively. r and rec are intensity transmission and reflection coeffi-
cients at the interface between gain section and external cavity and at
the interface in the external cavity, respectively.

the transparency densities of the corresponding sections. The pump parameters jr are
proportional to the pump current densities, where only the gain section is electrically
pumped, i.e., jr = 0 for r ∈ {q, p}.

One main assumption of the DDE model is that the light propagates only in one
direction, and the other direction is suppressed (unidirectional lasing). Without loss of
generality, a clockwise propagation is assumed, i.e., Er ≡ E+

r and E−
r ≡ 0. The ring

cavity design implies a periodic boundary condition

Er(t′, z) = Er(t′, z + L), (5.3)

where L is the length of the laser. This boundary condition fixes the possible propagation
constants of the cavity modes and the frequency of the carrier wave to

k ≡ n
2π

L
, and Ω0 ≡ n

2π

T
for : n = ±1,±2, . . . ,

where we have introduced the cold-cavity roundtrip time T ≡ L/v, which is the roundtrip
time of the light in the cavity without lasing activity. Non-resonant and out-coupling
losses at the interface between gain and absorber section (z = z2) are taken into account
by the boundary condition

Eg(t′, z2) =
√
κ2Eq(t′, z2). (5.4)

To simulate for example a linear Fabry-Perot laser of length LFP and intensity reflectiv-
ities r1 and r2 at the facets, one may take into account the internal losses αi and the
mirror losses r1 and r2 at the facets of the Fabry-Perot laser by κ1 ≡ r1r2 exp(−αiLFP).
The length of the corresponding ring laser is L = 2LFP [ROS11d].

Figure 5.3 sketches the optical spectrum of a free running MLL consisting of a comb
of evenly spaced lines having a frequency spacing of ∆ν ≡ 1/T . Which of these modes
lase and take part at the mode-locking process is determined by the shape of the gain
spectrum of the semiconductor material (gray envelope). In the DDE model, the finite
gain spectral bandwidth is taken into account in a lumped element approach [RAF11] by
a bandwidth-limiting element, i.e., a filtering function that is located between z1 and z4.
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Power
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filtering
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Figure 5.3: Sketch of an optical spec-
trum of a ML laser. The frequency
spacing of the cavity modes (black
vertical lines) is ∆ν, the frequency
detuning between the frequency, at
which the filtering function f̂ has its
maximum (thick red dashed line),
and the frequency of the carrier
wave (thick blue line) is marked by

∆Ω. The FWHM of f̂ is denoted
by γ.

In the following the filter is assumed to be infinitely thin, i.e., z1 = z4. In the frequency
domain the filter can be expressed as

Êq(ω, z1 + L) =
√
κ1f̂(ω)Êp(ω, z1 + L) =

√
κ1f̂(ω)Êp(ω, z4), (5.5)

where Êq,p denote the Fourier transformed field amplitudes2, out-coupling losses at the

facet z = z1 are taken into account by κ1, and f̂ is the filtering function in the frequency
domain (see Fig. 5.3). Further, in the last equality of Eq. (5.5) the periodic boundary
condition of Eq. (5.3) has been employed. In this derivation a Lorentzian shaped filter-
ing function is chosen, which delivers an analytical derivation of an DDE for the field
amplitude. It reads in a frame of reference rotating with the frequency Ω0 of the carrier
wave

f̂(ω) ≡ γ

γ + i(ω −∆Ω)
, (5.7)

where γ is the full-width at half maximum (FWHM), and ∆Ω ≡ Ωmax−Ω0 is the detuning
of the frequency of the maximum of the gain spectrum Ωmax (thick dashed read line in
Fig. 5.3) from the frequency of the carrier wave Ω0 (thick blue line in Fig. 5.3). With
increasing γ more modes can lock and shorter pulses are obtained.

In each roundtrip of the light in the internal cavity, a part of the light is coupled out
at the facet z = z3 into an external ring cavity (see Fig. 5.2), which is assumed to be a
passive section, i.e., in this section we have n = ntr, and the right hand side of Eq. (5.1a)
vanishes. The external cavity has an additional facet, where a part of the light is coupled
out, which permits to model the losses in the external cavity. In the coordinates (t′, z),
the boundary condition for the field at the facet z = z3 reads

Ep(t
′, z3) =

√
1− r

{

Eg(t
′, z3) +

∞∑

l=1

KlEg(t
′ − lτ, z3)

}

, (5.8)

2The Fourier transform Ft→ω and its inverse F−1
ω→t are defined by

f̂(ω) = Ft→ω[f(t)] =

∫

R

f(t)e−iωtdt and f(t) = F−1
ω→t[f̂(ω)] =

1

2π

∫

R

f̂(ω)eiωtdω, (5.6)

respectively, where ω = 2πν.
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here we have introduced the intensity reflection coefficient r at z = z3, rec is the intensity
reflection coefficient at the facet of the external cavity, and τ is the roundtrip time of the
light in the external cavity. Further, the feedback strengths Kl ≡ r(1−rec)

l/2(1−r)l/2−1

of order l for l = 1, 2, . . . have been introduced. The first term of Eq. (5.8) represents
the amplitude of the field Eg that is directly transmitted through the facet at z = z3,
while the sum takes into account the contributions of Eg after l = 1, 2, . . . roundtrips in
the external cavity. In terms of the slowly varying amplitudes Ep and Eg, this can be
rewritten as

Ep(t′, z3) =
√
1− r

{

Eg(t′, z3) +
∞∑

l=1

KlEg(t′ − lτ, z3)e
−ilC

}

, (5.9)

where we have introduced the phase of the light in the external cavity C ≡ Ω0τ .
The wave equation for the field amplitudes (Eq. (5.1a)) is solved by every function

that depends only on the reduced coordinate t ≡ t′− z/v, which motivates the following
change of coordinates to a co-moving frame3

Σ : R2 → R
2 (t′, z) 7→ (t, ζ) ≡ (t′ − z

v
,
z

v
). (5.10)

Rewriting Eqs. (5.1a) - (5.1b) in the coordinates (t, ζ), we obtain the following set of
ordinary differential equations

∂ζAr(t, ζ) =
1

2
(1− iαr)Nr(t, ζ)Ar(t, ζ), (5.11a)

∂tNg(t, ζ) = Jg(t)− γgNg(t, ζ)−Ng(t, ζ)
∣
∣Ag(t, ζ)

∣
∣
2
, (5.11b)

∂tNq(t, ζ) = −Jq(t)− γqNq(t, ζ)− r̃sNq(t, ζ)
∣
∣Aq(t, ζ)

∣
∣
2
, (5.11c)

where we have introduced the rescaled amplitudes of the electric field Ar ≡
√

vggΓgEr,
rescaled carrier densities Nr ≡ vgrΓr[nr − ntr

r ] that are proportional to the carrier inver-
sion in the corresponding section, and rescaled pump rates Jg ≡ vggΓg(jg − γgn

tr
g ) and

Jq ≡ vgqγqΓqn
tr
q

4. Further, r̃s ≡ gqΓq/ggΓg = Esat,g/Esat,q is the ratio of the saturation
energies of gain and absorber section, where Esat,g ≡ (vΓggg)

−1 and Esat,q ≡ (vΓqgq)
−1

define the saturation energies of gain and absorber section, respectively, ǫ0 is the vacuum
permittivity, and ǫbg is the background permittivity.

3The Jacobian of the transformation Σ is given by

DΣ =

(
1 − 1

v
0 1

v

)

.

Thus, the differentials transform like

∂t′ =

(
dΣ1

dt′

)

∂t +

(
dΣ2

dt′

)

∂ζ = ∂t, ∂z =

(
dΣ1

dz

)

∂t +

(
dΣ2

dz

)

∂ζ = −1

v
(∂t − ∂z),

where Σ1 and Σ2) are the components of Σ.
4Note that Ar, Nr, and Jg,q have the following dimensions: [Ar] = (Time× Length)−3/2, [Nr] =
Time−1, [Jg,q] = Time−2.
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The saturation energy is the energy of a short pulse that decreases the inversion
to 1/e of its initial value [YAM93, HAU93, HAU00, KAE98]. This can be seen from
Eqs. (5.11b) and (5.11c) as follows: under the assumption that the pulse duration τp
is much smaller than the carrier relaxation times γ−1

g and γ−1
q and the pump rates Jg

and Jq, the first two terms on the right hand sides of Eqs. (5.11b) and (5.11c) can be
neglected. Integrating the equations for fixed ζ = ζ0 with respect to local time t over one
cavity roundtrip, yields an exponential decay of Nr with the saturation energies Esat,r

as decay constants

Nr, (t, ζ0) = Nr(t− T, ζ0)e
−vΓrgr

∫ t
t−T |Er(s)|2ds = Nr(−T, ζ0)e

−
∫ t
t−T |Er(s)|

2ds

Esat,r , (5.12)

for r = g and r = q, respectively.
The evolution of the field in the gain and absorber sections is obtained by integrating

Eq. (5.11a) over these sections

Ag(t, ζ3) = e
1
2
(1−iαg)G(t)Ag(t, ζ2), Aq(t, ζ2) = e−

1
2
(1−iαq)Q(t)Aq(t, ζ1), (5.13)

where dimensionless carrier densities

G(t) ≡
∫ ζ3

ζ2

Ng(t, ζ)dζ and Q(t) ≡ −
∫ ζ2

ζ1

Nq(t, ζ)dζ, (5.14)

have been introduced that are integrated over gain and absorber sections, respectively.
The passive section is transparent to the laser light resulting in Np ≡ 0. Thus, integrating
Eq. (5.11a) over the passive section, yields

Ap(t, ζ4) = Ap(t, ζ3). (5.15)

To derive differential equations for G and Q, Eqs. (5.11b) and (5.11c) are integrated
with respect to ζ over gain and absorber section, respectively,

∂tG(t) = Jg(t)− γgG(t)−
∫ ζ3

ζ2

Ng(ζ)|Ag(t, ζ)|2dζ, (5.16a)

∂tQ(t) = Jq(t)− γqQ(t) + r̃s

∫ ζ2

ζ1

Nq(ζ)|Aq(t, ζ)|2dζ, (5.16b)

where we have introduced the spatially averaged pump parameters

Jg ≡
∫ ζ3

ζ2

Jg(ζ)dζ, and Jq ≡
∫ ζ2

ζ1

Jq(ζ)dζ.

By multiplying Eq. (5.11a) by the complex conjugate field amplitude A∗
r and the complex

conjugate of Eq. (5.11a) by Ar and then adding up the resulting equations, one obtains

∂ζ
∣
∣Ar(t, ζ)

∣
∣
2
= Nr(t, ζ)

∣
∣Ar(t, ζ)

∣
∣
2
, for r ∈ {g, q}. (5.17)

Integrating Eq. (5.17) over gain and absorber sections, respectively, yields

∫ ζ2,ζ3

ζ1,ζ2

Nq,g(t, ζ)
∣
∣Aq,g(t, ζ)

∣
∣
2
dζ =

∣
∣Aq,g(t, ζ2,3)

∣
∣
2 −

∣
∣Aq,g(t, ζ1,2)

∣
∣
2
, (5.18)
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5. Mode-locked laser

which permits to replace the integral terms in the dynamical equations for G and Q
(Eqs. (5.16)) in terms of the field intensities at the facets. By inserting Eqs. (5.13) into
Eq. (5.18), the carrier equations (Eqs. (5.11b) - (5.11c)) can be rewritten in terms of G
and Q

∂tG(t) = Jg − γgG(t)− κ2e
−Q(t)

(
eG(t) − 1

) ∣
∣A(t)

∣
∣
2
, (5.19a)

∂tQ(t) = Jq − γqQ(t)− r̃se
−Q(t)

(
eQ(t) − 1

) ∣
∣A(t)

∣
∣
2
, (5.19b)

where we have introduced A(t) ≡ Aq(t, ζ1).
Next, an integral equation for the evolution of the field amplitude during one roundtrip

in the internal cavity is derived. Rewriting Eq. (5.5) in the time domain, we obtain from
its right hand side a convolution product (⋆) of the filtering function in the time domain
f and Ep

Eq(t′, z1 + L) =
√
κ1

(

f ⋆ Ep
)

(t′, z1 + L) =
√
κ1

(

f ⋆ Ep
)

(t′, z4). (5.20)

Applying the coordinate transformation of Eq. (5.10), we can rewrite Eq. (5.20) in terms
of (t, ζ) and the rescaled field amplitudes Aq and Ap

Aq(t− T, ζ1 + T ) =
√
κ1

∫ t−T

−∞
f(t− T −Θ)Ap(Θ, ζ4)dΘ, (5.21)

where we have assumed that Aq(Θ, ζ4) = 0 holds for Θ > t − T to preserve causality.
This is why we obtain t−T instead of infinity as upper limit of the integration. The field
amplitude Ap(Θ, ζ4) on the right hand side of Eq. (5.21) can be expressed in terms of
A(t) ≡ Aq(t, ζ1) by employing the boundary conditions of Eqs. (5.4) and (5.9) thathave
to be rewritten in terms of the coordinates (t, ζ) and by using the evolution of the field
given by Eqs. (5.13), which yields

A(Θ, ζ4) = R(Θ)A(t). (5.22)

Where the R-term that describes the evolution of the field equation during one roundtrip
in the internal cavity is given by

R(Θ) ≡
√
κe

1
2
(1−iαg)G(Θ)− 1

2
(1−iαq)Q(Θ) and κ ≡ (1− r)κ1κ2. (5.23)

The right hand side of Eq. (5.21) can also be rewritten in terms of A(t) by employing the
periodic boundary condition of Eq. (5.3), which expressed in terms of the coordinates
(t, ζ) reads

Aq(t, ζ1) = Aq(t− T, ζ1 + T ). (5.24)

To see this, at first, we introduce the notation Ẽ(t, ζ) ≡ E ◦ Σ−1(t, ζ) and E(t′, z) =
Ẽ ◦ Σ(t, z) to stress that E = E(t′, z) and Ẽ = Ẽ(t, ζ) are different functions that are
connected by the isomorphisms Σ and Σ−1, i.e., by the coordinate transformation of
Eq. (5.10) and its inverse Σ−1, respectively. Employing that Σ implies t ≡ t′ − z1/v and
ζ1 ≡ z1/v, yields the following relations

E(t′, z1) = Ẽ ◦ Σ(t′, z1) = Ẽ(t′ − z1
v
,
z1
v
) = Ẽ(t, ζ1), (5.25a)

E(t, z1 + L) = Ẽ ◦ Σ(t, z1 + L) = Ẽ(t′ − z1
v

− T,
z1
v

+ T ) = Ẽ(t− T, ζ1 + T ). (5.25b)
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5.2. Model

The first terms of Eq. (5.25a) and Eq. (5.25b) are equal due to the periodic boundary
condition of Eq. (5.3). This implies equality of the last terms. Rewriting the latter in
terms of Aq = Aq(t, ζ1), then yields the relation (5.24). With the help of Eqs. (5.22) and
(5.24), Eq. (5.21) can be rewritten as

A(t) =

∫ t−T

−∞
f(t− T −Θ)R(Θ)A(Θ)dΘ

+
∞∑

l=1

Kle
−ilC

∫ t−T

−∞
f(t− T −Θ)R(Θ− lτ)A(Θ− lτ)dΘ. (5.26)

By applying coordinate transformations Θ → Θ+lτ for each l, the integrals in the second
term of Eq. (5.26) can be expressed as convolution integrals similar to the first term of
Eq. (5.26), but with t − T − τ as upper limit for the integration. For the Lorentzian
filter function of Eq. (5.7) that reads in the time domain

f(t) ≡ γe(−γ+i∆Ω)t,

a DDE can be derived by differentiating Eq. (5.26) with respect to time t [YOU99,
VLA05], which yields

Ȧ(t)+(γ−i∆Ω)A(t) = γR(t−T )A(t−T )+γ

∞∑

l=1

Kle
−ilCR(t−T−lτ)A(t−T−lτ). (5.27)

Here, ˙( · ) denotes the derivative with respect to time t. Transforming Eq. (5.27) to a
co-moving frame by introducing A(t) ≡ 1√

κ2
E(t)ei∆Ωt, the dynamical equations take the

form

γ−1Ė(t) + E(t) = R(t− T )e−i∆ΩTE(t− T )

+
∞∑

l=1

Kle
−ilCR(t− T − lτ)e−i∆Ω(T+lτ)E(t− T − lτ) +

√

Rspξ(t),

(5.28a)

Ġ(t) = Jg − γgG(t)− e−Q(t)
(
eG(t) − 1

) ∣
∣E(t)

∣
∣
2
, (5.28b)

Q̇(t) = Jq − γqQ(t)− rse
−Q(t)

(
eQ(t) − 1

) ∣
∣E(t)

∣
∣
2
, (5.28c)

where the rescaled ratio of saturation intensities in gain and absorber section rs ≡ r̃s/κ2

has been introduced [VLA11]. Further, to model spontaneous emission noise a complex
Gaussian white noise term ξ(t) was added to the field equation (5.28a), i.e.,

ξ(t) = ξ1(t) + iξ2(t), 〈ξi(t)〉 = 0,

〈ξi(t)ξj(t′)〉 = δi,jδ(t− t′), for ξi(t) ∈ R, i ∈ {1, 2},

and Rsp is the rate of the spontaneous emission.
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5. Mode-locked laser

5.2.2. Dimensionless formulation for numerical integration

To study the dynamical equations numerically, it is convenient to introduce a dimen-
sionless time variable by rescaling time with respect to one important time scale in
the system. Here we choose the cold cavity roundtrip time of the light T ∗ as refer-
ence time scale. Since we aim to model a laser with a repetition rate of 40GHz , T ∗

is set to T ∗ = 25 ps . In terms of the dimensionless time s ≡ t/T ∗, the dynamical
equations (Eqs. (5.28)) take the form5

γ−1
s a′(s) + a(s) = R(s− S)e−i∆ωSa(s− S)

+
∞∑

l=1

K le−ilCR(s− S − lSec)e
−i∆ω(S+lSec)a(s− S − lSec) +

√
rspξ(s), (5.29a)

G′(s) = G0 − γs,gG(s)− e−Q(s)
(
eG(s) − 1

) ∣
∣a(s)

∣
∣
2
, (5.29b)

Q′(s) = Q0 − γs,qQ(s)− rse
−Q(s)

(
eQ(s) − 1

) ∣
∣a(s)

∣
∣
2
, (5.29c)

where
R(s) ≡

√
κe

1
2
(1−iαg)G(s)− 1

2
(1−iαq)Q(s), (5.30)

and ( · )′ denotes the derivative with respect to dimensionless time s.
Here, we have introduced a rescaled filter width γs, rescaled carrier decay rates γs,g

and γs,q, a rescaled field amplitude a, rescaled pump and absorption rates G0 and Q0,
the dimensionless optical frequency of the laser light ∆ω, the dimensionless cold-cavity
roundtrip time S, the dimensionless delay-time Sec, and the dimensionless rate of the
spontaneous emission rsp as follows:

γs ≡ γT ∗, γs,g ≡ γgT
∗, γs,q ≡ γqT

∗,

a ≡
√
T ∗E , G0 ≡ T ∗Jg, Q0 ≡ T ∗Jq, (5.31)

∆ω ≡ T ∗∆Ω, ω0 ≡ T ∗Ω0, S ≡ T

T ∗ ,

Sec ≡
τ

T ∗ , rsp ≡ T ∗Rsp.

5.3. Dynamics of free running mode-locked laser

At first, we concentrate on the dynamics of the laser without feedback (K = 0) and with-
out noise (Rsp = 0). The parameters used in the simulations are given in Table 5.1 unless

5More formally, we introduce a coordinate transformation

Φ : t 7→ s ≡ t/T ∗.

For a function F : t 7→ F (t) the derivative with respect to t then reads in the new coordinates
according to the chain rule

d

dt
F (t) =

d

dt
F ◦ Φ−1
︸ ︷︷ ︸

=F̃

◦Φ(t) = dΦ

dt

d

dΦ
F̃ (s) =

1

T ∗

d

ds
F̃ (s),

where we have introduced F̃ (s) ≡ F ◦ Φ−1(s) and the linear operator d
ds ≡ d

d(Φ(t)) .
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5.3. Dynamics of free running mode-locked laser

stated otherwise. For an easier comparison with experiments, all results are expressed
with respect to physical time t, i.e., the dynamical equations (5.28) are discussed.

The carrier dynamics in the gain section is described by the saturable gain G(t) ∝
∫ ζ3

ζ2
[ng(t)− ntr

g ]dζ, which is proportional to the difference of the spatially averaged con-
centration of electron hole-pairs in the gain section and their spatially averaged con-
centration at transparency, i.e., G is proportional to the inversion in the gain section.
The carrier dynamics in the slow saturable absorber is expressed by the saturable loss
Q(t) ∝

∫ ζ2
ζ1
[ntr

q − nq(t)]dζ, which contrary to G decreases for increasing spatially aver-
aged carrier concentration. The term "saturable" is used in this context to describe
that G and Q are strongly varied during one roundtrip of the pulse in the cavity due
to light-matter interactions. The gain section is actively pumped meaning that this
section is inverted and to the saturable absorber an inverse voltage is applied depleting
the electron hole pairs generated by the light-matter interaction. Thus, the concentra-
tion of electron-hole pairs in the absorber is far below their transparency concentration.
At the arrival of a pulse, the gain G is depleted, because the induced emission is the
dominating process in the inverted gain section. Simultaneously, the absorption Q is
decreased, because electron-hole pairs are generated by the induced absorption, which is
the dominating process in the absorber. The absorber is driven towards transparency,
i.e., the absorber is bleached.
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Figure 5.4.: Dynamics of the mode-locked laser without feedback (K = 0). (a): time traces of the
absolute value of the amplitude |E|, gain G, total loss Qt, and net gain G. TISI,0 is the inter-spike
interval time. (b): blowup of black rectangle in (a). The net gain window where G > 0 is highlighted
in gray. (c): projection of trajectory onto the (G,|E|)-plane. (d): power spectrum. Parameter values
are as in Table 5.1.
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5. Mode-locked laser

In a passively ML laser, the interplay of G and Q leads to a fixed phase relation,
i.e., phase locking, of many cavity modes resulting in narrow pulses with large intensity.
The number of locked modes can be roughly estimated by the ratio of the bandwidth
of the spectral filter γ and the frequency spacing of the cavity modes ∆ν = 1/T . This
means that the number of modes participating in the ML process usually increases with
γ. Since the pulse width τp ∝ γ−1 is anti-proportional to γ, an increase of γ results in a
shorter pulse width [VLA05]. If γ is large compared to the decay times of gain and loss
media γg and γq, respectively, the dynamics of the electrical field amplitude E is much
faster than the dynamics of the carriers (Eq. (5.28b)-(5.28c)) due to the presence of the
small factor γ−1 ≪ 1 on the left hand side of Eq. (5.28a). Thus, the ML laser acts in
this regime as a typical slow-fast system [ERN10b]. In the ML regime, a regular pulse
train is obtained. The width τp of the pulses is short compared to the inter-spike interval
time TISI,0 ≈ T + O(γ−1) [VLA04], which is close to the cold-cavity roundtrip time T .
Figure 5.4(a) shows time traces of the absolute value of the amplitude |E| (red solid line),
the saturable gain G (blue dashed line), the total loss Qt ≡ Q+ | lnκ| (green dash-dotted
line), which is the sum of saturable and non-resonant losses per cavity roundtrip, and
the net gain G ≡ G − Qt (thin black dash-dot-dotted line). The latter is the difference
of the overall gain and total loss per cavity roundtrip. It is illustrative to calculate
the net gain for a continuous wave (cw) solution of the model equations (5.28) in the
simplest case of a real valued field equation, i.e., for αg = αq = 0. Inserting the ansatz
(E(t), G(t), Q(t)) = (Es, Gs, Qs) with |Es| 6= 0 into Eqs. (5.28), we see from Eq. (5.28a)
that above the linear laser threshold Gs ≡ Gs − (Qs + | lnκ|) = 0 holds. Thus, G = 0
corresponds to the gain-clamping above threshold observed in single-mode one-section
laser models with only one carrier type [KAN05]. A bifurcation analysis of the rotating
wave solutions of Eqs. (5.28) (cw emission) with complex E , i.e, nonzero α-factors, and
K = 0 was performed in [BAN06]. In the ML regime, the system evolves on a stable
limit cycle in phase space as it can be see in Fig. 5.4(c) in a projection onto the (G,|E|)-
plane. From the power spectrum in Fig. 5.4(d), we see that this set of parameters leads
to a pulse repetition rate νrep,0 ≡ 1/TISI,0 close to 40GHz , which is realized in recent
experiments [FIO11, FIO11a]. Figures 5.4(a) and (c) illustrate that the dynamics can
be divided into a slow evolution close to the slow manifold E ≡ 0 in between the pulses
(slow stage) and a fast and short excursion through the phase space during the pulse
(fast stage). In each of the two stages, approximate analytic solutions for the dynamical
system (Eqs. (5.28a)–(5.28c)) can be found [VLA05]. During the slow stage G and Q
recover after the passage of the previous pulse. Throughout the recovery process, the
total losses predominate the gain, thus G is negative. This can be seen in Fig. 5.4(a),
where Qt > G holds in the slow stage. The pulses have stable background, i.e., the
pulse train remains stable with respect to perturbations, as long as the perturbations
are too weak to open a net gain window during the slow stage, which means that New’s
stability criterion [NEW74] is fulfilled [VLA05]. The leading edge of each pulse depletes
G and Q on the fast timescales of the light-matter interaction given by vgg and vgq for
gain and absorber section, respectively, where gg and gq are the linear gain coefficients
for gain and absorber sections, respectively. For rs > 1, the depletion of Q is faster
than the depletion of G, which leads to a short net gain window with G > 0 triggering
the pulse (gray shaded region in Fig. 5.4(b)). The condition rs > 1 means that the
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5.4. Dynamics of mode-locked laser subject to optical feedback

saturation energy of the absorber section is smaller than the one of the gain section (see
Section 5.2.1 for details), thus the absorber bleaches first opening the net gain window.
The faster decay of Q can also be seen from Eqs. (5.28b) and (5.28c). In the fast stage
the linear terms Jg − γgG and Jq − γqQ can be neglected [VLA05]. Since rs > 1 and
Q > G > 0 hold at the beginning of the fast stage, the saturation term in Eq. (5.28c)
that is proportional to |E|2 is larger than the corresponding term in Eq. (5.28b). During
the net gain window the center part of the pulse is amplified.

Table 5.1.: Parameter values used in numerical simulations unless states otherwise. The values of the
parameters are given with respect to physical time t as well as with respect to dimensionless time
s = t/T ∗, where T ∗ = 25ps .

Parameter Value Meaning

time t time s time t time s Physical time (t) and dimensionless time (s)

γ γs 2.66 ps −1 66.5 Pulse width

γg γs,g 1 ns −1 0.025 Carrier relaxation rate in gain section

γq γs,q 75 ns −1 1.875 Carrier relaxation rate in absorber section

rs 25 Ratio of saturation energies

Jg G0 0.12 ps −1 3 Pump rate in gain section

Jq Q0 0.3 ps −1 7.5 Pump rate in absorber section

κ 0.1 Cavity intensity loss-rate

T S 25 ps 1 Ringcavity roundtrip time

TISI,0 SISI,0 1.015T 1.015S Free running laser inter-spike interval time

αg 0 Alpha factor in gain section

αq 0 Alpha factor in absorber section

τ Sec variable External cavity roundtrip time

K variable Feedback strength

C 0 External cavity phase

∆Ω ∆ω 0 Detuning carrier frequency – filter maximum

Rsp rsp 0 Rate of spontaneous emission

5.4. Dynamics of mode-locked laser subject to optical

feedback

In the previous section, we have seen that an important time scale of the solitary ML
laser is the inter-spike interval time TISI,0. By including external feedback, a new time
scale is introduced namely the delay time τ . The facet between the ring laser and the
external cavity splits the pulse-stream into two parts: one part propagating in the ring
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5. Mode-locked laser

laser and another part propagating through the external cavity. The latter is, after
one roundtrip in the delay line, coupled back into the internal cavity multiplied by the
feedback strength K < 1 and a phase shift e−iC . The external cavity phase C ≡ Ω0τ
describes the phase shift of the light due to the finite delay time. Since the optical
frequency Ω0 is large (THz), a tiny variation of τ causes a variation of C over its full
range [0, 2π], while the variation of τ in the delayed terms R(t−T − lτ) and E(t−T − lτ)
in Eq. (5.28a) has only a negligible effect on the solution for E(t). Therefore, we consider
in the following C and τ as independent parameters.

Delay time τ and phase C determine the relative temporal position and the phase
relation of the pulses coupled back from the external cavity to the pulses in the laser.
In this subsection, we describe the resonances of the system for the case C = 0 before
discussing the influence of C on the dynamics in the next subsection. Throughout this
section we concentrate on the case αg = αq = 0, which shows the clearest resonance
structure. In combination with the assumption ∆Ω = 0, this yields a real valued field
equation. For simplicity, we use constant initial conditions Re

(
E(t)

)
= 0.4, Im

(
E(t)

)
=

0, G(t) = 4, and Q(t) = 1 for t ∈ [−τ, 0] unless stated otherwise. Here Re and Im denote
real and imaginary parts, respectively.

Synchronization effects can be observed if an integer multiple of τ matches an integer
multiple of TISI,0, i.e.,

pτ = qTISI,0, for p, q ∈ N, (5.32)

where the relation p < q holds in the regimes of intermediate and long delays discussed
here. The resonances described by Eq. (5.32) can be further sub-classified into main
and higher order resonances. In the main resonances (p = 1), the pulses traveling in
the external cavity match perfectly with the pulses in the laser cavity, and only one
pulse travels in the internal cavity. In the higher order resonances (p > 1), p pulses may
travel in the cavity, i.e., p pulses are found in an interval of length TISI,0: one main pulse
stemming from the solitary laser and p−1 secondary pulses with smaller amplitudes that
are induced by the feedback. Later on, we compare our results with the theoretical work
of Avrutin et al. [AVR09]. The authors discussed a finite difference traveling wave model
for a monolithic passively ML laser in the short cavity regime (τ ∼ 3TISI,0). Note that
Avrutin et al. referred to main and higher order resonances as integer and fractional
resonant case, respectively. Here, the notion of main and higher order resonances is
preferred to emphasize the ordering of the corresponding fractions p/q in a Farey tree,
which will be discussed in Subsection 5.4.5.

The maximum number of pulses in the cavity is limited by the cold cavity roundtrip
time T and the width of the pulses, which is determined by γ. The longer the cavity and
the smaller the pulse width, the larger is the number of pulses that can fit into the cavity.
For the set of parameter values given in Table 5.1, we find up to five pulses in the cavity,
i.e, p ≤ 5. At the exact resonances, the main pulses and the feedback induced pulses are
well separated by low values of the intensity. Furthermore, the pulses are almost evenly
spaced over the inter-spike interval. This means, if we have p pulses and the main pulse
is located at t = 0, the p − 1 feedback induced pulses are located close to lTISI,0/p for
l = 1, . . . , p− 1. Figure 5.5(a)-(d) depicts time traces of |E|, G, Qt and G (left column),
phase space projections onto the (G,|E|)-plane (middle column), and power spectra of
|E|2 (right column) for p = 1 to p = 4 pulses in the cavity and small feedback strength
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Figure 5.5.: Feedback induced deformations of the periodic orbit for a small feedback strength of K =
0.12. The ratios of the delay time τ to the inter-spike interval TISI,0 are chosen to fulfill the resonance
condition of Eq. (5.32) for p/q = 1/7, p/q = 2/15, p/q = 3/23 and p/q = 4/29 from panel (a) to
(d), respectively. Left column: Time traces of absolute value of the amplitude |E| (red solid line),
saturable gain G (blue dashed line), total loss Qt (green dash-dotted line), and net gain G (black dash-
dot-doted line). Middle column: Phase space projection onto the (|E|,G)-plane. Right column:
Power spectra. Other parameter values are as in Table 5.1.
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5. Mode-locked laser

K = 0.12. Periodic pulse trains with p = 5 different pulses have also been found, but
the intensities of the smallest pulses are too low to be visible in the scale of Fig. 5.5. In
the main resonances, the feedback reduces the width of the pulses and increases their
peak intensities. This can be seen by comparing the peak values of |E| for τ/TISI = 7
(corresponding to p/q = 1/7) in Fig. 5.5(a) (left) with the ones for the solitary laser
in Fig. 5.4(a) (see also Fig. 5.8 in Subsection 5.4.2). In simulations with spontaneous
emission noise (Rsp 6= 0), we found an enhanced stability of the pulse train with respect
to noise in the main resonances. This is discussed in detail in Section 5.6. At the higher
order resonances, the peak intensities of the dominant pulses decrease in the presence of
delay, because the total energy of the pulse stream is now divided between the p pulses
in the cavity.

5.4.1. Dependence on external cavity phase

In this subsection, we discuss the influence of the external cavity phase C on the dy-
namics of the ML laser for exact resonant optical feedback. In the presence of resonant
optical feedback, the pulses in the external cavity interfere coherently with the pulses
traveling in the internal cavity. Thus, intuitively, one could expect that the dynamics
of the ML laser with resonant feedback is similar to the dynamics of a single mode laser
subject to external optical feedback [AVR09]. Indeed, we find several parallels between
both systems to be discussed in this section and in Section 5.5. In Fig. 5.6, the de-
pendence of the dynamics on K and C is depicted for three different regimes of the
delay time τ : short delay (τ = 3TISI,0) models monolithically integrated devices as it
has been done in [AVR09] (upper panel in Fig. 5.6), intermediate delay (τ = 7TISI,0)
models short external cavities (middle panel in Fig. 5.6), and long delay (τ = 67TISI,0)
describes long, fiber based external cavities that are frequently used in experiments
[SOL93, LIN10e, LIN11d, LIN11f, BRE10, FIO11, ROS12b] (lower panel in Fig. 5.6). In
simulations with long delay times, the system has to be integrated for many roundtrips
of the light in the external cavity to exclude transient dynamics, which results in long
simulations times. Therefore, long delays can be studied best with simple DDE models,
which can be integrated more efficiently than partial differential equations described by
finite difference traveling wave models.

Figure 5.6(a) depicts a one-parameter bifurcation diagram of the local maxima of the
time trace of |E(t)| for short, exactly resonant optical feedback (τ = 3TISI,0) in terms of
K and C = π fixed. For each K-value, the dynamic equations (5.28a)–(5.28c) have been
integrated over 5 · 104 time units to avoid transient effects and then the local maxima of
the time trace of |E| were collected for 100 time units. The bifurcation diagram has been
obtained by up-sweeping (orange dots) and down-sweeping (black dots) K taking the
last τ -interval of the previous run as initial conditions. (For the first runs of each sweep-
direction the constant initial condition mentioned in the previous Section were chosen.)
At a critical feedback strength KH = 0.14, the fundamental mode-locked (FML) solution
is destabilized in a secondary Hopf-bifurcation (or Neimark-Sacker bifurcation [KUZ95])
introducing an additional frequency into the system that is incommensurate to the pulse
repetition frequency νrep,0 = 1/TISI,0. This leads to a quasiperiodic (QP) motion of the
trajectory on a torus in phase-space. For increasing K, a cascade of bifurcation takes
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Figure 5.6.: Left column: One-parameter bifurcation diagrams of the maxima of |E| versus feedback
strength K for stepwise increase (up-sweep, orange diamonds and blue circles) and decrease of K
(down-sweep, black circles) in the exact main resonance and fixed feedback phase C. Right Col-
umn: Saddle-node bifurcation lines (sn, sn2, blue circles, sn1 red circles) and Hopf (H, open circles)
bifurcation lines in (C,K)-plane. Upper panel: Short delay time τ = 3TISI,0 and C = π in (a).
Middle panel: Intermediate delay time τ = 7TISI,0 and C = 0 in (c). Lower panel: Long delay
time τ = 67TISI,0 and C = 0 in (e). Light (dark) gray shaded area for K > Ksn,Ksn,1 (K > Ksn,2)
marks region of bistability (tristability) between fundamental mode-locking (FML) and harmonic
mode-locking (HML), and Ksn,Ksn,1,Ksn,2 and KH mark K values of saddle-node and Hopf-points
respectively. Insets show time traces of |E| for the FML and the HML branches, respectively. Red
shading in (b) marks an instability region. Other parameters as in Table 5.1.
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5. Mode-locked laser

place leading to chaotic motion, before the laser is re-stabilized on a FML solution at
K = 0.48. For this value of C = π, only a small region of bistability between the chaotic
dynamic and the FML solution is observed by up- and down-sweep of τ (gray shaded
region). Lower and upper insets in Fig. 5.6(a) depict time traces of |E(t)| for the FML
solution before (K = 0.1) and after (K = 0.75) the bifurcation cascade, respectively.
This bifurcation scenario is similar to the one observed for single mode semiconductor
lasers in the short cavity regime [HEI01a, HEI03a, OTT10] (see discussion in Section 4.4).
Figure 5.6(b) depicts the dependence of the saddle-node and secondary Hopf bifurcation
lines on the external cavity phase C and feedback strength K as observed by down-
sweeping K starting with constant initial conditions from K = 1. Figure 5.6(b) reveals
that the system is 2π-symmetric with respect to C, which can be seen directly from
the field Eq. (5.28a). The secondary Hopf-bifurcation (H, open circles) takes place in
a small interval symmetric around C = 0 leading to the instability region discussed
above (red shaded region). The minimum of the Hopf-line and the largest extension of
the instability region is found for C = 0. Adjacent to the instability region, two thin
intervals are observed, for which the system remains stable on the FML solution for
all K (blue shaded regions). These findings are in agreement with the observations of
Avrutin et al. [AVR09]. In a broad symmetric interval around C = 0, a saddle-node
bifurcation line of limit-cycles (fold bifurcation [KUZ95]) (sn, blue circles) creates a new
pair of solutions: a stable branch of node-solutions and an unstable saddle branch. The
node-solution is a harmonically mode-locked solution (HML) with a repetition frequency
of νrep = 2νrep,0. In the (C,K)-plane, the sn-line forms a parabola symmetric around
C = 0 with a minimum at C = 0. For K values above the sn-bifurcation line, bistability
is observed between FML and HML solutions (gray shaded regions labeled FML+HML).

Figures 5.6(c) and (d) correspond to Figs 5.6(a) and (b), but depict the dynamics for
intermediate delay times. In this regime, the laser remains in the fundamental mode-
locked regime for all K if C = π. Therefore, in contrast to Fig. 5.6(a), the phase C = 0
has been chosen in Fig. 5.6(c) to reveal bistability between a branch of FML and a branch
of HML solutions. To focus on the bistability region, additionally, a different K-range
has been chosen in Fig. 5.6(c) than in Fig. 5.6(a). At the critical feedback strength
Ksn = 0.55, a new mode anti-mode pair of solutions becomes available to the system in
a fold bifurcation. The mode solution is stable and yields HML with νrep = 2νrep,0. The
creation of new mode anti-mode pairs in fold bifurcations is also observed in single mode
lasers subject to feedback as discussed in Section 4.6.1. This underlines the assumption
of Avrutin at al. [AVR09] that the structure of solutions with time periodic intensity of
a ML laser subject to resonant optical feedback is similar to the structure of rotating
wave solution (external cavity modes) of a single mode laser subject to feedback. For
K > Ksn, the laser is bistable (gray shaded region). For up-sweeping K, the system
remains in the FML regime with period TISI,0. The upper inset in Fig. 5.6(c) shows
a time trace of |E(t)| in this regime for K = 0.8. However, for the constant initial
conditions and the highest possible K-value of K = 1, the system exhibits harmonic
mode-locking. For down-sweeping K, the HML branch of solutions remains stable until
K = Ksn, where the HML solution is annihilated in a fold bifurcation, and the system
abruptly jumps back to the FML branch. The lower inset in Fig. 5.6(a) depicts a time
trace of |E(t)| for the HML solution and K = 0.8. Figure 5.6(d) depicts the dependence
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5.4. Dynamics of mode-locked laser subject to optical feedback

of the feedback strength of the fold bifurcation line Ksn on the feedback phase C as
observed by down-sweeping K starting with constant initial conditions from K = 1.
The lowest value of Ksn is observed for C = 0, and Ksn increases strongly with C. In
a symmetrical interval around C = π, the system remains in the FML regime and no
bistability is observed (blue shaded region).

A bifurcation diagram of the maxima of |E| as in Fig. 5.6(c), but for long delay
(τ = 67TISI,0), is depicted in Fig. 5.6(e). By up-sweeping K from K = 0, the laser
remains in the FML state for all K. For down-sweeping K, the system remains in a
HML state down to Ksn,2 = 0.56 and then abruptly jumps to a second FML branch before
jumping back to the first FML branch at Ksn,1 = 0.2. By up-sweeping K starting at the
second FML branch, we find that this branch remains stable up to the highest value of
K (blue dots). In terms of bifurcation theory, bistability is induced into the system by a
first fold bifurcation at Ksn,1 (light shaded area), and a second fold bifurcation at Ksn,2

induces tristability into the system (dark shaded area). This means that in contrast
to short and intermediate delay, an additional stable solution becomes available to the
system for long delay in the first fold bifurcation at Ksn. This scenario is well known from
delay differential equations with long delay, where with increasing delay more solutions
become available to the system leading to more complex dynamics [YAN04, YAN06,
WOL10, YAN10]. The two fold bifurcation lines sn1 (red circles) and sn2 (blue circles)
in the (C,K)-plane reveal that there is no dependence on the external cavity phase C.
Also in Lang-Kobayashi type single-mode lasers, one finds that in the limit of long delay
the dynamics is independent of the external cavity phase C [KAN05].

In conclusion, comparing the three bifurcation diagrams in the (C,K)-plane (right
column of Fig. 5.6), one sees that the minimum of the fold bifurcation line (blue dots
labeled by sn in Fig. 5.6(b) and (d) and sn2 in Fig. 5.6(e)) occurs for C = 0. Further, it
is independent of the delay time τ . However, the range of phases C, for which we observe
bistability between FML and HML solutions broadens with increasing τ until the fold
bifurcations become independent of C for long delay. For short delay, more complex
dynamics is induced by a secondary Hopf-bifurcation in an interval around C = π, while
for long delay tristability is induced by an additional fold bifurcation line sn1.

5.4.2. Dependence on delay time and feedback strength

To present a more complete picture of the feedback induced dynamics away from the ex-
act resonances, now the dependence of the dynamics of the ML laser subject to feedback
on the delay time τ is studied. In this and the following subsections, we concentrate
on intermediate delay times modeling a short external cavity. Afterward, the regime of
long delays is discussed in Section 5.4.6.

Figure 5.7 depicts the number of pulses in the cavity (color code) as a function of delay
time τ and feedback strength K for C = 0. For each pair of (τ ,K)-values, the system
was integrated over 3 · 104 time units, and then the number of maxima with different
peak heights is counted for 25 time units. For up-sweeping τ (Fig. 5.7(a)) for each K
and the lowest value of τ , the constant initial conditions were chosen that were discussed
in the beginning of Section 5.4. Then, τ was increased stepwise from its lowest value
taking an interval of length τ from the end of the time series of the previous run as
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Figure 5.7.: Two-parameter bifurcation diagram of the dynamics of the ML laser subject to external
optical feedback in terms of delay time τ (in units of the interspike interval of the solitary laser TISI,0)
and feedback strength K in the regime of intermediate delay times obtained by (a): up-sweeping
τ , (b): down-sweeping τ , (c): up-sweeping K, (d): down-sweeping K, and (e): always identical,
constant initial conditions for each tuple of (τ,K)-values. The color code provides the number of
pulses in the cavity. White, orange, and black regions indicate quasiperiodic pulse trains, 2nd, and
3rd order harmonic mode-locking, respectively. Parameters as in Table 5.1.
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5.4. Dynamics of mode-locked laser subject to optical feedback

initial condition in each step. To catch bistabilities, the same procedure was performed
by down-sweeping τ from its maximum to its lowest value (Fig. 5.7(b)). To give a more
complete picture of the different dynamical regimes also K, instead of τ , was up- and
down-swept in Figs. 5.7(c) and (d), respectively. Furthermore, Fig. 5.7(e) depicts the
dynamical regimes observed by choosing identical, constant initial conditions for each
tuple of (τ,K)-values. The contour plots of Fig. 5.7 are almost periodic in τ . Their
periodicity of TISI,0 corresponds to the distance between the vertical white dashed lines
within the large cone-like blue areas around the main resonances τ = 7TISI,0, τ = 8TISI,0,
and τ = 9TISI,0. Within these blue areas, we find complete synchronization, i.e, only
one pulse travels in the cavity. In the following, we call these intervals main resonant
regimes. For increasing K, the resonant regimes broaden and the laser synchronizes also
for larger deviations from the exact main resonances. The increase of their width is not
linear in K, instead a sudden broadening is observed for K ≈ 0.15, which we interpret
as a transition from small to intermediate values of K. Away from the main resonant
regimes this transition is marked by the appearance of QP pulse forms (white region)
to be discussed in Subsection 5.4.3.

In Fig. 5.8, bifurcation diagrams of the local maxima of |E| in terms of the delay time
τ are depicted for different K. They correspond to one dimensional sections of Fig. 5.7
for small K = 0.1 (Fig. 5.8(a)), intermediate K = 0.4 (Fig.5.8(b)), large K = 0.65
(5.8(c)), and very large K = 0.9 (5.8(d)). Thus, Fig. 5.8 provides us with additional
information about the height of the pulse maxima in comparison to the ones of the
solitary laser (horizontal blue dash-dotted lines) and multistability regions are revealed
more clearly than in Fig. 5.7. To catch multistabilities, the local maxima of |E| are
plotted as obtained by up-sweeping τ (large red dots), by down-sweeping τ (gray dots),
and by down-sweeping K (small black dots). The local maxima of |E| obtained by
down-sweeping K and by always identical initial conditions do not contribute additional
multistabilities for the chosen K-values and are omitted for clarity.

For small K, we find that the periodic orbit is deformed by the feedback in a nonlinear
way (see Fig. 5.5 (middle column)). These deformations lead to τ -intervals around the
exact higher order resonances (Eq. (5.32) with 2 ≤ p ≤ 5), where we find p pulses in the
cavity that are well separated by low values of the intensity. They appear as red, light
green, dark green, and brown regions in Fig. 5.7, and they are denoted as higher order
resonant regimes in the following. For very small values of K and p = 5, the smallest
pulse cannot be detected numerically. This is why the brown regions indicating the
presence of five pulses in the cavity do not reach down to the lowest K-value (K = 0.08
for τ/TISI,0 = 37/5 and τ/TISI,0 = 38/5 as well as for τ/TISI,0 = 42/5 and τ/TISI,0 = 43/5).
From Fig. 5.8(a), it can be seen that in the main resonant regime the pulse height is
increased compared to the pulse height of the solitary laser (compare pulse heights
around τ = 7TISI,0 and τ = 8, TISI,0 with blue dash-dotted line). At the same time, the
pulse width is decreased, which results in an enhanced stability of the pulses with respect
to perturbations introduced for example by spontaneous emission noise. In Section 5.7,
the enhanced stability of the pulse stream in the main resonant regime with respect
to timing fluctuations is discussed in the context of the timing jitter. Figures 5.8(b)
and (c) show that the increase of the height of the pulses in the main resonant regime
becomes more pronounced for higher feedback strengths K leading to an enhancement
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Figure 5.8.: One-parameter bifurcation diagrams of local extrema of the time trace of |E| in terms of τ
(in units of the interspike interval of the solitary laser TISI,0) for intermediate delay times as obtained
by up-sweeping τ (large red dots), by down-sweeping τ (gray dots), by down-sweeping K (small black
dots), and by up-sweeping K (tiny blue dots) for fixed (a): K = 0.1, (b): K = 0.4, (c): K = 0.65,
and (d): K = 0.9. The blue dash-dotted lines mark the maxima of the time trace of |E| of the ML
solitary laser. Blue arrows indicate 2nd and 3rd order harmonically mode-locked solutions.
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5.4. Dynamics of mode-locked laser subject to optical feedback

of the temporal stability of the pulses for increasing K. Furthermore, the maximal pulse
heights are no longer found at the exact resonances but shift to shorter delay times.

In between the resonant regimes, the mismatch of the two timescales τ and TISI,0

leads to overlapping pulses that are not well separated by low values of the intensity.
We find broad (main) pulses that are not unimodal but have one to three side-peaks.
In the following, we call these τ -intervals between two adjacent resonant regimes non-
resonant regimes. In the non-resonant regime in between the main resonant regime
around τ/TISI,0 = 7 and the fifth order resonant regime around τ/TISI,0 = 36/5, a broad-
ened pulse with one to three sidepeaks is observed leading to the regions with two (red),
three (light-green), and four maxima (dark-green), respectively. (The same holds for τ
values in between the main resonant regimes around τ/TISI,0 = 8 and τ/TISI,0 = 9 and
the adjacent fifth order resonant regimes, respectively.) Also between adjacent higher
order resonances, non-resonant regimes are observed, which are for example responsible
for the light-green (p = 3) and dark-green (p = 4) colored regions between the second or-
der resonance regimes around τ/TISI,0 = 15/2 and τ/TISI,0 = 17/2 (red) and the adjacent
fifth order regimes (brown), respectively.

non-resonant regimes
(a) (b)

Figure 5.9.: Time traces of absolute value of the amplitude |E| (red solid line), saturable gain G (blue
dashed line), total loss Qt (green dash-dotted line), and net gain G (black dash-dot-doted line) in the
non-resonant regimes between the second order resonant regime around τ/TISI,0 = 15/2 and the fifth
order resonant regimes around τ/TISI,0 = 37/5 (a) and τ/TISI,0 = 38/5 (b), respectively. Parameters
K = 0.12 and other parameters as in Table 5.1.

For K = 0.12, Fig. 5.9 shows time traces of |E|, G, Qt, and G in the non-resonant
regimes to the left (see Fig. 5.9(a)) and to the right (see Fig. 5.9(b)) of the second
order resonant regime around τ/TISI,0 = 15/2, respectively. We observe broadened main
pulses with shoulders at the leading (see Fig. 5.9(a)) and trailing edge (see Fig. 5.9(b))
of the main pulse, respectively. The pulses in the non-resonant regimes have relatively
low peak intensities compared to the pulses in the resonant regimes. This can be seen
in Fig. 5.8(a) by comparing the heights of the maxima of |E| for τ = 7TISI,0 (exact main
resonance) and slightly on the left of the fifth order resonance with τ = 36/5, TISI,0 (off
resonant regime) (cf. also Fig. 5.9 and Fig. 5.5(left panel)). In addition, the net gain G
(dash-dot-dotted line) shows a broad shoulder with only slightly negative values between
the small pulse and the leading edge of the next larger pulse. This is why the pulses
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in the non-resonant regimes are more easily destabilized by noise than the pulses in the
resonant regimes (see Subsection 5.7).

Comparing Fig. 5.7(a)–(e) for small feedback strengths K . 0.15, one sees that in
this regime nearly no multistabilities are observed. In the one dimensional bifurcation
diagram of Fig. 5.8(a) depicting the situation for K = 0.1, we find only one small
bistability interval for τ -values slightly larger than the fifth order resonance with τ =
36/5TISI,0. Further, in this regime of small K, the dynamics is robust against changes of
the feedback phase C except for the small bistability interval mentioned before. However,
the situation changes for higher values of K. Comparing Fig. 5.8(d) with Fig. 5.8(a)–(c),
one observes a bistability between QP motion on a torus in phase space and a 2nd order
HML solution in the second order resonant regime for K > 0.36. Both, QP and HML
solutions are discussed in detail in Subsection 5.4.3 and Subsection 5.4.4, respectively.
Furthermore, bistabilities between QP and FML solutions are found at the borders of the
QP regions (white cones) (compare Fig. 5.7(a) and Fig. 5.7(b)). This can also be seen
in the bifurcation diagram of Fig. 5.8(b) depicting the situation for K = 0.4. The HML
solution is indicated by the blue arrow labeled 2nd harmonic, and the bistability between
QP and FML solutions is revealed by the red and the gray regions at the edges of the
instability interval. The interval around the 2nd order resonance, in which the HML
solution is found, broadens with K and for K > 0.53 also in the main resonant regime
2nd order HML solutions are observed, which are bistable with the FML solution. This
can be seen best in the one dimensional bifurcation diagram of Fig. 5.8(c) for K = 0.65
close to the vertical gray dashed lines (exact main resonances) by comparing the small
black dots denoting the FML solution with the red and gray dots denoting the HML
solution. Further, comparing Figs. 5.8(b) and (c) reveals that with increasing K the
bistability-interval around the second order resonance (τ = 15/2TISI,0), in which the 2nd

order HML solution (black dots) and the QP solution (blue, read, and gray dots) are
both stable, broadens.

For very high K & 0.9, Fig. 5.7(a) and (b) show that 2nd order HML solutions are
stable over the whole TISI,0-interval. Further, Fig. 5.7(c) reveals that also FML solutions
with only one pulse in the cavity are stable nearly of the whole TISI,0-interval, and from
Figs. 5.7(d) and (e), it becomes obvious that also stable 3rd order HML solutions exist
in an interval between τ = 36/5TISI,0 and τ = 22/3TISI,0 as well as in the third order
resonant regime around τ = 23/3TISI,0. From the one dimensional bifurcation diagram
in Fig. 5.8(d), one clearly sees that the 2nd order HML solutions have a periodicity of
TISI,0/2 with respect to τ (see red or gray dots). For this high value of K, they are
already stable over the whole TISI,0/2 interval and the white stripes in Fig. 5.7(a) and
(b) mark the transitions between adjacent 2nd order HML solutions. Further, Fig. 5.8(d)
reveals that 2nd order HML branches overlap, i.e., bistability between 2nd order HML
solutions is found. This can be seen for example in an interval around the τ = 31/4TISI,0

resonance by comparing the black and the red dots. In a small interval around the forth
order resonance with τ = 29/4TISI,0, a 3rd order HML solution coexists with a stable
FML solution (tiny blue dots), a stable 2nd order HML solutions (gray dots) as well as
with a QP solution (red dots).

Figures 5.7 and 5.8 were obtained for a fixed value of the external cavity phase C = 0.
For low values of K, the dynamics is only negligible effected by changes of C. But for
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high values of K & 0.36, where multistabilities are observed, the trajectory can switch
from one attractor to another by changing C.

Summing up, with increasing K, the structure of coexisting stable periodic and QP
solutions becomes already quite involved in the simple case of zero α-factors and inter-
mediate delay times. Thus, for high K, Figs. 5.7 and 5.8, which were obtained by direct
numerical integration, can only give an overview over the different dynamical regimes,
but they cannot provide a complete picture of all coexisting periodic solutions. For long
delay times and nonzero α-factors, the structure of solutions becomes more complex,
which will be discuss in the Subsections 5.4.6 and 5.5, respectively.

5.4.3. Quasiperiodic motion

Examples for the QP behavior that is observed away from the main resonant regimes for
intermediate and high values of K (white regions in Fig. 5.7) are depicted in Fig. 5.10
for K = 0.25. Figure 5.10(a) and (b) depict the dynamics at the second and third
order resonance with τ/TISI,0 = 15/2 and τ/TISI,0 = 22/3, respectively. We find two
and three competing pulse trains, respectively, leading to a periodic modulation of the
peak amplitude of the pulses. Like in the periodic regime for small K, the inter-pulse
temporal distance is given at the exact resonances by approximately TISI,0/2 and TISI,0/3
resulting in dominant frequencies of 2νrep,0 and 3νrep,0, respectively (see Fig. 5.10 (right
panel)). The lowest frequency in the power spectra is the competition frequency νc of
neighboring pulse trains, which is small (∼ 1− 3GHz ) compared to the pulse repetition
frequency νrep,0 ≡ 1/TISI,0. Thus we plot only the maxima of the competing pulse trains
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Figure 5.10.: Quasiperiodic pulse trains found in the white regions of Fig. 5.7. Left column: Local
maxima of the time trace of |E|. Competing pulse trains are labeled by A (blue circles), B (red
circles) and C (green diamonds), respectively. Middle column: Phase space projections onto the
(G,|E|)-plane (red orbit). The black-dashed orbits indicate projections of an TISI,0-interval of the time
series (TISI,0 is the inter-spike interval time). Right column: Power spectra. Panel (a): Second
order resonance p = 2 (τ/TISI,0 = 15/2). Panel (b): Third order resonance p = 3 (τ/TISI,0 = 22/3).
Parameters: K = 0.25 and other parameters as in Table 5.1.
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in Fig. 5.10(a) and (b) (left column). For the second order resonance (see Fig. 5.10(a)),
two competing pulse trains appear that are labeled A and B. Their competition frequency
νc = 2.38GHz corresponds to the temporal distance between the largest maximum of
pulse train A and the largest maximum of pulse train B. For the third order resonance
(Fig. 5.10(b) (left)), we find three competing pulse trains A, B, and C with a competition
frequency of νc = 2.55GHz . The two (three) competing pulses can also be seen in
the phase space projection onto the (G,|E|)-plane in Fig. 5.10(a) (middle) that shows
projections of the trajectories for one competition period Tc ≡ 1/νc. The black dashed
parts of the trajectory are the projection of one TISI,0-interval of the limit cycle.

5.4.4. Harmonic mode-locking in higher order resonances

In this subsection, we take a closer look at the dynamics in the exact second and third
order resonances. In Figs. 5.7(d) and (e) and Fig. 5.8(d), we have found stable 2nd

and 3rd order HML solutions for high K in the second and the third order resonances,
respectively. This is expected from the resonance condition of Eq. (5.32), because the
resonance condition for a p-th order resonance of a FML solution with an inter-spike
interval time of TISI = TISI,0 (pτ = qTISI,0) is simultaneously the condition for a main
resonance of a pth order HML solution with inter-spike interval time TISI = TISI,0/p,
which reads

1 τ =
TISI,0

p
.

Thus, in the second and the third order resonances, we expect that stable 2nd order
HML solutions (TISI = TISI,0/2) and 3rd order HML solutions (TISI = TISI,0/3) can exist.

Figures 5.11(a) and (b) depict one parameter bifurcation diagrams of the local maxima
of time traces of |E| for K varying from 0 to 1 in the second order resonance with
τ = 15/2TISI,0 and in the 3rd order resonance with τ = 23/3TISI,0, respectively. The
diagrams have been obtained by up-sweeping (large red dots) and down-sweeping (black
dots) K as described for Fig. 5.6. For small K, we retrieve the periodic pulse trains with
p = 2 and p = 3 pulses in the cavity (see Figs. 5.5(b) and (c)). Time traces of these pulse
trains are also depicted in the leftmost insets of Fig. 5.11(a) and (b) for K = 0.12. At
feedback strength of KH = 0.19 for the second order resonance and of KH = 0.14 for the
third order resonance, a new incommensurate frequency is introduced into the system
by a secondary Hopf bifurcation leading to a quasiperiodic motion on a torus in phase
space (cf. Fig. 5.10(a)). For the 2nd order resonance and up-sweeping K, the system
remains on the QP branch of solutions up to K = 0.84, where it eventually stabilizes
again onto a FML branch of solutions. Starting with constant initial conditions from
the highest possible K-value K = 1 and then decreasing K stepwise, a HML branch of
solutions is stable down to Kcrit = 0.295. Thus, for K ≥ Kcrit, bistability of solutions
is observed, which is marked by a gray shading in Fig. 5.11. For K ∈ [Kcrit, 0.83], a
FML and a QP branch of solutions are bistable, and for K ∈ [0.83, 1] bistability between
the FML and a HML branch of solutions is observed. The middle and the rightmost
insets in Fig. 5.11(a) depict time traces of the 2nd order HML and the coexisting FML
solutions for K = 0.9, respectively.
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(a)

(b)

2nd order resonance

down-sweep

up-sweep

down-sweep

up-sweep

Figure 5.11.: One-parameter bifurcation diagrams showing the amplitude maxima of the pulses as a
function of feedback strength K for up-sweeping K (large red dots) and down-sweeping K (black
dots), respectively. Gray shadings mark bistability regions. KH , Kcrit, and Ksn denote the first
Neimark-Sacker (secondary Hopf) bifurcation point, the onset of bistability, and the fold (saddle-
node of limit-cycles) bifurcation point, respectively. (a): Second order resonance with τ = 15/2TISI,0.
Left, middle, and rightmost insets depict time traces of |E| of the FML solution for K = 0.12, of the
2nd order HML solution for K = 0.9 (down-sweeping K), and of the FML solution for K = 0.9
(up-sweeping K), respectively. (b): Third order resonance with τ = 23/3TISI,0. Left, middle, and
rightmost insets depict time traces of |E| of the FML solution for K = 0.12, of the 3rd order HML
solution for K = 0.9 (down-sweeping K), and of the FML solution for K = 0.9 (up-sweeping K),
respectively.

187
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In the third order resonance depicted in Fig. 5.11(b), bistability between a QP solution
obtained by up-sweeping K and a FML solution obtained by down-sweeping K is induced
at Kcrit = 0.38. Again, bistability regions are marked by gray shadings. At K = 0.48,
the system hops from the QP branch to the FML branch rendering the system again
monostable. At high Ksn = 0.81, a fold bifurcation introduces a branch of stable 3rd

order HML solutions, which remains stable up to K = 1. Middle and rightmost insets in
Fig. 5.11(b) depict time traces of |E| of the coexisting 3rd order HML solution obtained
by down-sweeping K and the FML solution obtained by up-sweeping K for K = 0.9,
respectively.

Comparing the pulse forms of the FML solutions for high K in the rightmost insets of
Fig. 5.11(a) and (b) with the HML solutions in the middle insets as well as with the time
trace of |E| of the solitary laser in Fig. 5.4(a), it becomes obvious that the pulses of the
FML state are much broader than the pulses of the solitary laser. Thus, we can conclude
that for high K the FML branch of solutions is less stable subject to perturbations than
the HML branch. As a result, only the HML branch remains stable for high K if the
laser is subject to spontaneous emission noise.

5.4.5. Farey tree

The resonances of the inter-spike interval time TISI,0 and the external delay time τ given
by Eq. (5.32) may be ordered in a Farey-sequence (or Haros-Farey-sequence) [COB03].
Therefore, we compare the pulse trains found in the ML laser subject to feedback to
the locking dynamics of externally driven dynamical systems. A generic example for
such a system is the circle map with an external forcing [SCH89c], where the forcing
introduces an additional frequency into the system and leads to dynamic evolution on a
torus in phase space. We now shortly recall the concept of Farey tree ordering in these
systems before we show that this concept can be also applied to the ML laser with delay.
In general, the frequency of the external signal and the resulting resonance frequency
of the system itself are non-commensurate, which results in a quasiperiodic motion on
the surface of a torus. Locking takes place if the ratio of the frequency of the external
signal and the resonance frequency of the system is a rational number p/q with p, q ∈ N.
The fractions p/q are called winding numbers and can be ordered in a Farey-tree by
applying the Farey-sum operation [SCH01]. This means that the denominators and the
numerators of two neighboring fractions p/q and p′/q′ are added up separately yielding a
new fraction (p+ p′)/(q+ q′) in the next higher level of the tree (see Fig. 5.12(a)). With
increasing injection strength, the length of the intervals around the exact p/q-resonances,
at which locking takes place, increase forming the well-known Arnold’s tongues. For fixed
injection strength, one finds a hierarchy of the sizes of the locking plateaus according
to their ordering in the Farey tree, i.e., the plateau sizes decrease from lower to upper
levels resulting in a self similar pattern. This generic type of frequency locking has been
found in a wealth of nonlinear dynamical systems, just to mention modulated external
cavity semiconductor lasers [BAU89, SAC92a].

In the case of a ML laser, the τ -intervals of the resonant regimes form plateaus with
p well separated pulses in the cavity (compare to Fig. 5.5(b)–(d) (left column)), where
p defines the level of the plateau in the Farey tree. In the numerical simulations, we
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Figure 5.12.: (a): Farey tree. The fractions p/q for p, q ∈ N are the resonance conditions for the
delay time τ and the inter-spike interval time TISI,0 given by Eq. (5.32). Resonances found in the
laser model are highlighted in blue. (b): Plateaus with a given number of well separated pulses (see
Subsection 5.4.2) of ML laser for small K = 0.1 (red circles) and intermediate K = 0.25 feedback
strength (open and filled diamonds) as a function of the delay time τ . The fractions denote the
resonance condition p/q. Their ordering from bottom to top corresponds to the ordering in the Farey
tree. Filled colored symbols depict time periodic solutions, while open black diamonds correspond to
quasiperiodic (QP) solutions. Parameters as in Table 5.1. From [OTT12a].
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consider two subsequent pulses as well separated if between the pulses a time point tmin

exists with |E(tmin)| < 1×10−3. Figure 5.12(a) shows a Farey tree, where the resonances
present in the ML laser model are highlighted in blue. (Solutions with p > 5 pulses in
the fifth level of the tree are not found in the laser model, because only up to p = 5
well separated pulses can propagate in the cavity as discussed in Subsection 5.4.2.) In
Fig. 5.12(b), the number of pulses p is plotted as a function of the delay time τ for small
K = 0.1 (filled red circles) and intermediate K = 0.25 (filled yellow diamonds and open
diamonds). It can be seen that plateaus similar to the locking plateaus in the Farey tree
form. The width of the plateaus shrinks with increasing number of pulses p, i.e, with
increasing tree level, as one would expect from the study of the generic circle map. A
similar scenario has also been observed for a pair of delay-coupled oscillators [PAN12].

For a higher feedback strength of K = 0.25, the width of the plateaus increases, which
is similar to the broadening of the Arnold’s tongues for increasing control parameter in
the case of externally driven systems. As already discussed in Fig. 5.7 and Fig. 5.10,
quasiperiodic motion is observed away from the main resonances for the higher feedback
strength (K = 0.25). Nevertheless, we still find p = 2 and p = 3 well separated pulses
in the cavity in the second and third order resonant regimes, respectively. They are
indicated by the open black diamonds in Fig. 5.12(b).

5.4.6. Long delay

So far, the dynamics of the ML laser subject to optical feedback has been investigated for
intermediate delay times. Now, ten times larger delays are studied. As already discussed
in the introduction of this chapter, this regime of long delay lines is of particular interest,
because in experimental setups optical feedback is often provided by long optical fiber
loops [SOL93, LIN10e, LIN11d, LIN11f, BRE10, FIO11, ROS12b]. Figure 5.13 depicts
the number of pulses (color code) as a function of the delay time τ and the feedback
strength K obtained by up- and down-sweeping τ (Fig. 5.13(a) and Fig. 5.13(b)), up-
and down-sweeping K (Fig. 5.13(c)) and Fig. 5.13(d)), and by using identical, constant
initial conditions for each (τ,K)-tuple (Fig. 5.13(e)), respectively. Comparing Fig. 5.13
to the corresponding Fig. 5.7 for intermediate delay times τ , one observes that for
long delay the main resonant regimes are strongly broadened. For example, already for
intermediate K & 0.18, the main resonant regions are only separated by a very tiny
(white) region with quasiperiodic solutions for up- and down-sweeping τ (Fig. 5.13(a)
and (b)). Further, by comparing the regions with more than one pulse in the cavity of
Fig. 5.13(a)-(d) (red, light-green, dark-green, and brown regions) for K . 0.15, we find
that for long delay times the structure of the higher order resonances subsists up to order
four (p = 4), but the fifth order resonances cannot be clearly assigned. In contrast to
intermediate delay times, multistabilities between periodic orbits with different numbers
of pulses in the cavity are now already observed for small feedback strengths K. This
is the reason why the fifth order resonances are shadowed by the adjacent second and
third order resonances, which overlap.

Figure 5.14 depicts the multistabilities for small K = 0.12. In Fig. 5.14(a) a bifur-
cation diagram of the maxima of the time trace of |E| versus delay time τ (τ ranging
from 66.8TISI,0 to 69.2TISI,0) is shown, which corresponds to a horizontal section of
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Figure 5.13.: Two-parameter bifurcation diagram of the dynamics of the ML laser subject to external
optical feedback in terms of delay time τ (in units of the inter-spike interval of the solitary laser
TISI,0) and feedback strength K in the regime of long delay times obtained by (a): up-sweeping
τ , (b): down-sweeping τ , (c): up-sweeping K, (d): down-sweeping K, and (e): always identical,
constant initial conditions for each tuple of (τ,K)-values. The color code provides the number of
pulses in the cavity. White, orange, and black regions indicate quasiperiodic pulse trains and 2nd

order harmonic mode-locking, respectively. Parameters as in Table 5.1.
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Figs. 5.13(a) and (b). Orange diamonds and black circles depict maxima of the time
trace of |E| for stepwise increasing τ (up-sweep) and stepwise decreasing τ (down-sweep),
respectively. The horizontal blue dash-dotted line marks the maxima of the time trace
of |E| for the solitary laser. In the gray shaded parts of the main resonant regimes in
Fig. 5.14(a), the peak values of the time trace of |E| are higher and the pulse width is
shorter than for the solitary laser. Simulations with white noise (Rsp 6= 0) reveal that
in these regions the stability of the pulses with respect to fluctuations is increased. In
comparison with the corresponding figure for intermediate delay (Fig. 5.8(a)), the main
resonant regimes are, on the one hand, broader than for intermediate delay, and, on the
other hand, the increase of the height of the pulses with respect to the solitary laser (blue,
dash-dotted horizontal line) is larger than for intermediate delay. This stabilizing effect
of resonant optical feedback will be employed in Section 5.7 for timing jitter reduction.
In the blue shaded region of Fig. 5.14(a), the multistability of solutions with one pulse

Figure 5.14.: Bistability of periodic orbits for long delay time τ (a): Hysteresis of amplitude maxima
of time traces of |E| versus τ (in units of the inter-spike interval time TISI,0 of the solitary laser) for
stepwise increase (up-sweep, orange diamonds) and stepwise decrease of τ (down-sweep, black circles).
The blue dash-dotted line marks the maxima of the time trace of |E| for the solitary laser. In the gray
shaded areas the stability of the pulse train with respect to white noise is increased by the feedback.
In the blue shaded area bistability is observed. (b) and (c): Bistability of periodic orbits obtained by
an up-sweep of τ (orange dashed line) and by a down-sweep of τ (black solid line) for τ = 67.45TISI,0

(vertical gray dashed line in (a)); (b): Time traces of |E|; (c): Projections of the trajectories on the
(G,|E|)-plane. Parameters: K = 0.12 and other parameters as in Table 5.1.

in the cavity and solutions with two, three, or four pulses in the cavity mentioned above
is found. (For clarity, only bistability between up- and down-sweeping τ are shown and
the other sweep-direction are omitted.) In Fig. 5.14(b), exemplary time traces of |E| are
plotted for two periodic orbits that are bistable for τ = 67.45TISI,0 (vertical gray dashed
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5.4. Dynamics of mode-locked laser subject to optical feedback

line in Fig. 5.14(a)). By up-sweeping τ , a pulse train with only one pulse traveling in
the cavity (p = 1) is observed (orange dashed line), while by down-sweeping τ , a pulse
train with two pulses in the cavity (p = 2) is detected (black solid line). Figure 5.14(c)
depicts phase space projections of the trajectories onto the (G,|E|)-plane.

A comparison of the white regions indicating quasiperiodic behavior for intermediate
delay (see Fig. 5.7) and long delay (see Fig. 5.13) reveals that the quasiperiodic regime
is suppressed for long delay. For intermediate delay, a large cone-like region with QP
behavior is found away from the main resonances for every sweep direction as well
as for constant, always identical initial conditions. In contrast, for long delay, small
cone-like QP-regions are only found for up-sweeping K as well as for constant, always
identical initial conditions (see Fig. 5.13(d) and Fig. 5.14(e), respectively). However,
the long delay induced additional stripe-like QP regions for the other sweep directions
(see Fig. 5.13 (a), (b), and (d)). They stem from transitions from one FML solution
to another FML solution as discussed below. But in contrast to intermediate delay,
always a stable FML solution with only one pulse in the cavity (main resonant regime)
coexists with the QP solution. This could be interesting for applications that need
temporal stable pulse streams, e.g., data communication. However, in experiments,
noise cannot be completely suppressed, and from the direct numerical simulations of the
deterministic system, it is not clear if the FML solutions always remain stable subjected
to noise. Indeed, simulations with noise reveal that away from the main resonance, in
a cone-like structure similar to the white QP-region in Fig. 5.14(c), the FML solutions
can be destabilized already for white noise of moderate strength, i.e., by spontaneous
emission noise (see Subsection 5.7).

The larger main resonant regimes (blue regions) observed for long delay do not imply
a simplification of the dynamics of the system. In contrast, for long delay, already for
small injection strengths K coexisting FML solutions are found in the main resonant
regimes, which introduce a larger complexity into the system than for intermediate
delay. This higher complexity is "shadowed" by the color code of Fig. 5.13 indicating
only the number of pulses in the cavity. Two coexisting FML branches of solutions
are depicted in Fig. 5.15, which corresponds to Fig. 5.14 for slightly higher K = 0.2.
The bifurcation diagram in Fig. 5.15(a) reveals that for all delay times τ at least one
FML solution exists with pulses that have larger peak heights than the pulses of the
solitary ML laser (blue dash-dotted line). From the above discussion, we know that
this yields an enhanced stability of the FML solution with respect to perturbations.
However, for τ -values in the interval [67.2TISI,0, 67.5TISI,0], in which the peak heights of
both solutions are similar, noise can also lead to ’switching’ between both solutions, and
thus to unstable pulse trains. Figure 5.15(b) and (c) exemplary show time traces of |E|
and phase space projections of the trajectories of the coexisting FML solutions onto the
(G, |E|)-plane for τ = 67.45TISI,0.

Figures. 5.13, 5.14, and 5.15 are plotted for an external cavity phase of C = 0.
However, in contrast to intermediate delay, the phase C has no impact on the dynamics
of the ML laser for long delay. For the special case of the exact main resonances, this
was already discussed in Subsection 5.4.1 (cf. Fig. 5.6(f)).

To sum up, with increasing delay time, the main resonant regimes, in which only one
pulse travels in the cavity, broaden. In these regimes, the stability of the pulses with
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Figure 5.15.: Bistability of periodic orbits for long delay time τ (a): Hysteresis of amplitude maxima
of time traces of |E| versus τ (in units of the inter-spike interval time TISI,0 of the solitary laser)
for stepwise increase (up-sweep, orange diamonds) and stepwise decrease of τ (down-sweep, black
circles). The blue dash-dotted line marks the maxima of the time trace of |E| for the solitary laser.
(b) and (c): Bistability of periodic orbits obtained by an up-sweep of τ (orange-dashed line) and by
a down-sweep of τ (black solid line) for τ = 67.45TISI,0 (vertical gray dashed line in (a)); (b): Time
traces of |E|; (c): Projections of the trajectories on the (G,|E|)-plane. Parameters: K = 0.2, other
parameters as in Table 5.1.
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respect to perturbation, e.g., spontaneous emission noise, is increased. This increase of
stability is more pronounced for long than for intermediate delay. However, in contrast
to intermediate delay, multistabilities are already present for long delay in the regime of
small feedback strengths K.

5.4.7. Delay induced frequency pulling

In general, the inter-spike interval time TISI differs for finite K and τ from the inter-spike
interval time TISI,0 of the laser without feedback, except for τ -values fulfilling exactly
the main resonance condition (p = 1 in Eq. (5.32)). This dependence of TISI on τ
results in a delay induced variation of the pulse repetition frequency (center frequency)
νrep(τ,K) ≡ 1/TISI(τ,K), which is known as frequency pulling and has been observed
experimentally in QW lasers [SOL93] and more recently in QD lasers [MER09, GRI09,
BRE10, LIN10e, FIO11, LIN11d]. Figure 5.16 depicts the deviations

∆νrep(τ,K) ≡ νrep(τ,K)− νrep,0

of νrep from the pulse repetition frequency in a laser without feedback νrep,0 = 1/TISI,0 as
a function of the delay time τ for small feedback strength K = 0.03 (red circle), interme-
diate K = 0.25 (white diamonds), and strong K = 0.5 (orange circles), respectively. We
only discuss the frequency pulling in the main resonant regime, where one pulse travels
in the cavity (blue regions in Fig. 5.7 and the two largest plateaus in Fig. 5.12(b)).

In this regime, synchronization is observed if the inter-spike interval time TISI adapts
to the external delay time τ according to q TISI(q, τ) = τ leading to a frequency deviation
of

∆νsyn
rep (q, τ) = q/τ − νrep,0. (5.33)

From the above equation, we expect that the frequency pulling decreases for increasing
delay times τ . This can be seen by splitting τ = q TISI,0 +∆τ into its value at an exact
main resonance q TISI,0 and a deviation ∆τ . Inserting this ansatz into Eq. (5.33) and
Taylor-expanding up to the first order in τ , yields

∆νsyn
rep (q, τ) = 1/TISI,0

︸ ︷︷ ︸

=νrep,0

− q

τ 2
∆τ − νrep,0 +O((∆τ)2) = − q

τ 2
∆τ +O((∆τ)2). (5.34)

Thus, the frequency deviation ∆νsyn
rep decreases in leading order like 1/τ 2.

Figures 5.16(a) and (b) show the frequency pulling ∆νrep in the main resonant regime
for intermediate (q = 7) and large τ (q = 67 to q = 69), respectively, together with
the synchronization condition of Eq. (5.33) (black dash-dotted lines). For intermediate
delay times, we see from Fig. 5.16(a) that the main resonant regimes broaden and the
frequency deviations ∆νrep increase with K (see also Fig. 5.7). For small values of K, the
frequency detuning is very small, and a nearly horizontal line is found (red circle) that
reaches zero detuning (horizontal gray dashed line) when τ approaches the boarders of
the main resonant regime. Instead, for intermediate and large K (white diamonds and
orange circles, respectively), ∆νrep increases nearly linearly with the distance from the
exact resonance, but remains below the detuning expected for synchronization (black
dash-dotted line).

195



5. Mode-locked laser

intermediate delay long delay

Figure 5.16.: Deviations ∆νrep of the pulse repetition frequency νrep(τ,K) of the laser with feedback
from its solitary laser value νrep,0 in terms of delay time τ for three different feedback strengths K.
Black dash-dotted lines denote complete frequency locking and vertical gray dashed lines mark exact
main resonances. (a): Intermediate delay times τ . (b): Large delay times τ . Other parameters as in
Table 5.1.

From Fig. 5.16(b), it can be seen that the width of the main resonant regimes increases
for longer delay (note the different scale of the τ -axis in Fig. 5.16(a) and Fig. 5.16(b)).
For small values of K (red crosses), we find a similar behavior of ∆νrep as for intermediate
delay. An increase of K (white diamonds), however, leads to a frequency entrainment
that stays close to its value for synchronization (see Eq. (5.33)) over nearly the whole
interval length of TISI,0 (compare the slope of the white diamonds and the black dash-
dotted line). Further, jumps of ∆νrep take place close to the exact resonance conditions.
In Fig. 5.16(b), such a jump is observed at τ = 67.85TISI,0 when the system switches
from the main resonant regime with q = 67 to the main resonant regime with q = 68 at
τ = 67.9TISI,0. In between two subsequent main resonant regimes, a short interval with
more complex dynamics is found.

Intuitively, Eq. (5.34) gives us an idea why synchronization with the external delay
works better for long cavities. Since the frequency deviation for a given distance ∆τ
from the exact main resonance (∆νsyn

rep ∝ 1/τ 2) is much smaller for long delay, the
system can synchronize with the external delay with less effort. The sawtooth like shape
of ∆νrep in terms of τ resulting from synchronization over the full TISI,0-interval observed
for long delay (see open diamonds in Fig. 5.16(b) and Eq. (5.33)) corresponds well to
the experimental findings for long delay lines [SOL93, LIN10e, FIO11]. Two of these
experiments are presented in Fig. 5.17. Figure 5.17(a) depicts the radio frequency (rf)
linewidth (left y-axis) and the pulling of the repetition frequency (center frequency)
(right y-axis) in terms of changes in the length of the external delay line for a long
delay time of τ = 3.1 ns in an early experiment with a 1.3µm 50GHz GaAs, multiple
quantum well passively mode-locked laser [SOL93]. Figure 5.17(b) depicts the pulling of
the repetition frequency in terms of changes of the delay time in the regime of very long
delay times τ = 91 ns as obtained for a 1.3µm 40GHz GaAs quantum dot passively
mode-locked laser [FIO11]. Both lasers show a sawtooth like shape of the repetition
frequency in terms of τ with a repetition period of the inter-spike interval time TISI,0,
which is marked by the blue arrow labeled "MLL Period" in Fig. 5.17(b). The delay

196
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long delay
(a) (b) (c)

very long delay

rm
s

Figure 5.17.: (a): Experimentally measured radio frequency (rf) linewidth and center frequency pulling
in terms of changes in the length of the external delay line for long delay time τ = 3.1 ns in a 1.3µm
50GHz GaAs, multiple quantum well passively mode-locked laser. Modified from [SOL93]. (b) and
(c): Experimentally measured center frequency pulling and root-mean-square (rms) timing jitter in
terms of changes of the delay time for very long delay time of τ = 1/11µs in a 1.3µm 40GHz GaAs
quantum dot passively mode-locked laser. Blue arrows indicate the repetition frequency of the laser
νrep = 1/TISI,0 = 25 ps (TISI,0 is the inter-spike interval time of the solitary laser). Modified from
[FIO11].

time in Fig. 5.17(a) (τ = 3.1 ns ) has the same order of magnitude than the long delay
discussed in Fig. 5.16(b) (68TISI,0 = 1.7 ns ). This is why according to Eq. (5.34) also
the deviation of the repetition frequency over one TISI,0-interval ∆νmax

rep = 0.35GHz
has the same order of magnitude than the one obtained in our theoretical simulations
(∆νrep(K = 0.25) = 0.3GHz ). For the very long delay of Fig. 5.17(b) (τ = 91 ns ), the
deviation of the repetition frequency over one TISI,0-interval is much smaller (∆νmax

rep =
9KHz ) as expected from Eq. (5.34). Further, the experimental results of Fig. 5.17(a)
and (b) obtained for different types of lasers suggest that the material system has only
a negligible effect on the frequency pulling, which justifies the simple DDE modeling
approach of this chapter.

Figure 5.17(c) shows that also the root-mean-square (rms) timing jitter exhibits a
periodical dependence on TISI,0 for long delay lines, which will be discussed in detail in
Subsection 5.7.

Figure 5.16 was obtained by stepwise increasing the τ -values (up-sweep). This ex-
plains the asymmetry of ∆νrep with respect to zero detuning (horizontal gray dashed
line) for long delay (Fig. 5.16(b)). For down-sweeping τm qualitatively the same res-
onance structure is obtained, but in this case the larger absolute values of ∆νrep are
observed for positive detuning. Thus, for intermediate and large K-values, we retrieve
the bistability of periodic orbits from neighboring main resonant regimes (here q = 67
and q = 68) that was already discussed in Subsection 5.4.6. These orbits have the sim-
ple shape of the one depicted in Fig. 5.5(a)(left) (only one pulse in the cavity) and a
frequency difference of ∆ν = 1/τ , which is the vertical distance of neighboring black
dash-dotted lines in Fig. 5.16(b). When the length of the delay line is increased even
further, these bistabilities become more pronounced and appear at lower values of the
feedback strength.
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5. Mode-locked laser

5.5. Additional dynamical regimes for nonzero

α-factors

So far, the dynamics of the simplest configuration with a real equation for the amplitude
of the electric field E (see Eq. (5.28a)) was studied to reveal the basic resonance structure
of τ and TISI,0. Now, the additional dynamical regimes introduced by a complex field
equation are studied. Therefore, the more realistic situation of finite phase-amplitude
coupling expressed by nonzero α-factors in the gain section (αg) and in the saturable
absorber (αq) is discussed. Figure 5.18(a) and (b) depict time traces of |E| (thick solid
lines, left y-axis) and of the net gain G (thin dashed lines, right y-axis) of the free running
ML laser (K = 0) for symmetric α-factors and asymmetric α-factors, respectively. Due
to the different pump conditions in gain and absorber section, asymmetric α-factors
(αg > αq) are more realistic than symmetric configurations.
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Figure 5.18: Time traces of |E| (full
lines, left y-axis) and of the net gain
parameter G (dashed lines, right y-
axis) for different combinations of
α-factors in gain (αg) and absorber
(αq) sections for the free running
ML laser (K = 0). (a): Symmetric
setups αg = αq, pump parameter
Jg = 0.12 ps−1. (b): Asymmetric
setups αg > αq, pump parameter
Jg = 0.09 ps−1. Other parameters
as in Table 5.1.

The gray line in Fig. 5.18(a) depicts the time trace obtained for zero α-factors and
the colored lines denote finite α-factors. For small, symmetric α-factors (see red and
blue line in Fig. 5.18(a)), the impact on height and width of the pulses is negligible, but
the net gain G in between the pulses reaches less negative values indicating a decreasing
stability of the pulse stream with respect to perturbations. At a critical value of the
α-factors of αg = αq = 3.06, the pulse stream is destabilized, and a pulse train with
varying heights of the pulses is obtained as depicted in Fig. 5.18(a) for αg = αq = 3.5
(green line).

In Fig. 5.18(b), asymmetric configurations of the α-factors (colored lines) are compared
to the symmetric case of αg = αq = 1 (gray line). Already, for the configuration with
the lowest α-factors (αg = 1 and αq=0, red lines), a small trailing edge instability opens
up, i.e., the net gain window with G > 0 stays open after the decay of the intensity.
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5.5. Additional dynamical regimes for nonzero α-factors

As a result, the pulse is easily destabilized by perturbations as for example spontaneous
emission noise, and the pulse height strongly decreases.

This trailing edge instability increases for larger α-factors. Note that Figs. 5.18(a) and
(b) cannot be compared directly, because different pump rates Jg were chosen. This was
necessary, because the ML regime shifts with the pump current, and for the parameters
of Table 5.1 no mode-locking is obtained for the asymmetric α-factors of Fig. 5.18(b).

Roughly spoken, an increasing phase-amplitude coupling degrades the quality of the
pulse stream. The impact of the phase-amplitude coupling is much smaller for symmet-
ric than for asymmetric configurations. Intuitively, this can be understood as follows
[VLA11]: the α-factors for gain and absorber section enter into the R-term of Eq. (5.23),
which describes the gain and the losses per cavity roundtrip with different signs. If sat-
urable gain G and saturable absorption Q had exactly the same dynamics, the terms
−αgG and αqQ in the denominator of Eq. (5.23) would cancel out, and the same dynam-
ics as for zero α-factors would be observed. Since the recovery of G and Q is different,
the term −αgG is only partially compensated by the term αqQ. The largest compensa-
tion is obtained for symmetric α-factors, which is the reason why the smallest impact of
finite α-factors on the dynamics of the ML laser are observed for symmetric α-factors.
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Figure 5.19.: Two-parameter bifurcation diagrams of the dynamics of the ML laser subject to external
optical feedback in terms of delay time τ (in units of the inter-spike interval of the solitary laser TISI,0)
and feedback strength K for (a): up-sweeping τ and (b): down-sweeping τ . The color code provides
the number of pulses in the cavity (compare with Fig. 5.5). White regions indicate quasiperiodic
pulse trains as depicted in Fig. 5.10 and orange region depict harmonic mode locking. Parameters:
αg = αq = 2.0 and other parameters as in Table 5.1
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5. Mode-locked laser

Next, the effect of finite α-factors onto the resonance structure of TISI,0 and τ of the
ML laser subject to external feedback is studied. Figure 5.19(a) and (b) depict the
number of maxima of |E| of different heights (color code) in dependence of τ and K
for up-sweeping K and down-sweeping K, respectively, in the regime of intermediate
delay for symmetric αg = αq = 2.0. Thus, the figure corresponds to Figs. 5.7(a) and (b)
that were obtained in the regime of intermediate delays for zero α-factors. Comparing
Figs. 5.19 and 5.7, two main differences can be observed. On the one hand, the vertical
transitions between the quasiperiodic regimes (white) and the main resonant regime
(blue) indicate that the system now has a higher complexity. This results in an increase
of the number of multistable solutions. As a consequence, the system cannot any longer
be analyzed in detail by up- and down-sweeping K and τ as it has been done for zero
α-factors in Section 5.4. On the other hand, the white region around the exact main
resonance with τ = 9TISI,0 for K ∈ [0.12, 0.31[ indicates that instabilities may occur
for finite α-factors also in the main resonant regime. These resonant self-pulsations
were also observed in experiments [GRI09, LIN10e] and in numerical simulations with
a more complex finite-difference traveling wave approach [AVR09]. The authors of the
theoretical study supposed that ML lasers subject to resonant optical feedback behave
similar as single mode semiconductor lasers coupled to a distant optical reflector, which
were discussed in Chapter 4. They observed that above a critical feedback strength
the system undergoes a cascade of bifurcations leading to chaos, before it eventually
re-stabilizes at high K = 0.31. However, a detailed analysis of the route to chaos is
still missing. This cascade of bifurcations is analyzed in the following for the exact main
resonance with τ = 9TISI,0. We compare our findings to a bifurcation cascade for a single
mode laser subject to feedback studied by Mørk at al. with the LK-model [MOR92].

Figure 5.20(a) depicts the evolution of the trajectory in the phase space spanned by
the saturable gain G, the total loss Qt, and the absolute value of the field amplitude
|E| for K = 0.15 (red line), i.e., at the beginning of the bifurcation cascade. The thick
blue dashed line marks the limit-cycle of the solitary laser. To reveal the dimensionality
of the attractor, Fig. 5.20(b) depicts the intersection points of the trajectory with a
transversal plane (Poincaré plane [SCH89c]) that is defined by Qt = 2.4. Notice that only
intersection points that result from traversals through the Poincaré plane in direction of
increasing Qt are recorded, i.e., "mirror points" are rejected. In the Poincaré section, the
attractor forms a closed curve indicating a quasiperiodic motion on a two dimensional
torus performed by the trajectory of the full system. Thus, the system has previously
undergone a Neimark-Sacker or secondary Hopf bifurcation [KUZ95], which introduced
a new frequency into the system that is incommensurate to the repetition rate of the
pulses νrep,0 = 1/TISI,0. Figure 5.20(c) depicts a second Poincaré section for G = 4.6 (see
gray dashed line in Fig. 5.20(b)). Plotted is the projection of the attractor onto a plane
spanned by |E(t)| and |E(t− TISI,0)|.

Figures 5.20(d)–(f) are the same as Figs. 5.20(a)–(c), but they were obtained for a
higher value of K = 0.25. The phase space trajectory in Fig. 5.20(d) reveals that the
size of the attractor has increased, and the first Poincaré section in Fig. 5.20(e) shows
a broadening of the attractor. This means that the attractor now has an higher dimen-
sionality, and eventually the closed curve in the second Poincaré section (see blowup in
Fig. 5.20(f)) reveals that the attractor is a three dimensional torus. Meaning that a sec-
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5.5. Additional dynamical regimes for nonzero α-factors

Figure 5.20.: Phase space projections and Poincaré sections for exactly resonant delay time τ = 9TISI,0

(TISI,0 is the inter-spike interval time of the solitary laser.) (a): Portrait of the trajectory in the
phase space spanned by saturable gain G, total loss Qt, and the absolute value of the complex field
amplitude |E| for a feedback strength of K = 0.15. The blue dashed curve indicates the periodic orbit
of the free running ML laser. (b): First Poincaré section of (a) at Qt = 2.4. (c): Second Poincaré
section of (a) for Qt = 2.4 and G = 4.6 (gray dashed line in (b)). (d)-(f): Same as (a)-(c) but
for higher K = 0.25 and second Poincaré section for G = 5.1. Parameters: αg = αq = 2 and other
parameters as in Table 5.1.
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Figure 5.21.: Phase space projections and Poincaré sections for exactly resonant delay time τ = 9TISI,0

(TISI,0 is the inter-spike interval time of the solitary laser.) (a): Portrait of the trajectory in the
phase space spanned by saturable gain G, total loss Qt, and the absolute value of the complex field
amplitude |E| for a feedback strength of K = 0.165. The blue dashed curve indicates the periodic
orbit of the free running ML laser. (b): First Poincaré section of (a) at Qt = 2.4. (c): Second
Poincaré section of (a) for Qt = 2.4 and G = 5.6 (gray dashed line in (b)). (d)-(f): Same as (a)-(c)
but for higher K = 0.265. Parameters: αg = αq = 2 and other parameters as in Table 5.1.
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ond Neimark-Sacker bifurcation took place, which introduced a third non-commensurate
frequency into the system.

Increasing the injection strength further, for K = 0.265 (see Fig. 5.21(a)–(c)), locking
on a two dimensional torus of order nine is found, which can be seen from the nine closed
curves in the first Poincaré section depicted in Fig. 5.21(b). Eventually, the system
undergoes a transition to chaos, which is depicted in Figs. 5.21(d)–(f) for K = 0.295.
Note that the attractor now extends into the region of high gain (large G & 3), which
could be the analogue to the re-injection mechanism observed for the regular pulse
packages of the QD single mode laser subject to short optical feedback discussed in
Section 4.4. Finally, at K = 0.31, the chaotic attractor collapses onto a stable limit-
cycle.

Concluding, in the main resonance with τ = 9TISI,0, the ML laser undergoes a
quasiperiodic route to chaos, before it re-stabilizes again for higher feedback strengths.
This route to chaos was also observed in single mode lasers subject to optical feedback
(LK-model) [MOR92], which substantiates the assumption of Avrutin et al. [AVR09]
that a ML laser subject to resonant optical feedback undergoes a similar instability
scenario as a single mode laser.

5.6. Timing jitter

As already mentioned in the introduction of this chapter, one major drawback of pas-
sively ML lasers is their large timing jitter due to the absence of a reference clock. The
timing jitter is a measure for the temporal variations of the inter-spike interval time
TISI of the pulses in the stream, which degrades the performance of the laser. Previous
works [HAU93a, ELI97] have shown that spontaneous emission noise is the main source
for timing jitter in passively ML lasers. Therefore, in the remainder of this chapter,
the timing jitter induced by spontaneous emission noise is studied. The spontaneous
emission is modeled by complex Gaussian white noise (Rsp 6= 0 in Eqs. (5.28)).

At first, in the next subsection, a method to measure the root-mean-square (rms)
timing jitter from the power spectrum that is known as von Linde technique [LIN86]
is discussed. It is frequently used for experimental measurements of the timing jitter
[KOL86, FIO11, FIO11a, ROS12b], but has the drawback of a large computational effort.
Further, it is strictly valid only for stationary stochastic processes (see Appendix D.2).
Thus, it can be applied for actively and hybrid ML lasers, where the external volt-
age applied to the absorber acts as a reference clock. The existence of the external
clock provokes that the variance of the timing fluctuations is time independent, i.e.,
their covariance depends only on time differences. Thus, the timing fluctuations can be
modeled by a wide-sense stationary process (see Appendix D). In contrast, in passively
mode locked lasers, the variance of the timing fluctuation increases with time, which
is the fingerprint of a non-stationary process [GAR02]. Therefore, in Section 5.6.2, an
other method to measure the rms timing-jitter is introduced that is computationally
more efficient and remains valid for non-stationary processes [HAU93a, MUL06]. Then,
in Subsection 5.6.3 with the pulse-to-pulse and the long-term timing jitter, two other
measures for the timing jitter are introduced [LEE02c], which are also of relevance for
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experiments [KEF08, LIN11f]. Moreover, they have a reduced computational effort with
respect to the rms timing jitter. Thus, the long-term timing jitter permits to study
the dependence of the timing jitter on delay time and feedback strength, which will be
done in Section 5.7. Eventually, in Subsection 5.6.4, it will be discussed, under which
assumptions the rms timing jitter can be calculated from the long-term jitter. Further,
it will be explained how rms and long-term timing jitter can be calculated from the
radio-frequency (rf) linewidth of a ML laser [KEF08, LIN11f].

5.6.1. Measuring the timing jitter from the power spectrum

Detailed information about the dominant fluctuations present in a ML laser can be
obtained from its power spectral density (PSD) [PAS04, PAS04a, PAS06], which is also
denoted as power spectrum (see Appendix D.3 for details). Experimentally, the most
exact way to measure the PSD is to record the rf-spectrum of the laser intensity with
a fast photodiode, and subsequently analyze it with an electronic spectrum analyzer
[KOL86]. The power spectrum of the intensity is often called electrical spectrum to
distinguish it from the optical spectrum of the ML laser. From the power spectrum,
different types of jitter can be calculated [PAS04, PAS04a]. In the following, we will
focus on the dominant contributions of the timing jitter and the amplitude jitter. The
latter is a measure for the variation of the amplitudes of the pulses in the stream.
The spectrum of an ideal ML semiconductor laser is a comb of δ-distributions located
at the multiples hνrep of the repetition frequency νrep, where h ∈ N is the harmonic
number. If noise is present in the system, the δ-peaks are broadened. The contribution
of the jitter to the spectrum can thus be found by analyzing the sidebands of the peaks.
The von Linde technique permits to distinguish the contributions of amplitude and
timing jitter in experiments [LIN86]. Von der Linde derived a formula for the PSD of
a ML laser under the assumptions of uncorrelated amplitude and timing fluctuations
with stationary Gaussian probability distributions. Thus, they assumed that amplitude
and timing fluctuations to be driven by independent white noise sources. A sketch of
the spectrum of a ML laser is shown in Fig. 5.22. The gray sidebands and the blue
Lorentzians centered around the harmonics (black lines) illustrate the contributions of
timing and amplitude noises, respectively. Von der Linde derived that the level of the

1 2 3 4 50

level of  

amplitude

noise

level of  

timing

noise Figure 5.22: Sketch of power spectral density
S|E| of a ML laser with repetition frequency
νrep. Gray sidebands and blue Lorentzians
illustrate contributions of timing and am-
plitude noise, respectively. The red dashed
line that is proportional to the square of
the harmonic number h and the blue dotted
line marks the level of timing and amplitude
noise, respectively.

amplitude noise does not depend on the harmonic number h (horizontal blue dotted
line), while the level of the timing noise increases proportionally to the square of the
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harmonic number h (red dashed line). Figure 5.23 depicts the PSD S|E| of the free
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Figure 5.23.: Power spectral density S|E| of the free running laser as a function of offset frequency νoff
and harmonic number h (for each harmonics, S|E| is normalized to the peak-power (carrier-power)
per Hz of this harmonics). Depicted are intervals of νoff ∈ [−10GHz ,+10GHz ] around the carrier
frequencies hνrep of the harmonics, where νrep is the repetition frequency of the ML laser. The
resolution is 1MHz . Parameters: Ti = 4 · 104 TISI,0, Rsp = 1.6 ns−1, and other parameters as in
Table 5.1.

running ML laser as obtained for the DDE model in an interval of ±10GHz around the
center frequencies hνrep of different harmonics in the spectrum. The offset frequency is
defined by

νoff(h) ≡ ν − hνrep. (5.35)

Figure 5.23 clearly reveals the increase of the side bands with the harmonic number.
Further, the contributions of the RO frequency at νoff = ±7.5GHz can be observed.

The increase of the side bands with the harmonic number permits to distinguish the
contributions of amplitude and timing jitters: the amplitude jitter can be measured from
the sideband of the zeroth frequency component, and the timing jitter can be calculated
by integrating over the sidebands of a higher harmonics (h ≥ 1) in the power spectrum.
More precisely, at first, the phase noise spectrum (or phase-noise-to-carrier-power ratio)
Sϕ of the h-th harmonics is defined as the power spectrum S|E| of |E| (or equivalently of
the intensity |E2|) normalized to the power per Hz P (h) of the h-th harmonics [KOL86],
i.e.,

Sϕ(ν, h, Ti) ≡
S|E|(ν, Ti)

P (h)
, (5.36)

where Ti is the duration of the measurement. Thus, Fig. 5.23 depicts the phase noise
spectra for different harmonics. For a non-stationary processes, the phase-noise spectrum
Sϕ depends on the duration of the measurement Ti. For a passively ML laser, this can
be understood as follows. For increasing integration time Ti, the variance of the timing

205



5. Mode-locked laser

fluctuation increases, which yields a broadening of the side-bands of the harmonic peaks
in the spectrum and thus a different phase-noise spectrum.

How the PSD S|E| is calculated from a numerically calculated time series is described
in detail in Appendix D.4. Here, only the final expression for the phase-noise spectrum
is given

Sϕ(ν, h, Ñ) ≡ S|E|(ν, Ñ)

P (h, Ñ)
= Ti

〈|Fd[{|E|}](ν)|2〉M
P (h, Ñ)

, (5.37)

where P (h, Ñ) ≡ 〈Fd[{|E|}](hνrep)|2〉M . In Eq. (5.37), {E} denotes the discrete set of
values of the time series of E , and Fd denotes the discrete Fourier transform. Since the
simulations can be carried out only for a finite integration time Ti, also for stationary
processes an ensemble average 〈 · 〉M over M ∈ N realizations of the noise has to be per-
formed. This yields a minimal frequency that can be resolved, which is given by 1/Ti. In
experimental setups, this is the resolution bandwidth of the electrical spectrum analyzer
[KOL86]. For non-stationary processes, S|E| and thus Sϕ depend on the measurement

(integration) time Ti = Ñdt and, thus, on the number of samples Ñ of the time series.
(The time step of the integration is denoted by dt, i.e, 1/dt is the sampling rate.)

The rms timing jitter is obtained by the phase-noise spectrum by integrating Sϕ over
one sideband of the h-th harmonic from a minimal positive offset frequency νoff = νlow
to a maximal offset frequency of νoff = νhigh

σrms(νlow, νhigh, Ñ) ≡ TC

2πh

√
∫ νhigh

νlow

2Sϕ(ν, Ñ , h)dν. (5.38)

For active and hybrid ML lasers, TC is the repetition period of the external modulation
(clocking time), and for passively ML lasers, we choose the average of the inter-spike
intervals, i.e.,

TC ≡
〈

1

N − 1

N−1∑

n=1

TISI,n

〉

M

. (5.39)

Note that TC is obtained by at first averaging over the N−1 inter-spike intervals TISI,n of
a single noise realization and subsequently averaging over the M realizations of the noise
(〈 · 〉M). If von der Linde’s theory is valid, i.e., under the assumption of uncorrelated,
stationary probability distributions for amplitude and timing fluctuations, Sϕ ∝ h2

holds, and as a consequence, the rms timing jitter defined in Eq. (5.38) is independent
of the harmonic number h.

Note that in this section, the definition (5.38) of the rms timing jitter has been mo-
tivated by the sidebands of the harmonics of the power spectrum that contain the con-
tributions of the timing fluctuations. In the next subsection, it will be shown that
for stationary stochastic processes the rms timing-jitter is indeed proportional to the
standard deviation of the timing fluctuations (see also Appendix D.3).

Figure 5.24 depicts the phase noise spectrum divided by the square of the harmonic
number Sϕ/h

2 for the free running ML laser in a double log plot as a function of positive
offset frequencies νoff for different harmonic numbers h. Beyond a corner frequency of
about 2.2MHz , all power spectra show the typical roll-off with a slope of 1/ν2 (see
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discussion in next subsection). This is in qualitative agreement with recent experiments
on QD passively ML lasers [LIN10c]. Beyond the corner frequency, Sϕ/h

2 and thus σrms

(see Eq. (5.38)) are independent of h, i.e., von der Linde’s theory is valid. However, the
largest contributions to the rms timing jitter are obtained for offset frequencies that are
smaller than the corner frequency, where Sϕ/h

2 depends on h. In conclusion, Fig. 5.24

corner frequency RO frequency

Figure 5.24: Phase noise spec-
tra Sϕ divided by the square
of the harmonic number h as
a function of the offset fre-
quency νoff for different har-
monics of the spectrum for the
free running laser. 1/ν2 is the
slope expected for white noise,
and the resolution is 1MHz .
Black arrows mark the corner
frequencies and the RO fre-
quency, respectively. Parame-
ters: Ti = 4 · 104 TISI,0, Rsp =
1.6 ns−1, and other parame-
ters as in Table 5.1.

suggests that von der Linde’s technique is strictly valid for passively ML semiconductor
lasers only for large lower offset frequencies of νlow of 2–3MHz , which is in agreement
with recent experiments [LIN11f]. However, in experiments, lower offset frequencies
in the kHz-range are frequently used [FIO11, LIN10c]. Then, the measured rms jitter
depends on the harmonic number h, which has to be specified for reproducibility.

5.6.2. Pure time-domain method to measure the timing jitter

Measuring the timing jitter from the rf-spectrum has the drawback that, in practice, the
contributions of amplitude and timing jitter cannot be completely separated. Further,
the required resolution of at least 1MHz leads to large data sets. Therefore, we use in
addition a pure time-domain method for timing jitter measurements that was proposed
in [MUL06] and is computationally less demanding. The idea for this method goes back
to a paper of Haus et al. [HAU93a]. The authors used perturbation theory of the
Haus’s master equation for ML lasers [HAU75, HAU00] to derive equations of motions
for the four orthogonal pulse perturbation parameters: pulse timing, energy, emission
frequency, and optical phase 6. For an analytical application of this technique to the
DDE model with external injection see [REB11], and for an application of this technique
to an extended version of the model suitable for hybrid mode locked lasers see [VLA10a].

6In a more mathematical description, the unperturbed pulse train is given by a stable limit-cycle in
phase space E0(t). Most sensitive to perturbations are the Floquet modes with Floquet multipliers
on the unit cycle. These Goldstone modes are determined by the symmetries of the system. For
instance, autonomous differential equations have always one Goldstone mode associated with their
time-shift symmetry, which is given by χ0 ≡ d

dtE0(t). Since Floquet modes are orthogonal, projecting
the perturbed pulse train onto their adjoints and imposing solvability conditions yields equations of
motions for the perturbation in the directions of the Goldstone modes. This yields the orthogonal
pulse perturbations [HAU93a].
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5. Mode-locked laser

Here, we focus on a numerical description of the perturbations on the timing position
tn of the pulses, where n = 1, . . . N for N ∈ N labels the pulses, and N is the total
number of pulses in the stream. The timing positions are detected with the following
algorithm: in Section 5.3, we discussed that the main pulses are shaped by a net gain
window with G(t) > 0 (see Fig. 5.4). Therefore, at first, a probability density is defined
by

ρn(t) ≡
G2(t)

Gn

, with Gn ≡
∫ tn,e

tn,b

G2(t)dt, (5.40)

where tn,b is the first time point, at which the leading edge of the n-th pulse exceeds a
threshold G(tn,b) > Gthres, and tn,e is the first time point, at which the trailing edge of the
pulse deceeds the threshold value, i.e., G(tn,e) < Gthres

7. In the numerical simulations,
Gthres = 0.01 was chosen. The timing position of the n-th pulse is determined by the
first moment (mean) of the distribution function ρn(t)

tn ≡
∫ tn,e

tn,b

ρn(t) t dt, (5.41)

higher moments of ρn(t) give informations about the shape of the pulse. Note that
for asymmetrical pulses, the tn’s do not coincide with the time points of the intensity
maxima of the pulses. Further, this pulse detection method does not permit to include
the smaller, feedback induced pulses (see Fig. 5.5) directly into the calculation of the
timing jitter, as long as they are not large enough to open a net gain window (G > 0).
But, as discussed in Sec. 5.4, the feedback induced pulses have much smaller peak
intensities. This is why they are expected to have only a negligible effect on the power
spectrum of the ML laser subject to feedback. This is confirmed by the good agreement of
the rms timing jitter calculated with this technique with the rms timing jitter calculated
from the power spectrum of the full system, which will be discussed in Section 5.7.

Further, the main resonant regimes are of particular interest for applications, because
in these regimes the largest reduction of the timing jitter is obtained, which will be
discussed in Section 5.7. Note that the above method is exact in the main resonant
regimes, where only one pulse travels in the cavity.

For each of the M noise realizations, a set of timing fluctuations is obtained

{∆tn ≡ tn − nTC}Nn=1, (5.42)

which are the temporal deviations of the timing positions of the pulses in a noisy pulse
stream {tn}Nn=1 from the timing positions {nTC}Nn=1 of the pulses in an ideal, jitter free
pulse stream (clock) (see Fig. 5.25). In active and hybrid ML lasers, the clock is given
by the modulation frequency of the external electrical signal. In passively ML lasers, we
use the average of the inter-spike interval-times

{TISI,n ≡ tn+1 − tn}N−1
n=1 (5.43)

7In the paper of Mulet and Mørk [MUL06], the pulse energy |E|2 is used instead of the net gain G to
determine the timing positions tn of the pulses. This has the advantage that the pulse energy jitter
can be evaluated in addition to the timing jitter. However, since the additive noise is applied to the
field equation, it has a much noisier time trace than the carrier equations, which in turn results in
more artifacts for large noise strengths.
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time
ideal
clock

timing phase

Figure 5.25.: Timing positions {tn}Nn=1 of the noisy pulse stream and of an ideal clock {nTC}Nn=1 yielding
the timing deviations {∆tn ≡ tn−nTC}Nn=1 and a set of inter-spike intervals {TISI,n ≡ tn+1− tn}N−1

n=1 .
N is the number of pulses in the pulse stream, and the average of the inter-spike interval times is used
as clocking time TC . Further, the timing deviations can be expressed as a set of phase fluctuations
{ϕn ≡ 2π∆tn/TC}Nn=1.

as timing TC of the reference clock.
The timing fluctuations can also be expressed as a set of fluctuations ϕn of the (timing)

phase ϕ
{

ϕn ≡ 2π

TC

∆tn = 2π
tn − nTC

TC

}N

n=1

. (5.44)

Considering the timing phase as a continuous variable of time ϕ = ϕ(t) with ϕ(tk) = ϕk

(see Fig. 5.25), the instantaneous repetition frequency of the pulses νrep is given by the
derivative of ϕ with respect to time

νrep(t) =
dϕ(t)

dt
. (5.45)

The definitions of the phase fluctuations (5.44) and of the PSD (see Eq. (D.17)) reveal
that the power spectra of timing fluctuations and timing phase fluctuations are related
by

Sϕ(νoff , N) =

(
2π

TC

)2

S∆t(νoff , N), (5.46)

where νoff is the offset frequencies from the carrier frequency 1/TC . To simplify nota-
tion, the subscript "off" is suppressed for the following calculation. For non-stationary
stochastic processes, the power spectra depend on the number N of timing fluctuations,
i.e., on the length Ti of the time series. Experimentally, the noise of the timing phase
is obtained by the noise of the lowest harmonics (h = 1) of the output of a photodiode
measuring the intensity of the ML laser, i.e., from the noise of the photocurrent [KEF08],
and corresponds to the phase noise introduced in the previous subsection.

Taking into account that the Fourier transform of the linear operator d
dt

yields a
multiplication with ω = 2πν, the PSD of the timing phase can be expressed in terms of
the PSD Sνrep of the repetition frequency νrep as

Sϕ(ν,N) =
1

ν2
Sνrep(ν,N). (5.47)
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5. Mode-locked laser

Thus, fluctuations of low (offset) frequencies ν lead to larger accumulated timing devi-
ations, i.e., larger fluctuations of the timing phase. Furthermore, if Sνrep is frequency
independent, i.e., the noise of νrep is white, Sϕ ∝ 1/ν2. From the phase noise spectrum in
Fig. 5.24, it can be seen that the white noise added to the dynamical equation (5.28a) of
the field amplitude E translates into an essentially constant (white) PSD of νrep, which
corresponds to the 1/ν2-slope of Sϕ. Since this 1/ν2-slope of Sϕ is also observed exper-
imentally [LIN10e, LIN11f], we can conclude that the timing jitter is essentially driven
by white spontaneous emission noise [HAU93a, ELI97].

Figure 5.26.: (a): Different realization of the timing fluctuations {∆tn}j for the free running ML laser.
The ideal clock is given by the gray dashed horizontal line. (b): Phase-noise spectra Sϕ for a single
realization (red diamonds) and averaged over 50 realization (blue crosses). The dashed black line
marks the 1/ν2-dependence obtained for white noise of the repetition frequency. The resolution is
1.5MHz . Parameters: Ti = 3 · 104 TISI,0, Rsp = 0.1 ns−1, and other parameters as in Table 5.1.

In Fig. 5.26(a), different realizations j of the timing fluctuations {∆tn}j are depicted
as functions of the number of roundtrips n in the cavity, and the gray dashed horizontal
line marks the ideal clock (no fluctuations). For the simulations, pulse trains containing
N = 3 · 104 pulses were used. In Fig. 5.26(b), phase noise spectra calculated by the
time-domain method (Eq. (5.46)) are depicted. Red diamonds depict Sϕ for a single set
of timing fluctuations (M = 1), and blue crosses depict the Sϕ obtained by averaging
over M = 50 noise realizations to illustrate that the averaging procedure over multiple
realizations of the noise is necessary to obtain a meaningful result. In the log-log plot
of Fig. 5.26(b) the spectrum decays linearly over more than three orders of magnitude,
which corresponds to a 1/ν2-decay of Sϕ (cf. Fig. 5.24). The slight increase of the phase
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noise at high frequency offsets of about 7.5GHz stems from the RO frequency of the
system.

In Appendix D.3 it is discussed that for wide-sense stationary processes the variance
Var(x) of a stochastic process x with zero mean (〈x〉 = 0) can be calculated from its
PSD Sx as

Var(x) =
1

2π

∫ ∞

0

2Sx(ω)dω =

∫ ∞

0

2Sx(ν)dν. (5.48)

This motivates the following definition of the rms timing jitter, which is a measure for
the standard deviation of the timing fluctuations,

σrms(νlow, νhigh, N) ≡
√
∫ νhigh

νlow

2S∆t(ν,N)dν =
TC

2π

√
∫ νhigh

νlow

2Sϕ(ν,N)dν, (5.49)

here νlow and νhigh denote the minimal and maximal offset frequency from the carrier
frequency 1/TC , respectively. Since the PSD of a real stochastic process is symmetric,
i.e., Sx(ν) = Sx(−ν), it is sufficient to integrate over the side band with positive offset
frequencies. This is why the PSDs on the right hand side of Eq. (5.49) are multiplied
by a factor of 28

5.6.3. Pulse-to-pulse and long-term jitter

Figure 5.26(a) reveals that the variance of the timing fluctuations ∆tn = tn−nTC increase
with the number n of roundtrips of the light in the cavity, while their mean remains zero
(〈∆tn〉M = 0). Thus ,the timing fluctuations ∆tn can be modeled by a non wide-sense
stationary random process (see Appendix D.2). The reason is that in contrast to active
and hybrid mode-locking, in passively ML lasers there is no external reference clock that
suppresses the drift of the timing fluctuations, i.e., the drift of the repetition frequency.
Figure 5.27 depicts the variance of the timing fluctuations (divided by the number of
roundtrips in the cavity n) versus n for the free running ML laser (red line), as well as
for the main resonance with τ = 7TISI,0 (dark-green line), the second order resonance
with 2τ = 15TISI,0 (dark-blue line), and a non-resonant case with τ = 7.22TISI,0 (black-
line) for small feedback strength K = 0.1. The variance was calculated by averaging the
timing fluctuations ∆tn for constant n over M = 200 realizations of the noise9, i.e.,

Var(∆tn)(n, τ) ≡ 〈(∆tn(τ))
2〉M , (5.50)

The variance divided by n (Var(∆tn)/n) decreases strongly for small n, but eventually
approaches a constant value for large n (n & 5000). Thus, for large n, the variance
depends linearly on n, i.e.,

Var(∆tn)(n, τ) = 2D∆t(τ)n, (5.51)

8Note that in engineering disciplines commonly single sided PSDs are used. They are defined only for
non-negative frequencies, and are thus two times higher than the two sided ones to obtain the same
norm. This is why the factor of 2 is sometimes absent in the literature.

9In simulations with an external feedback loop that is long compared to the inter-spike interval time
TISI,0, the integration time has to be long compared to the delay time τ to avoid transient behavior.
For intermediate delay τ = O(10TISI,0) and long delay τ = O(100TISI,0), the system has there-
fore been integrated for 5 · 103 TISI,0 and 20 · 103 TISI,0, respectively, before calculating the timing
fluctuations.
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Figure 5.27: Long-term jitter
σlt as a function of the
number of roundtrips n of
the light in the cavity for
the solitary laser (red line),
the main resonance with
τ = 7TISI,0 (dark-green
line), the second order res-
onance with 2τ = 15TISI,0

(dark-blue line), and for a
non-resonant case with τ =
7.22TISI,0 (black line). Pa-
rameters: Rsp = 1.6 ns−1,
K = 0.1, and other parame-
ters as in Table 5.1.

where we have introduced the diffusion constant D∆t(τ), which depends on the delay
time τ . As a result, the timing fluctuations ∆tn for n & 5000 can be described by a
discrete Lévy process with stationary, independent increments, which is better known as
discrete Wiener process or random walk [GAR02, JAC10]. The timestep of the process
is TC , and at each timestep the probability distribution of the stochastic, cumulative
process ∆tn is Gaussian with zero mean and variance of D∆t n

ρ(∆tn|∆t1 = 0, n = 1) =
1√

4πD∆t n
e
− (∆t)2

2D∆t n . (5.52)

The statistically independent increments of the stochastic process are given by

{jl(1) ≡ ∆tl+1 −∆tl = tl+1 − tl − TC = TISI,l − TC}N−1
l=1 , (5.53)

which are just the deviations of the inter-spike interval TISI from its mean value Tc.
Since for every n, the stochastic variable ∆tn is Gaussian, also the increments have a

Gaussian probability distribution [JAC10], and the independence of its increments yields

〈jn+l(1)jn(1)〉M = 〈(jn(1))2〉δl,0, (5.54)

where δ denotes Kronecker’s delta.
The strong decrease of Var(∆tn)/n for small n could be due to finite correlations times

of the ∆tn’s for adjacent n, which cause deviations from Eq. (5.51). Intuitively, this can
be understood as follows: we know from the discussion in Section 5.3 that the distance
between subsequent pulses is fixed by the time the saturable gain G needs to recover
until it overcomes the total loss Qt = Q + | lnκ|, and a net gain window (G − Qt > 0)
opens up (cf. Fig. 5.4). Thus, if the n-th pulse has a large negative timing deviation
with respect to the clock (∆tn < 0), we expect that also the subsequent pulse arrives
previous to the clock (∆tn+1 < 0).

In summary, equation (5.51) expresses that for an integration time Ti, which is longer
than the largest correlation time in the system, the effect of the white noise applied to the
field equation (5.28a) can, in a projection into the direction of the timing fluctuations,
be modeled by a random walk.

212



5.6. Timing jitter

Since Var(∆tn)/n is a constant for large n, it is a good measure for the timing jitter,

σlt ≡
√

Var(∆tn)/n =
√

2D∆t(τ). (5.55)

This type of jitter is known as long-term timing jitter [LEE02c]. For n = 1, the standard
deviations of the inter-spike intervals TISI,n from their average value TC is obtained. This
quantity is known as pulse-to-pulse

σptp =
√

Var(∆t1) =

√

〈
(
TISI1 − TC

)2〉M (5.56)

or cycle-to-cycle jitter in the physical community [KEF08], and in the electrotechnical
community, the name period jitter is commonly used [LEE02c]. The pulse-to-pulse
jitter σptp corresponds (up to the normalization with respect to TC) to the standard
deviation of the inter-spike interval time RT (see Eq. (4.62)) discussed in the context
of the coherence resonance in Section 4.8. If the assumption of independent increments
is strictly valid, then Var(∆tn) needed for the calculation of σlt in Eq. (5.55) can be
calculated from the ensemble of the n-th differences

{jl(n) ≡ ∆tl+n −∆tl = tl+n − tl − TC = TISI,l+n − TC}N−n
l=1 (5.57)

of a single noise realization, instead of averaging over M realizations, which speeds up
the calculations tremendously. Analogously, the pulse-to-pulse jitter may, under the
assumption that the TISI’s are independent, be calculated from the ensemble of inter-
spike intervals of a single noise realization

σptp =

[

1

N − 1

N−1∑

n=1

(TISI,n − 〈TISI〉)2
] 1

2

. (5.58)

5.6.4. Calculating the root-mean-square timing jitter from the
long-term timing jitter

Under the assumption that the timing fluctuations can be modeled by a random walk,
the rms timing-jitter may be calculated from the long-term timing jitter, which will be
discussed in this subsection. More precisely, the statistical independence of the incre-
ments of the timing deviations ∆tn permits to analytically calculate their autocorrelation
function, their PSD, and eventually their rms timing jitter from the diffusion constant
D∆t, and thus from the long-term jitter (see Eq. (5.55)). For the sake of simplicity, the
timing deviations are considered for the remainder of this section as functions ∆t of a
continuous time variable t, which equals the discrete set of timing fluctuations {∆tn}Nn=1

at the time points nTC , i.e.,

∆t(nTC) ≡ ∆tn, for: 1 ≤ n ≤ N and N ∈ N. (5.59)

As a consequence, the variance of ∆t = ∆t(t) is given by (cf. Eq. (5.51))

Var(∆t) = 〈(∆t(t))2
〉
= 2 D̃∆t t, with D̃∆t ≡

D∆t

TC

. (5.60)

213



5. Mode-locked laser

Calculating the autocorrelation of the timing deviations Ψ∆t from its definition in
Eq. (D.11)), yields

Ψ∆t(s, Ti) =
1

Ti

∫ Ti−|s|

0

〈
∆t(t+ s)∆t(t)

〉
dt

=
2 D̃∆t

Ti

∫ Ti−|s|

0

t dt = D̃∆t Ti

(

1− |s|
Ti

)2

. (5.61)

In the first equality of the second line of Eq. (5.61), we have used that ∆t is a cumulative
stochastic process with independent increments. This means that ∆t at a time point t+s
can always be split into two statistically independent parts: a part ∆t(t) that depends
only on t and a rest R∆t(s) that depends only on s, i.e. ∆t(t + s) = ∆t(t) + R∆(t)(s),
with 〈∆t(t)R∆t(t)〉 = 0. Thus, the covariance function simplifies as

〈∆(t+ s)∆(t)〉 = 〈[∆(t) +R∆t(s)]∆t〉 = 2 D̃∆t t.

The Wiener-Khinchin theorem [GAR02] stating that PSD and autocorrelation func-
tion form a Fourier-pair (see Eqs. (D.12) in Appendix D.3) permits to calculate the
power spectrum of the timing fluctuations from Eq. (5.61)

S∆t(ω, Ti) = 2

∫ Ti

0

Ψ∆t(s, Ti) cos(ωs)ds =
4 D̃∆t

ω2

[

1− sin(ωTi)

ωTi

]
ωTi≫1≈ 4 D̃∆t

ω2
. (5.62)

For long integration times Ti and not to small offset frequencies ω, the limit ωTi ≫ 1
is valid, which permits to neglect the sinc-function in the rectangular brackets. In this
limit, we retrieve the 1/ω2-decay of S∆t. Thus, also the phase noise spectrum Sϕ decays
like 1/ω2 (see Eq. (5.46)), which was observed in the phase noise spectrum of Fig. 5.24
for offset frequencies larger than ∼ 2–3MHz .

Eventually, the rms-timing jitter can be calculated by inserting Eq. (5.62) into Eq. (5.49),
which yields

σrms(νlow, νhigh, Ti) =

√
∫ νhigh

νlow

2S∆t(ν, Ti)dν =
1

π

√

2 D̃∆t

(
1

νlow
− 1

νhigh

)

=
σlt

π
√
TC

√
(

1

νlow
− 1

νhigh

)

≈ σlt

π
√
TC

1√
νlow

. (5.63)

In the last approximation of Eq. (5.63), the upper integration limit νhigh has been ne-
glected, because νhigh is in the order of GHz and therefore much larger than the lower
integration limit, which has to be chosen in the order of MHz to guarantee that the last
approximation in Eq. (5.62) remains valid. Equation (5.63) provides us with a method
to calculate σrms from the long-term jitter σlt defined in Eq. (5.55). The latter has the
advantage of a much lower computational effort.

The assumption of vanishing correlations between the timing fluctuations used in the
calculation of Ψ∆t (Eq. (5.61)) can be avoided. In [ELI96, ELI97], the authors have
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calculated the PSD of the timing fluctuations under the assumption of exponentially
decaying correlations

〈∆t(t)∆t(s)〉 = 〈∆t2〉e−
|t−s|
τc , (5.64)

where τc denotes the correlation time. Such a stochastic process is known as Ornstein-
Uhlenbeck-Process, and its PSD is a Lorentzian [GAR02]. This was employed in [KEF08,
LIN11f] to calculate the long-term timing jitter and the rms timing jitter by fitting the
experimentally measured phase noise spectrum with a Lorentzian. In the meaningful
limit that the lower offset frequency νlow is small compared to the FWHM ∆νrf of the
Lorentzian, a similar expression for the rms timing jitter as in Eq. (5.63) is obtained
with σlt expressed in terms of ∆νrf [KEF08].

5.7. Impact of the feedback on the timing jitter

Having discussed the different measures for the timing jitter in the last section, we focus
now on the impact of the feedback on the timing jitter. Therefore, at first, the impact of
the feedback on the power spectrum S|E| is discussed for intermediate and long delay. In
the next subsection, the different methods to measure the rms timing jitter introduced in
the last section are compared, and the long-term timing jitter is studied in dependence of
τ and K. This permits to retrieve the "resonance cones" discussed for the deterministic
system in Section 5.4.2. Eventually, in the last subsection, the dependence of these
"resonance cones" is studied for nonzero phase-amplitude coupling.

Figure 5.28 depicts the PSD S|E|(νoff) (color code) of the absolute value of the field
amplitude as a function of the delay time τ for intermediate delay between the 7th
(τ = 7TISI,0) and the 8th (τ = 8TISI,0) main resonance and a small feedback strength
of K = 0.1. Thus, it corresponds to Fig. 5.8 obtained for the pulse maxima of the
deterministic system. The power spectrum is depicted in an interval of ±0.5GHz around
the h = 25-th harmonics of the free running ML laser, i.e., the center frequency in
Fig. 5.28(a) is ν = 25νrep,0. Bright colors indicate high power.

From the discussion of the resonance structure of inter-spike interval time TISI and
delay time τ in Section 5.4, we remember that in the main resonances of the deterministic
system the pulse height is increased while the pulse width is decreased, which indicates an
increase of the stability of the pulses with respect to the free running laser. Consequently,
the main resonant regimes displays the lowest power in the side bands of the spectrum
of Fig. 5.28(a) (dark colors), which reveals that in these regimes, the pulse stream has
the highest temporal stability. Further, a reduction of the power of the side bands can
be observed in the second order resonant regime in an interval around τ = 15/2TISI,0.
The destabilizing effect of non-resonant feedback can be observed best between the main
resonance with τ = 7TISI,0 and the fifth order resonance with τ = 36/5TISI,0, where broad,
high power side bands are observed indicating a high timing jitter. They correspond to
the broad pulse forms of the deterministic system depicted in Fig. 5.9 resulting from a
mismatch of the main pulses with the feedback induced pulses. Further, the pulling of the
repetition frequency in the main resonant regime that was discussed in Section 5.4.7 is
clearly observed in Fig. 5.28(a). Also in the second order resonant regime, the repetition
frequency depends nearly linearly on the delay time τ .
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Figure 5.28.: (a): Power spectra (color code) of the absolute value of the field amplitude |E| versus
delay time τ for intermediate delay. (TISI,0 is the inter-spike interval time of the free running laser.)
and small feedback strength K = 0.1. The spectrum is centered around the h = 25-th harmonics, and
νoff = ν − hνrep denotes the offset frequency. (νrep is the repetition rate of the free running laser.)
(b): Power spectrum of |E| centered at the first harmonics (h = 1) for τ -values indicated by (1)–(4)
in (a) as well as for the free running laser (gray). (c): Phase noise spectrum Sϕ for positive νoff
of the h = 25-th harmonics for τ -values indicated by (1)–(4) in (a) as well as for the free running
laser (gray). Bright shading indicates the range of integration for the calculation of the rms timing
jitter. The resolution is 1MHz . Parameters: Ti = 4 · 104 TISI,0, Rsp = 1.6 ns−1, K = 0.1, and other
parameters as in Table 5.1.
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Figure 5.29.: Same as Fig. 5.28 but in the regime of long delay times.

217



5. Mode-locked laser

Figure 5.28(b) depicts S|E| in an interval of ±1.5GHz around the first harmonics
(center frequency νrep) for the free running ML laser (gray) as well as for four τ values
indicated by blue arrows labeled (1)–(4) in Fig. 5.28(a). It reveals a strong decrease of
the rf-linewidth, i.e., the FWHM of S|E|, for resonant optical feedback (blue line) with
respect to the free running laser (gray line), while the rf-linewidth is strongly increased
for non-resonant optical feedback (brown line). Further, for non-resonant feedback,
the S|E| is asymmetric with respect to the center frequency, which was also observed
experimentally [FIO11]. If the timing jitter is calculated by fitting the rf-spectrum
with a Lorentzian to extract its FWHM as discussed in Subsection 5.6.4 and applied in
[KEF08, LIN11f], the asymmetric lineshape of S|E| for non-resonant feedback could yield
artifacts.

Figure 5.28(c) depicts the phase noise spectrum Sϕ as obtained from Eq. (5.37) for the
h = 25-th harmonics for the free running laser (gray) as well as for the four delay times
that are indicated by blue arrows labeled (1)–(4) in Fig. 5.28(a). Thus, Fig. 5.28(c)
corresponds to vertical sections of Fig. 5.28(a) along the blue arrows and for positive
offset frequencies νoff . The phase noise spectra for the exact main resonance (blue line
labeled (1)), the second order resonance (brown line labeled (3)), and the third order
resonance (pink line labeled (4)), show, similar to the phase noise spectrum of the free
running laser (gray line), a 1/ν2-slope, which indicates a white PSD of the instantaneous
frequency νrep. Thus, we expect that in the resonant regime, the rms timing jitter σrms

can be calculated from the long-term jitter σlt from Eq. (5.63). However, for off resonant
feedback (brown line labeled by (2)), the decay of Sϕ with the offset frequency is more
complicated.

Figure 5.29 corresponds to Fig. 5.28 in the regime of long delay times. From the
power spectrum S|E| of Fig. 5.29(a), we note that the side band suppression is in the
resonant regimes much stronger than for intermediate delay (dark colors) indicating a
more efficient temporal stabilization of the pulse stream, i.e., a stronger reduction of
the timing jitter. Further, the resonant regimes are strongly broadened with respect to
intermediate delay. This corresponds to the broadening of the main resonant regimes of
the deterministic system (compare for low feedback strengths Fig. 5.7(e) to Fig. 5.13(e)).
Moreover, the pulling of the center frequency in the main resonant regime is smaller for
the long delay than for intermediate delay as discussed in Section 5.4.7.

The power spectrum S|E| in Fig. 5.29(b) reveals that in the main resonances (blue line)
and in the second order resonances (brown line), the rf-linewidth is strongly reduced with
respect to the free running laser (gray line), which is in agreement with experimental
results for ML QW lasers [SOL93], for ML quantum dash lasers [MER09], and for
ML QD lasers [LIN10e, MES10, FIO11, LIN11d, ROS12b]. The phase noise spectra Sϕ

depicted in Fig. 5.29(c) indicate that the phase noise measured from the side band of the
h = 25-th harmonics is reduced under resonant optical feedback (blue and brown line)
with respect to the solitary laser (gray line), but enhanced for non-resonant feedback
(pink line), which was observed experimentally in [GRI09]. In the main resonances, the
roundtrip frequency of the light in the external cavity 1/τ ≈ 0.58GHz can be clearly seen
as sidepeaks in the power spectrum of Fig. 5.29(b) (blue line) and as "rippling" in the
tail of the phase noise spectrum (blue line inf Fig. 5.29(c)), which is in correspondence
with experimental findings [MER09, FIO11, ROS12b].
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5.7. Impact of the feedback on the timing jitter

5.7.1. Feedback dependence of rms timing jitter and long-term
timing jitter

In this subsection, it is studied how the delay induced changes of the power spectrum
of the ML laser translate to changes of the timing jitter. In Figure 5.30(a), the rms
timing jitter σrms is depicted vs. τ in the regime of intermediate delay and for a small
feedback strengths of K = 0.1. The figure compares the three different methods to

(a)

(b)

(c)

intermediate delay times

Figure 5.30.: (a): Root-mean-square timing jitter σrms in dependence of the delay time τ for intermediate
delay times and small K = 0.1. The red line depicts σrms calculated from the h = 25-th harmonics of
the power spectrum S|E| of the absolute value of the field amplitude |E| (Eq. (5.38)), the black line
indicates σrms calculated from the timing fluctuations {∆tn} (Eq. (5.49)), and the green line depicts
σrms calculated from the long-term jitter σlt (Eq. (5.63)). The horizontal gray line denotes the rms
timing jitter of the free running laser. (b): Dependence of pulse-to-pulse jitter σptp (blue line, left
y-axis) and long-term jitter σlt (green line, right y-axis) on τ . Horizontal blue and green dashed lines
mark the pulse-to-pulse and the long-term timing jitter of the free running laser, respectively. (c):
Bifurcation diagram of maxima of |E| vs. τ for up-sweeping τ (orange diamonds) and down-sweeping
τ (gray dots). Gray shadings indicate a reduction of the jitter with respect to the free running laser.
Parameters: Ti = 4 · 104 TISI,0, Rsp = 1.6 ns−1, K = 0.1, and other parameters as in Table 5.1.

measure σrms discussed in the last section: the red line depicts σrms calculated from the
h = 25-th harmonics of the power spectrum S|E| (see Eq. (5.38)), the black line indicates
σrms calculated from the timing fluctuations {∆tn} (see Eq. (5.49)), and the green line
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5. Mode-locked laser

(a)

(b)

(c)

Figure 5.31.: Same as Fig. 5.28 but in the regime of long delay times τ .
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5.7. Impact of the feedback on the timing jitter

depicts σrms obtained from the long-term jitter σlt under the assumption that the timing
fluctuations can be described by a random walk, i.e., by a cumulative stochastic process
with Gaussian probability distribution and statistically independent increments. For
the first two methods, the phase noise spectra were integrated from νlow = 1MHz to
νhigh = 5GHz (see gray shaded region in Fig. 5.28(c)).

Figure 5.30(b) depicts the dependence of the pulse-to-pulse jitter σptp as defined by
Eq. (5.58) (blue line, left y-axis) and long-term jitter σlt as defined by Eq. (5.55) (green
line, right y-axis) as functions of τ . Further, Fig. 5.30(c) depicts the amplitude maxima
of |E| of the deterministic system (Rsp = 0) for up-sweeping τ (orange diamonds) and
down-sweeping τ (gray dots) (see Section 5.4 for details), respectively. Thus, it reveals
the resonance structure of the deterministic system (cf. Fig. 5.8(a)).

From Fig. 5.30(a), we note that all three methods to calculate σrms yield the same
dependence on the delay time τ . As expected from the power spectrum in Fig. 5.28(a),
the jitter is reduced in the main resonant regimes with respect to the free running laser
(gray dashed line), and also in the second order resonant regime around τ/TISI,0 = 15/2 a
small dip of σrms is detected. High values of σrms are observed in the non-resonant regimes
in between the main and the fifth order resonances. The good correspondence of σrms

calculated from the long-term jitter σlt (green line in Fig. 5.30(a)) with the rms timing
jitters obtained from the power spectrum and the timing fluctuations, respectively, (red
and black lines in Fig. 5.30(a)) reveals that the timing fluctuations are well approximated
by a random walk. However, the shape of σptp (blue line in Fig. 5.30(b)) deviates in
the non-resonant regimes from the shapes of σlt (green line in Fig. 5.30(b)) and σrms

(Fig. 5.30(a)). The pulse-to-pulse jitter σptp has been calculated under the assumption of
independent TISI’s from the ensemble average over the TISI’s of a single noise realization
(see Eq. (5.58)). Therefore, non-vanishing short term correlations between adjacent
TISI’s could be the reason for these deviations (see discussion in Section 5.6.3). The
bifurcation diagram in Fig. 5.30(c) reveals a single bistability region close to τ/TISI,0 =
36/5 indicated by the dashed vertical arrow. If the laser is subject to noise (Rsp 6= 0),
the laser switches between both solutions close to the bistability of the deterministic
system. This results in temporal instabilities of the pulse train, which are responsible
for the strong increase of the jitter.

Figure 5.31 corresponds to Fig. 5.30 in the regime of long delay times. All three
measures of the timing jitter σrms, σlt, and σptp reveal that in the main and the second
order resonance the timing jitter is decreased more effectively than for intermediate delay
as expected from the discussion of the power spectra (cf. Fig. 5.29). The gray shaded
regions in Fig. 5.31(a) and (b) indicate a reduction of the timing jitter with respect to the
free running laser. Moreover, the main resonances and the second order resonance are
strongly broadened. However, the timing-jitter can also be increased for non-resonant
feedback. The bifurcation diagram of Fig. 5.31(c) reveals that τ values, for which high
values of the timing jitter are observed, correspond to bistabilities of the deterministic
system (vertical dashed arrows). In these regions, the noise induces switching processes
between solutions with different numbers of pulses in the cavity, which are temporally
less stable than the pulse stream obtained in the resonant regimes.

So far, the dependence of the timing jitter was studied for a fixed, small value of the
feedback strength (K = 0.1). Now, the K-dependence of the long-term timing jitter σlt
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5. Mode-locked laser

is discussed. Figure 5.32(b) and (d) depict σlt (color code) as a function of τ and K
for intermediate delay and long delay, respectively. The feedback strength ranges from
K = 0.01 to K = 0.5 covering the regimes of very weak feedback up to strong feedback.
Blue colors indicate a reduction of σlt with respect to its value for the free running laser
σlt,0, red and yellow colors indicate a moderate enhancement of the timing jitter, and
in the white regions, the pulse stream is destabilized by the feedback. For every pair of
(τ,K)-values, the same constant initial conditions were chosen, such that Figs. 5.32(a)
and (b) correspond to Figs. 5.7(a) and 5.13(e), respectively. In Figs. 5.32(a) and (c),
σlt is plotted for several constant values of K. Thus, Figs. 5.32(a) and (c) correspond
to horizontal sections of Figs 5.32(b) and (d), respectively. The long-term jitter of the
free running laser σlt,0 is indicated by a gray dashed line, and gray shading marks a
reduction of σlt with respect to σlt,0. As expected from the discussion of the resonance
structure of τ and TISI in Section 5.4, the best suppression of the timing jitter is found in
"resonance cones" centered at the exact main resonances τ = qTISI,0 for q ∈ N, and the
width of the cones increases with the feedback strength. They correspond to the main
resonant regimes of the deterministic system (blue regions in Figs. 5.7 and 5.13). From
the level curves in Figs. 5.32(b) and (d) or Figs. 5.32(a) and (b), it can be seen that
for the long delay the suppression of the jitter in the main resonances is more effective.
Further, for high values of the feedback strength, a strong suppression of the jitter over
the whole TISI,0-interval is possible. This can be seen best from the green and black lines
in Fig. 5.32(c) depicting σlt for K = 0.35 and K = 0.5, respectively.

From our findings of this section, the following preliminary conclusion may be drawn:
the best suppression of the timing jitter is obtained in the main resonant regimes, i.e., in
the blue "resonance cones" of Fig. 5.32(d) and for high values of the feedback strength.
However, the next subsection reveals that for more realistic configurations taking into
account the phase-amplitude coupling, the scenario becomes more complicated and un-
stable pulse trains can also be observed close to the exact main resonances.

5.7.2. Timing jitter for nonzero phase-amplitude coupling

In this section, the phase-amplitude coupling is modeled by moderate symmetric α-
factors of αg = αq = 2. These values for the α-factors were used in [FIO10] to model a
hybrid ML QD laser and compare the simulation with experimental data. Figures 5.33(b)
and (d) depict σlt in dependence of τ and K in the regime of intermediate and long delay,
respectively, and Figs. 5.33(a) and (c) correspond to horizontal sections of Figs. 5.33(b)
and (d), respectively. One striking difference to the simpler case of zero α-factors is
that now an increase of the long-term timing jitter σlt can occur close to the exact main
resonances (cf. Section 5.5). For instance, σlt is increased for intermediate delay and
low K in the main resonant regime with τ = 8TISI,0 (see Fig. 5.33(b)) and for long delay
and low K in the main resonant regime with τ = 68TISI,0 (see Fig. 5.33(d)). For small
K = 0.05, this increase of σlt can be seen from the red lines in Figs. 5.33(a) and (b)
depicting σlt for intermediate and long delay, respectively. The peaks of σlt correspond
to unstable or chaotic waveforms with low temporal stability. The bifurcation cascade
undergone by the deterministic system was discussed in detail in Section 5.5. These
resonant self-pulsations were also observed by Avrutin et al. [AVR09] in a finite-difference
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Figure 5.32.: Long-term timing jitter σlt for αg = αq = 0 in dependence of delay time τ for intermediate
delay times ((a) and (b)) and long delay times ((c) and (d)). (a) and (c): σlt for various feedback
strengths K. Gray shaded regions indicate a reduction of σlt with respect to the long-term timing
jitter of the free running laser σlt,0. (b) and (d): Density plot of σlt (color code) as a function of τ and
K. Blue and red colors denote a reduction and an enhancement of σlt with respect σlt,0, respectively,
and white regions mark unstable pulse trains. Parameters: Ti = 4 · 104 TISI,0, Rsp = 1.6 ns−1, and
other parameters as in Tab. 5.1.
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Figure 5.33.: Long-term timing jitter σlt for finite αg = αq = 2 in dependence of delay time τ for
intermediate delay times ((a) and (b)) and long delay times ((c) and (d)). (a) and (c): σlt for
various feedback strengths K. Gray shaded regions indicate a reduction of σlt with respect to the
long-term timing jitter of the free running laser σlt,0. (b) and (d): Density plot of σlt (color code)
as a function of τ and K. Blue and red colors denote a reduction and an enhancement of σlt with
respect σlt,0, respectively, and white regions mark unstable pulse trains. Paramters: Ti = 4 · 104 TISI,0,
Rsp = 1.6 ns−1, and other parameters as in Tab. 5.1.
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5.8. Summary

traveling wave model. Further, experimentally, a sudden transition to unstable pulse
trains for resonant optical feedback was observed in observed in [LIN10e]. However, also
for finite α-factors, especially for long delay, a significant jitter reduction can be achieved
for high K away from the exact main resonances (see black line in Fig. 5.33(c) for K =
0.5). This is in agreement with various experimental studies [SOL93, BRE10, FIO11].

5.8. Summary

In conclusion, a DDE model for a passively mode-locked semiconductor laser has been
extended to study the influence of external optical feedback on the laser dynamics.
Resonances between the inter-spike interval time TISI,0 and the delay time τ that follow
the ordering of the Farey sequence have been observed. If τ is close to an integer multiple
of TISI,0, only one pulse travels in the cavity (main resonant regime), while p pulses are
found (higher order resonant regimes) if the ratio of τ and TISI,0 is close to a rational
number (pτ ≈ qTISI,0). In between the resonant regimes, the mismatch of τ and TISI,0

leads to pulse trains of broad and less stable pulses (non-resonant regime).

For small feedback strengths, the periodic orbit of the pulse train is deformed in
a nonlinear way, but remains stable. For intermediate feedback strengths, the main
resonant regimes broaden, while quasiperiodic motion is observed outside of this regime.
For high feedback strengths, harmonic mode locking is found in the second order and
third order resonant regimes.

By increasing the delay time, on the one hand, a broadening of the width of the main
resonant regimes, and, on the other hand, bistability between pulse trains with different
numbers of pulses in the cavity is observed for long delay.

Taking into account the amplitude-phase coupling by nonzero α-factors in gain and
absorber section, instabilities, i.e., resonant self-pulsations, are observed close to the
exact main resonances, which is in agreement with recent experimental studies. A de-
tailed study of the bifurcation cascade reveals that the mode-locked laser undergoes a
quasiperiodic route to chaos, which suggests the assumption that mode-locked lasers
with resonant optical feedback display similar instabilities than single mode lasers under
optical feedback.

Further, it was shown that the pulse repetition frequency is entrained by the exter-
nal feedback in the main resonant regimes. For long delay and intermediate feedback
strengths a sawtooth-like shape of the frequency detuning in dependence of the delay
time τ is found as also observed in experiments.

Moreover, the temporal stability of the pulse stream of the passively mode-locked
laser subject to Gaussian white noise, which models the spontaneous emission noise,
was discussed. The white noise applied to the field equations results in a random walk
of the timing fluctuations, which yields a computationally efficient approach to calculate
the root-mean-square timing jitter.

The resonance structure observed for the deterministic system subsists under sponta-
neous emission noise. As a result, the timing jitter can be reduced in the main resonant
regime, and the suppression of the timing jitter is more efficient for long delay, because
the main "resonance cones" broaden. For finite phase-amplitude coupling, the timing
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5. Mode-locked laser

jitter increases close to the exact main resonances due to the resonant self-pulsations
found in the deterministic system, which is in agreement with recent experiments.
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CHAPTER

SIX

SUMMARY AND OUTLOOK

In this thesis, the complex dynamics of semiconductor laser structures under optical
injection and delayed optical feedback has been investigated.

In Part I, the focus has been on the complex dynamics of single mode QD semiconduc-
tor lasers. In general, semiconductor lasers are very sensitive to external perturbations,
i.e., optical injection and optical feedback due to the relatively low reflectivity of their
facets. As a consequence, already small external perturbations can destabilize the laser
leading to a wealth of complex dynamical regimes ranging from time periodic output,
over quasiperiodic waveforms, and weakly chaotic dynamics (low frequency fluctuations)
to fully developed chaos (coherence collapse). However, QD semiconductor lasers display
an enhanced dynamical stability under optical injection and optical feedback. To under-
stand this, a simple semiclassical differential equation for the electric field in the cavity
has been combined with microscopically based rate equations for the carrier subsystem.
The sophisticated material model takes into account the Coulomb scattering processes
between the discrete energy levels of the QDs and the surrounding carrier reservoir. This
yields carrier lifetimes for electrons and holes in the QDs, which depend nonlinearly on
the filling of the carrier reservoir, and thus on the pump current. Furthermore, they are
strongly dependent on the energy spacing between QD levels and the band edges of the
carrier reservoir, which permits to model different band structures. With this modeling
approach, it was possible to attribute the higher damping of the relaxation oscillations
of QD lasers to the finite carrier lifetimes in the QDs and to study the dependence of the
higher damping of the relaxation oscillations the band structure. Further, the enhanced
dynamical stability of QD lasers under external optical injection and optical feedback
has been attributed, on the one hand, to their stronger damping of the relaxation oscil-
lations and, on the other hand, to their lower phase-amplitude coupling in comparison
to QW lasers.

Despite its microscopic basis, this modeling approach has turned out to be simple
enough to deliver analytic insight: for the laser under optical injection analytic expres-
sions for the saddle-node and Hopf bifurcation lines bordering the phase-locking tongue
have been derived, and they show a good agreement with the bifurcation lines obtained
by numerical path continuation. Moreover, analytic expressions have been derived for
the zero-Hopf point for positive detuning, which acts as an organizing center for more
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6. Summary and outlook

complex dynamics, and the critical injection strength, below which no Hopf bifurcation
can occur. The latter limits the range of injection strengths, in which the system is
effectively one dimensional, and can consequently be described by a single differential
equation of Adler’s type for the phase difference of master and slave. The analytic ex-
pressions reveal a linear increase of the injection strengths of the zero-Hopf point as
well as the critical injection strength for the first Hopf instability with the damping
of the relaxation oscillations, which explains the higher dynamical stability of strongly
damped QD lasers compared to QW lasers. Further, for the laser subject to feedback,
an analytic expression for the first Hopf bifurcation has been derived, which represents
the lower bound for the transition to the coherence collapse regime. Like the critical
injection strength, below which no Hopf instability can occour, it depends linearly on
the damping of the relaxation oscillations.

Further, the possibility to use a semiconductor laser subject to optical feedback as an
excitable optical unit has been discussed, and coherence resonance has been observed.
For low values of the pump current and small α-factors, excitability is found in the
vicinity of a saddle-node homoclinic bifurcation, and for higher pump levels and larger
α-factors, it is observed close to a boundary crisis of a chaotic attractor. The boundary
crisis has the advantage that the feedback strength of the crisis increases with the pump
current, which at the same time enhances the excitability threshold. This is of interest
for experiments, because for the homoclinic bifurcation the noise level, at which the
coherence has its maximum, is very low, and may not be accessible experimentally. In
contrast, close to the boundary crisis, the coherence maximum can be shifted to higher
noise levels by increasing the pump current.

The second part of this work has been devoted to the study of passively mode-locked
semiconductor lasers subject to delayed optical feedback. Therefore, a simple delay
differential equation model has been extended to take into account delayed optical feed-
back. This has permitted to explain the reduction of the timing jitter for resonant
optical feedback by the resonance structure of inter-spike interval time and delay time.
Further, it has been shown that the suppression of the timing jitter is more effective for
long delay, which has been explained by the broadening of the main resonance regimes
for increasing delay time. Moreover, resonant self-pulsations have been studied close to
the exact main resonances revealing that for resonant optical feedback the mode-locked
laser undergoes the same route to chaos than a single mode Lang-Kobayashi-type laser.

Now, I would like to discuss some open questions and directions for future works. QD
lasers have lower cutoff frequencies than their QW counterparts due to their enhanced
damping of the relaxation oscillations. However, Radziunas et al. demonstrated in
Ref. [RAD07] that the cutoff frequency of a semiconductor laser under strong optical
feedback from a short integrated cavity can be significantly enhanced by tuning the
phase with that the light is coupled back into the gain section. Due to the strong
optical feedback, the theoretical analysis was performed by a traveling wave approach.
A detailed analysis of the QD laser model with Lang-Kobayashi-type field equation
discussed in Chapter 4 would permit to study the enhancement of the cutoff frequency
in terms of the external cavity modes analytically and to gain therefore analytical insight
into the phase dependence of the cutoff frequency.
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Further, in this thesis the resonance structure of inter-spike interval time and delay
time was discussed for vanishing and for symmetric α-factors in gain and absorber sec-
tions. However, the operation conditions of the gain section and of the saturable absorber
are very different: the gain section is strongly pumped to reach carrier inversion, while
an inverse voltage is applied to the absorber. Therefore, different α-factors for gain and
absorber sections are more realistic. Consequently, for the comparison with experiments
a detailed analysis of the timing jitter for non-symmetric α-factors is promising.

Moreover, in this thesis, the simplest scheme for delayed feedback control has been
investigated, where the system is controlled by the invasive optical feedback from an
external cavity. A different feedback scheme providing non-invasive time-delayed feed-
back control was proposed by Pyragas [PYR92] to stabilize unstable periodic orbits as
well as unstable fixed points. More recently, this control scheme was successfully ap-
plied to a single mode QW laser subject to optical feedback [SCH06a, DAH10]. In these
experiments stabilization of unstable steady states, chaos control, and the suppression
of intensity pulsation has been demonstrated. Therefore, it seems promising to stabi-
lize the pulse stream of a mode-locked laser subject to spontaneous emission noise by
non-invasive feedback control and consequently reduce the timing jitter.
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APPENDIX

A

SCATTERING RATES

In this appendix, the fit functions for the microscopically calculated scattering rates
are discussed. Due to the principle of detailed balance, the out-scattering rates may be
calculated from the in-scattering rates [LUE09, LUE10]. The detailed balance relations
read in their dimensionless form with respect to time t′ = 2κt

soutb = sinb e
− ∆Eb

kboT
[
ecbWb − 1

]−1
, for b ∈ {e, h}, (A.1)

where the coefficients cb = 2NQD/(DbkboT ) were introduced. Here, Db = mb/(π~
2)

are the 2D densities of state in the carrier reservoir with the effective masses mb. The
temperature is denoted by T , and kbo is Boltzmann’s constant. Further, ∆Ee ≡ EQW

e −
EQD

e and ∆Eh ≡ EQD
h −EQW

h are the energy differences between the QD levels EQD
e and

EQD
h and the band edges of the QW EQW

e and EQW
h for electrons and holes, respectively,

(see Fig. A.1).
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Figure A.1: Energy diagram of the band structure across a QD.
The ground state lasing energy is labeled by ~ω. The ener-
getic distances of the QD levels from the band edge of the
carrier reservoir (QW) for electrons and holes are marked by
∆Ee and ∆Eh, respectively. The Auger in- and out-scattering
rates between QD levels and QW are denoted by Sin

e/h and

Sout
e/h, respectively. The occupation probabilities of the QDs

are denoted by ρe/h, the reservoir carrier densities are labeled
by We/h, and J is the pump current density.

In this work, three different sets of microscopically calculated band structures are
considered named reference, slow, and fast. They differ in the energy spacings ∆Ee and
∆Eh between QD levels and the band edge of the carrier reservoir (see Table 2.1), which
results in different carrier lifetimes t−1

b = (sinb + soutb ) as discussed in Section 2.2.
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A. Scattering rates

A.0.1. Fit functions for scattering rates

For all three sets of scattering rates, the same functional dependence of sinb on the
reservoir populations are assumed. They are fitted by forth order polynomials in We

and Wh multiplied by a tanh, which allows for a good agreement with the microscopically
calculated rates at low values of the reservoir populations We and Wh. The fit functions
read

sine (We,Wh) = tanh(aeWe + be)
4∑

i=1

(
ce,iW

i
e + de,iW

i
h

)
, (A.2)

sinh (We,Wh) = tanh(ahWh + bh)
4∑

i=1

(
ch,iW

i
e + dh,iW

i
h

)
, (A.3)

where the coefficients ae/h, be/h, ce/h,i, and de/hi
for i ∈ {1, 2, 3, 4} are listed in Tables A.1,

A.3, and A.5 for reference, slow, and fast sets of scattering rates, respectively. Further,
Tables A.2, A.4, and A.6 list the parameter values for ∆Ee/h and ce/h as well as the steady
state values of the dynamical variables, the scattering rates and the dimensionless carrier
lifetimes for a pump level of J = 1.5Jth and a pump level ofJ = 3.5Jth for reference,
slow, and fast sets of scattering rates, respectively.

Table A.1.: Fit parameters for the reference set of carrier scattering rates of Table 2.1 for the QD laser
model.

Coefficient Value Coefficient Value

ae −1.836× 10−5 ah 3.326× 10−5

be −7.89× 10−6 bh −8.064× 10−4

ce,1 −298187.0 ch,1 −6886.56
ce,2 38443.3 ch,2 −7191.73
ce,3 −3287.08 ch,3 1117.15
ce,4 112.303 ch,4 −43.6502

de,1 53262.5 dh,1 −17291.4
de,2 571.696 dh,2 −13288.4
de,3 −72.5439 dh,3 1000.69
de,4 0.683815 dh,4 −52.8802

234



Table A.2.: Parameters and steady state values of the solitary QD laser with the fast set of carrier
scattering rates. Other parameters as in Table 2.2.

Parameters Value Meaning

∆Ee (∆Eh) 210 (50) meV Energy separation QW band edges – QD levels

ce 4.3070× 10−1 Constant for el. out-scattering rate

ch 4.1155× 10−2 Constant for hole out-scattering rate

J/Jth 1.50 (3.5) Ratio of current to current at lasing threshold

Jth 3.04 Current at lasing threshold

N0
ph 9074.34 (54244.4) Steady state photon density

We 1.33 (2.09) Steady state electron density in QW

Wh 1.89 (2.52) Steady state hole density in QW

ρe 0.91 (0.84) Steady state electron population

ρh 0.35 (0.42) Steady state hole population

sine 7.58 (16.10) Steady state of electron in-scattering rates

sinh 69.42 (108.79) Steady state of hole in-scattering rates

soute 2.9× 10−3 (3.2× 10−3) Steady state electron out-scattering rates

south 124.25 (143.94) Steady state hole out-scattering rates

te 1.3× 10−1 (6.2× 10−2) Electron lifetime

th 5.2× 10−3 (4.0× 10−3) Hole lifetime

Table A.3.: Fit parameters for the slow set of carrier scattering rates of Table 2.1 for the QD laser
model.

Coefficient Value Coefficient Value

ae −2.6612× 10−5 ah 1.94259× 10−5

be −1.64753× 10−6 bh 4.74478× 10−4

ce,1 −363381.0 ch,1 −3601.34
ce,2 50519.5 ch,2 −15193.1
ce,3 −4290.71 ch,3 1441.14
ce,4 146.177 ch,4 −47.7236

de,1 69984.1 dh,1 −19129.2
de,2 −74.2397 dh,2 −5584.61
de,3 −86.6277 dh,3 435.245
de,4 1.65736 dh,4 −27.6885
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A. Scattering rates

Table A.4.: Parameters and steady state values of the solitary QD laser with the slow set of carrier
scattering rates. Other parameters as in Table 2.2.

Parameters Value Meaning

∆Ee (∆Eh) 140 (120) meV Energy separation QW band edges – QD levels
ce 4.3070× 10−1 Constant for el. out-scattering rate
ch 4.1155× 10−2 Constant for hole out-scattering rate

J/Jth 1.50 (3.5) Ratio of current to current at lasing threshold
Jth 0.576 Current at lasing threshold
N0

ph 6091.92 (27657.3) Steady state photon density

We 0.334 (0.555) Steady state electron density in QW
Wh 0.438 (0.606) Steady state hole density in QW
ρe 0.684 (0.658) Steady state electron population
ρh 0.580 (0.607) Steady state hole population
sine 2.16 (4.52) Steady state of electron in-scattering rates
sinh 5.71 (9.25) Steady state of hole in-scattering rates
soute 6.21× 10−2 (7.44× 10−2) Steady state electron out-scattering rates
south 3.03 (3.53) Steady state hole out-scattering rates
te 4.50× 10−1 (2.18× 10−1) Electron lifetime
th 1.15× 10−1 (7.82× 10−2) Hole lifetime

Table A.5.: Fit parameters for the fast set of carrier scattering rates of Table 2.1 for the QD laser model.

Coefficient Value Coefficient Value

ae −1.18454× 10−5 ah 0.542381
be −1.12055× 10−5 bh −7.51954

ce,1 −1.67918× 10−5 ch,1 6.93691
ce,2 246065 ch,2 −3.05438
ce,3 −20090.5 ch,3 0.436126
ce,4 666.063 ch,4 −0.021217

de,1 305994 dh,1 −10.1779
de,2 1224.67 dh,2 −2.57347
de,3 −758.135 dh,3 0.159026
de,4 21.2669 dh,4 −0.00408522
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Table A.6.: Parameters and steady state values of the solitary QD laser with the fast set of carrier
scattering rates. Other parameters as in Table 2.2.

Parameters Value Meaning

∆Ee (∆Eh) 74 (40) meV Energy separation QW band edges – QD levels
ce 4.3070× 10−1 Constant for el. out-scattering rate
ch 4.1155× 10−2 Constant for hole out-scattering rate

J/Jth 1.50 (3.5) Ratio of current to current at lasing threshold
Jth 6.78947 Current at lasing threshold
N0

ph 39532.1 (191311) Steady state photon density

We 2.040 (2.946) Steady state el. for k = 0
Wh 2.639 (3.486) Steady state hole density for k = 0
ρe 0.932 (0.903) Steady state electron population
ρh 0.333 (0.362) Steady state hole population
sine 62.15 (102.43) Steady state of electron in-scattering rates
sinh 37.28 (57.14) Steady state of hole in-scattering rates
soute 2.52 (2.29) Steady state electron out-scattering rates
south 69.16 (78.83) Steady state hole out-scattering rates
te 1.55× 10−2 (9.55× 10−2) Electron lifetime
th 9.39× 10−3 (7.35× 10−3) Hole lifetime
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APPENDIX

B

RESOLVING THE SINGULARITY AT γ → 0

In this appendix, it is discussed how the singularity of the dynamical equations (2.4) for
γ → 0 can be resolved by rescaling the dimensionless time t′ as well as the dynamical
variables Nph, ρe, ρh, We, and Wh. The initial set of ordinary differential equations reads

N ′
ph =

[

g(ρe + ρh − 1)− 1
]

Nph, (B.1a)

ρ′e = γ
[

sine (1− ρe)− soute ρe − rw(ρe + ρh − 1)Nph − ρeρh

]

, (B.1b)

ρ′h = γ
[

sinh (1− ρh)− south ρh − rw(ρe + ρh − 1)Nph − ρeρh

]

, (B.1c)

W ′
e = γ

[

J − sine (1− ρe) + soute ρe − cWeWh

]

, (B.1d)

W ′
h = γ

[

J − sinh (1− ρh) + south ρh − cWeWh

]

, (B.1e)

where the spontaneous emission in Eq. (B.1) has been neglected (d = 0). First note that
the limit γ → 0 is indeed singular. Singular means that γ = 0 leads to a qualitatively
different solution than finite γ ≪ 1 [HIN95, BEN10]. Setting γ = 0, yields ρ′e =
ρ′h = W ′

e = W ′
h = 0, which results in constant carrier populations and thus in an

exponential increase or decrease of Nph. In contrast, for finite γ, stable steady state
lasing is observed in the numerical simulations. Perturbations from this equilibrium
decay either exponentially in the overdamped limit of the set of fast scattering rates or
for small values of γ, damped ROs are observed for the slow, reference, and very fast rates
(cf. Fig. 2.5). Thus, for γ small, we would expect that the leading order problem in γ is
conservative and the damping is introduced by the higher order contributions [LUE11].
Therefore, we try to find a coordinate transformation that resolves the singularity at
γ = 0. Generally, singular perturbation problems are difficult to solve, because no
systematic technique exists. For the present problem, the singularity can be removed by
a change of variables that is known from rate equations of conventional semiconductor
QW lasers [ERN10b]. The key observation is that the frequency of the ROs scales like√
γ. Rescaling time with respect to the time scale of the ROs permits to resolve the

singularity [LUE11]. The scalings of the deviations from the steady states of the carrier
variables are then obtained by balancing the dynamical equations.
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B. Resolving the singularity at γ → 0

At first, deviations (y, ue, ue, ve, vh) from the lasing steady state (N0
ph, ρ

0
e, ρ

0
h,W

0
e ,W

0
h )

and a new time s are introduced by

y ≡
Nph −N0

ph

aph
, ub ≡

ρb − ρ0b
ab

, vb ≡
Wb −W 0

b

bb
, and s ≡ ηt′, (B.2)

where b = e and b = h denote electrons and holes, respectively. The coefficients aph, ab,
vb, and η are functions of γ, and their scalings have to be determined in the following.
Inserting the ansatz (B.2) into Eqs. (B.1), yields

ẏ =
1

η

[(
N0

ph

aph
+ y

)

g(aeue + ahuh)

]

, (B.3a)

u̇e = − γ

ηae

[
aet

−1
e ue + aphyrw(ρ

0
e + ρ0h − 1 + aeue + ahuh)

+rwN
0
ph(aeue + ahuh) + aeueρ

0
h + ahuhρ

0
e + aeahueuh

]

, (B.3b)

u̇h = − γ

ηah

[
aht

−1
h uh + aphyrw(ρ

0
e + ρ0h − 1 + aeue + ahuh)

+rwN
0
ph(aeue + ahuh) + aeueρ

0
h + ahuhρ

0
e + aeahueuh

]

, (B.3c)

v̇e =
γ

ηbe

[
aet

−1
e ue − c(bhvhW

0
e + beveW

0
h + bebhvevh)

]
, (B.3d)

v̇h =
γ

ηbh

[
aht

−1
h uh − c(bhvhW

0
e + beveW

0
h + bebhvevh)

]
, (B.3e)

where the gain-clamping relation (2.25) was used to simplify the photon equation (B.3a),
and t−1

b ≡ sine + soute was introduced. Furthermore, the carrier equations (B.3b)–(B.3e)
have been simplified by using steady state relations, which were obtained by equating
to zero the right hand sides of Eqs. (B.1b)–(B.1e).

In a next step, scaling laws for the coefficients are derived under the conditions that
in the rescaled equations [STR94a]

i The time scale separation γ does not multiply the complete right hand sides of the
carrier equations (B.3b)–(B.3e) to resolve the singularity at γ = 0.

ii The number of independent parameters is reduced by regrouping them into dimen-
sionless groups.

To balance the photon equation (B.3a), ae and ah have to scale like η, because the deriva-
tive of y with respect to the slow time s is assumed to be of order O(1). Thus, the choice
ae = O(η) and ah = O(η) permits to balance all the terms on the right hand side of the
equation if we additionally assume the aph = O(N0

ph). The concept to balance as many
terms as possible is known as principle of dominant balance [BEN10]. As mentioned
above, the corresponding transformation for conventional class B semiconductor lasers
[ERN10b] suggests that η = O(

√
γ). This choice additionally prevents that γ multiplies

the full right hand sides of Eqs. (B.3b) and (B.3c). A simple choice to reduce the number
of the independent parameters is to set equal ae and ah, i.e., to introduce a ≡ ae = ah.
Moreover, the photon equation (B.3a) may be simplified by choosing aph = N0

ph and
setting the dimensionless group ga/η equal to unity, which yields

ga

η
= 1 ⇔ a = g−1η = g−1√γω, (B.4)
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where η =
√
γω with ω = O(1) has been used in the last equality. Inserting these scaling

laws into the dynamical equations (B.3), they simplify as

ẏ = (ue + uh) (1 + y) , (B.5a)

ω2u̇e = −rwN
0
phy −

[√
γω
(
t−1
e ue + rwN

0
ph(ue + uh)(1 + y) + ueρ

0
h + uhρ

0
e

)

+γg−1ω2ueuh

]

, (B.5b)

ω2u̇h = −rwN
0
phy −

[√
γω
(
t−1
h uh + rwN

0
ph(ue + uh)(1 + y) + ueρ

0
h + uhρ

0
e

)

+γg−1ω2ueuh

]

, (B.5c)

ωv̇e =

√
γ

be

[√
γg−1ωt−1

e ue − c(bhvhW
0
e + beveW

0
h + bebhvevh)

]
, (B.5d)

ωv̇h =

√
γ

bh

[√
γg−1ωt−1

h uh − c(bhvhW
0
e + beveW

0
h + bebhvevh)

]
, (B.5e)

where the gain-clamping relation (2.25) was employed to simplify Eqs. (B.5b) and (B.5c).
In Section 2.2, it was discussed that the scattering rates have a crucial impact on the
damping of the ROs, which in terms influences the tolerance of the laser subject to optical
injection and optical feedback. Therefore, the coefficients be and bh in Eqs. (B.5d) and
(B.5e) are chosen such that the first terms in the brackets on the right hand sides of
the equations, which are proportional to the carrier lifetimes te and th, constitute the
leading order terms of these equations. A simple choice for be and bh that simplifies the
leading order problem is b ≡ be = bh = g−1γω. Inserting b into Eqs. (B.5d) and (B.5e),
yields the final set of equations

ẏ = (ue + uh) (1 + y) , (B.6a)

ω2u̇e = −rwN
0
phy −

[√
γω
(
t−1
e ue + rwN

0
ph(ue + uh)(1 + y) + ueρ

0
h + uhρ

0
e

)

+γg−1ω2ueuh

]

, (B.6b)

ω2u̇h = −rwN
0
phy −

[√
γω
(
t−1
h uh + rwN

0
ph(ue + uh)(1 + y) + ueρ

0
h + uhρ

0
e

)

+γg−1ω2ueuh

]

, (B.6c)

ωv̇e = t−1
e ue − c

√
γ(vhW

0
e + veW

0
h ) + cγ3/2g−1ωvevh, (B.6d)

ωv̇h = t−1
h uh − c

√
γ(vhW

0
e + veW

0
h ) + cγ3/2g−1ωvevh. (B.6e)
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APPENDIX

C

LOCI OF HOPF BIFURCATIONS IN (C,K)-PLANE

In this appendix, the loci of the Hopf bifurcation lines for the single mode laser subject
to feedback in the plane spanned by the feedback phase C and the feedback strength K
are derived. From Eq. (4.53), we obtain

δωsτ = arctan(α)− C ± arccos
(

− G
k̃H
eff

)

+ 2nπ, (C.1)

Further, rewriting the transcendental Eq. (4.7) in the same way, yields

δωsτ = −k̃H
eff sin

(
C + δωsτ + arctan(α)

)
. (C.2)

Inserting Eq. (C.1) into Eq. (C.2) permits to eliminate δωsτ

C =arctan(α)± arccos
(

− G
k̃H
eff

)

+ k̃H
eff sin

(

2 arctan(α)± arccos
(

− G
k̃H
eff

))

+ 2nπ.

(C.3)

With the help of some trigonometric identities1 Eq. (C.3) can be expanded as

sin
(

2 arctan(α)± arccos
(

− G
k̃H
eff

))
(C.4)
= sin

(

2 arctan(α)
)

cos
(

arccos
(

− G
k̃H
eff

))

± cos
(

2 arctan(α)
)

sin
(

arccos
(

− G
k̃H
eff

))

.

1In order to simplify Eq. (C.3), several trigonometric identities are employed for resolving the sine

sin
(
x± y

)
=sin

(
x
)
cos
(
y
)
± sin

(
y
)
cos
(
x
)
, (C.4)

cos
(
x± y

)
=cos

(
x
)
cos
(
y
)
∓ sin

(
y
)
sin
(
x
)
, (C.5)

sin
(
arctan(x)

)
=

x√
1 + x2

, (C.6)

cos
(
arctan(x)

)
=

1√
1 + x2

, (C.7)

sin
(
arccos(x)

)
=
√

1− x2., (C.8)
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C. Loci of Hopf bifurcations in (C,K)-plane

Using

sin
(

2 arctan(α)
)

(C.4)
= 2 sin

(

arctan(α)
)

cos
(

arctan(α)
)

(C.6),(C.7)
=

2α

1 + α2

and

cos
(

2 arctan(α)
)

(C.5)
= cos2

(

arctan(α)
)

− sin2
(

arctan(α)
)

(C.6),(C.7)
=

1− α2

1 + α2
,

one obtains

sin
(

2 arctan(α)± arccos
(

− G
k̃H
eff

))

= − 2αG
k̃H
eff

(
1 + α2

) ± 1− α2

1 + α2
sin
(

arccos
(

− G
k̃H
eff

))

(C.8)
= − 2αG

k̃H
eff

(
1 + α2

) ± 1− α2

1 + α2

√

1− G2

(k̃H
eff)

2
=

1

k̃H
eff

{

− 2αG
1 + α2

± 1− α2

1 + α2

√

(k̃H
eff)

2 − G2
}

.

Inserting this result into equation Eq. (C.3), yields the final expression for the loci of
Hopf-bifurcations in the (C, k̃)-plane [LEV95]

CH
n (k) = arctan(α)± arccos

(−G
k̃H
eff

)

− 2αG
1 + α2

± 1− α2

1 + α2

√

(k̃H
eff)

2 − G2 + 2nπ. (C.9)
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APPENDIX

D

STOCHASTIC METHODS

In this appendix, the basic mathematical methods to characterize stochastic processes
are discussed.

D.1. Time average vs. ensemble average

A stochastic process x(t) is given by a random variable, which is a function of time, and
is thus only statistically characterized. A single event x(t1) at the time point t1 only
gives us one of the possible state of the system, which in general depends on t1 and on the
realization of the stochastic process, i.e., on its sample path. Therefore, only averaged
quantities can be discussed. There are two different averaging procedures: on the one
hand, an average can be performed over an ensemble {x(1)(t1), x

(2)(t1), . . . , x
(N)(t1)} of

N ∈ N realizations of the stochastic process at a fixed point in time t1, which is called
ensemble average. On the other hand, one single realization x(n)(t) of the stochastic
process can be averaged over a certain time interval, which is called time average. Both
averaging procedures are illustrated in Fig. D.1. The graph of a single realization x(n)(t)
as a function of time is called a sample path of the stochastic process.

The first order time-average of a stochastic process is defined by

x(n) ≡ lim
Tiր∞

1

Ti

∫ Ti

0

x(n)(t′)dt′, (D.1)

where the integration time is denoted by Ti. Further, the correlations of the stochastic
process at different time points are described by its autocorrelation function [STR63,
GAR02, HOR84, JAC10]

Ψx(s) ≡ lim
Tiր∞

1

Ti

∫ Ti

0

x(n)(t′)x(n)(t′ + s)dt′. (D.2)

The first order ensemble average at a time point t1 is defined by

〈x(t1)〉 ≡ lim
Nր∞

N∑

i=1

x(n)(t1) =

∫

R

x1ρ1(x1, t1)dx1, (D.3)
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D. Stochastic methods

ensemble average

time average

time

time

time

Figure D.1: Illustration of time and ensemble
average. The different sample paths are de-
noted by x(i)(t) for i ∈ {1, . . . , N}. The time

average x(i) is performed over one sample path
i, while the ensemble average 〈x(t1)〉 is per-
formed over the whole ensemble of sample
path at a fixed point in time t1.

where ρ1(x1, t1) is the probability density of the stochastic process. The correlation of
the stochastic process at two different time points t1 and t2 averaged over an ensemble
of realizations is given by its covariance

〈x(t1)x(t2)〉 ≡ lim
Nր∞

N∑

i=1

x(n)(t1)x
(n)(t2) =

∫

R

x1x2ρ2(x2, t2; x1, t1)dx1dx2, (D.4)

where we have introduced x1 ≡ x(t1) and x2 ≡ x(t2) as well as the first order proba-
bility density function ρ1(x1, t1) and the second order joint probability density function
ρ2(x2, t2; x1, t1)

1. The ensemble average is thus given by the first moment of the proba-
bility function ρ1, and the second moment reads

〈x2(t1)〉 ≡
∫

R

x2
1ρ1(x1, t1)dx1. (D.5)

The ensemble average is a convenient concept for the theoretical treatment of a physi-
cal systems, since it is directly related to the systems probability density function, which
can be generally obtained from the theoretical analysis of the system. However, from
an experimental point of view, time-averaging is the more natural procedure since one
cannot experimentally prepare an infinite number of identical systems. In the next sub-
section, we will address the question, under which conditions both averaging procedures
are equivalent.

1The probability that x is found in the interval [x1, x1 + dx1] is given by ρ1(x1, t1)dx1, and the
probability that x is found in [x1, x1 + dx1] at t1 and in [x2, x2 + dx2] at a (different) time point t2
is given by ρ2(x2, t2;x1, t1)dx1dx2.
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D.2. Statistically stationary vs. non-stationary random processes

D.2. Statistically stationary vs. non-stationary

random processes

A process is called ergodic in the mean if its time-average (D.1) equals its ensemble av-
erage (D.3). Since the time-average (D.1) does not depend on the time point t1, also the
ensemble average has to be stationary (time-independent). Further, a process is called
ergodic in the autocorrelation if additionally its autocorrelation function (D.2) equals its
covariance (D.4), which implies that the covariance depends only on the time differences
s ≡ t2 − t1 of the considered time points t1 and t2, and the second moment (D.5) is
independent of time, i.e., stationary.

Processes with constant ensemble average and a covariance that depends only on time
differences s are called weakly stationary or wide-sense stationary. From the above
considerations, we see that a process, which is ergodic in the autocorrelation is also
wide-sense stationary, thus ergodicity implies stationarity, but the inverse is not true
[GAR02]. Since the time averaged quantities are obtained by averaging only over one
sample function, for an ergodic (and thus a wide-sense stationary) process one sample
function is sufficient to obtain all statistical information about the process. For non-
stationary processes, the limes Ti ր ∞ does not exist, which means that its time average
and its autocorrelation function depend on the integration time Ti. In practice, this is
not a disadvantage, because experimental measurements are always carried out for a
finite time. The concept of the ensemble average can be employed as before under the
assumption that all member functions of the ensemble, i.e., all sample paths have the
same probability density function.

D.3. Power spectral density and Wiener-Khinchin

theorem

In this section, we will discuss the power spectral density (PSD) or power spectrum,
which reveals the frequency content of a stochastic process and is therefore the most
universal tool to characterize the typical time scales of the process. Further, the Wiener-
Khinchin theorem will be discussed, which states that PSD and autocorrelation func-
tion (D.2) of a wide-sense stationary process form a Fourier-pair.

First, we have to introduce the Fourier transform of a stochastic process. Here, we
run into the problem that stationary stochastic processes are not integrable, i.e., their
L
1-norm ‖ · ‖1 is not finite. This means that they do not belong to the Banach space

L
1 ≡

{

f : R −→ C, with ‖f‖1 ≡
∫

R

|f(x)|dx < ∞
}

of measurable functions f . However, every real measurement always has a finite inte-
gration time Ti, therefore the Fourier transform can be defined on the Banach space of
the gated stochastic processes xTi

[BUC83], defined by

xTi
(t) ≡

{

x(t) for t ≤ Ti,

0 else.
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D. Stochastic methods

The Fourier transform F and its inverse F−1 of a stochastic process xTi
(t) is then simply

defined by the Fourier transforms of its realizations x
(n)
Ti

for n ∈ {1, . . . , N} and N ∈ N

x̂
(n)
Ti

(ω) ≡ F [x
(n)
Ti

](ω) ≡
∫

R

x
(n)
Ti

(t)e−iωtdt, (D.6a)

x
(n)
Ti

(t) = F−1[x̂
(n)
Ti

](t) ≡ 1

2π

∫

R

x̂
(n)
Ti

(ω)eiωtdω, (D.6b)

where x̂
(n)
Ti

denotes the Fourier transform of the realization x
(n)
Ti

.
With the help of the time-shift property of the Fourier transform F [x(t + s)] =

x̂(ω)eiωs, the following relation is obtained

∫

R

x
(n)
Ti

(t+ s)
(
x
(n)
Ti

)∗
(t)dt =

1

2π

∫

R

∣
∣
∣x̂

(n)
Ti

(ω)
∣
∣
∣

2

eiωsdω, (D.7)

where ()⋆ denotes the complex conjugate. Taking for s = 0, the norm of both sides of
Eq. (D.7) yields the Plancherel theorem [RED80]

∫

R

∣
∣
∣x

(n)
Ti

∣
∣
∣

2

dt =
1

2π

∫

R

∣
∣
∣x̂

(n)
Ti

(ω)
∣
∣
∣ dω. (D.8)

It has the physical interpretation that the energy of a signal is the same for the signal
itself and for the Fourier transform of the signal, which is sometimes denoted as energy
theorem. This means that |x̂(n)(ω)|2 is the energy density of the harmonic component
eiωt in units of energy per Hz . For a real non-stationary process xTi

, the energy of the
signal will depend on the realization n of the stochastic process. Therefore, to define
the time averaged power of the process meaningfully, we have to take the ensemble
average (D.3) of both sides of Eq. (D.7) and additionally divide both sides of Eq. (D.7)
by the integration time Ti

1

Ti

∫

R

〈xTi
(t+ s)xTi

(t)〉dt = 1

2π

∫

R

〈|x̂Ti
(ω)|2〉
Ti

eiωsdω = F−1

[

〈|x̂Ti
(ω)|2〉
Ti

]

. (D.9)

For s = 0, the right hand side of Eq. (D.9) yields the time averaged power of the
stochastic process, so it does make sense to interpret

Sx(s, Ti) ≡
〈|x̂Ti

(ω)|2〉
Ti

(D.10)

as power spectral density. Further, the right hand side of Eq. (D.9) can be interpreted
as ensemble averaged autocorrelation function (see Eq. (D.2))

Ψx(s, Ti) ≡
1

Ti

∫

R

〈xTi
(t+ s)xTi

(t)〉dt = 1

Ti

∫ Ti−|s|

0

〈x(t+ s)x(t)〉dt. (D.11)

Equation (D.9) is the Wiener-Khinchin theorem for a non-stationary stochastic pro-
cesses, which states that Ψx(s, Ti) and Sx(s, Ti) form a Fourier-pair. Since for every
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D.4. Numerical calculation of power spectral density

real function xT the corresponding PSD is an even function of frequency [GAR02], i.e.,
Sx(ω, Ti)=Sx(−ω, Ti), the Fourier-pair can be rewritten as

Ψx(s, Ti) =
1

π

∫ ∞

0

Sx(ω, Ti) cos(ωs)dω, (D.12a)

Sx(ω, Ti) = 2

∫ ∞

0

Ψx(s, Ti) cos(ωs)ds. (D.12b)

As discussed in Subsection D.2 for wide-sense stationary stochastic processes, each
realization contains its full statistic information, and the limit Ti ր ∞ does exist. In
this case, we can apply, instead of the ensemble average 〈 · 〉, the limit T ր ∞ to both
sides of Eq. (D.9). We then find the Wiener-Khinchin theorem for wide-sense stationary
processes [DRA67]

Sx(ω) ≡ F [Ψx(s)], and Ψx(s) = F−1[Sx(ω)], (D.13)

where Ψx(s) is the autocorrelation function as defined in Eq. (D.2) and the PSD is
defined by

Sx(ω) ≡ |F [x(t)]|2 = lim
Tiր∞

1

2πTi

∣
∣
∣
∣

∫ Ti

0

x(t)e−iωtdt

∣
∣
∣
∣

2

, (D.14)

as commonly used throughout the literature [POM05, POM07, PAS04].
For the calculation of the timing jitter in Section 5.6, it is important to note that

Eq. (D.13) permits us to calculate the variance Var(x) ≡ 〈x2〉 − 〈x〉2 of a real stochastic
process x(t) with zero mean 〈x〉 = 0 from the PSD

Var(x) = 〈x2〉 = Ψx(0)
(D.12a)
=

1

2π

∫

R

Sx(ω)dω
x(t)∈R
=

1

π

∫ ∞

0

Sx(ω)dω, (D.15)

where the second equality holds due the equivalence of covariance (D.4) and autocorrela-
tion function (D.2) for stationary stochastic processes, in the third equality Eq. (D.12a)
in the limit Ti ր ∞ has been employed, and eventually the last equality holds due to
the symmetry of Sx for real x(t) with zero mean (〈x〉 = 0).

D.4. Numerical calculation of power spectral density

In this section, it is briefly discussed how to obtain the PSD from numerical simulations.
In numerical simulations, we obtain a finite set {x} ≡ {x1, . . . , xN} of samples xn of the
continuous function x(t) with xn ≡ x(nTs) and n ∈ [1, . . . , N ], where Ts is the sampling
time of the signal. We have to replace the continuous Fourier transform F and its inverse
F−1 by a discrete-time Fourier transform Fd and its inverse, respectively,

Fd[{x}](ν) ≡
{

1

N

N∑

n=1

xne
−i2πnνTs

}

, F−1
d [{x̂}](t) ≡

{

1

N

N∑

k=1

x̂ke
i2πktνs

}

. (D.16)

Here, {x̂} ≡ {x̂1, . . . , x̂N} is the finite set of samples of x̂ with x̂n ≡ x̂(nνs) and the
sampling frequency νs ≡ 1/Ts. In simulation, the system can only be integrated for finite
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times Ti = NTs. Therefore the observables, i.e., Fourier transform, power spectrum, and
autocorrelation function depend on the realization of the stochastic process. Therefore,
also for wide sense stationary stochastic processes, one has to average over an ensemble
of M ∈ N realizations, which is denoted by 〈 · 〉M . The power spectrum Sx(ν,N) of {x}
is then defined as follows

Sx(ν,N) ≡ Ti〈|Fd[{x}]|2〉M =
Ti

M

M∑

m=1

∣
∣
∣
∣
∣

{

1

N

N∑

n=1

xne
−i2πnνTs

}

m

∣
∣
∣
∣
∣

2

. (D.17)

For non wide-sense stationary processes, Sx(ν,N) depends on the length Ti of the time-
series x, i.e., on the number of samples N . For wide-sense stationary processes and Ti

sufficiently large, the observables are independent of N . The factor of Ti is introduced
in Eq. (D.17), because the discrete Fourier tranform of x has the dimension [x]/Hz
[PAS04], thus |Fd[{x}]|2 has the dimension [x]2/Hz 2. The PSDs defined in Eqs. (D.10)
and (D.14) have the units [x]2/Hz . The factor Ti ensures that the discrete PSD has
the same dimension than the continuous one. Physically, it takes into account the finite
resolution bandwidth 1/Ti of the measuring instrument, i.e., of the electrical spectrum
analyzer [KOL86].
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